Wolfgang Trutschnig. Salzburg, FB Mathematik Universität Salzburg

Größe: px
Ab Seite anzeigen:

Download "Wolfgang Trutschnig. Salzburg, 2014-05-08. FB Mathematik Universität Salzburg www.trutschnig.net"

Transkript

1 Auffrischungskurs Angewandte Statistik/Datenanalyse (Interne Weiterbildung FOR SS14-08) Block 1: Deskriptive Statistik, Wiederholung grundlegender Konzepte, R FB Mathematik Universität Salzburg Salzburg,

2 Inhalt Block 1 Erste Schritte in R bzw. RStudio: packages installieren, schon fertige scripts ausführen. Wiederholung elementarer Begriffe der deskriptiven Statistik (Verteilungsfunktionen, Quantile, Boplots, Histogramme, etc.) anhand von gegebenen Daten und Grafiken. Interpretation der Grafiken. Grundlagen R (falls notwendig). Ausblick auf die folgenden drei Blöcke sowie Diskussion etwaiger Ergänzungen. Geplant ist (mit R-Unterstützung): Verteilungsfamilien Regressionstechniken Grundkonzepte der Stichprobenplanung und Konfidenzintervalle Zentraler Grenzwertsatz und Starkes Gesetz der Grossen Zahlen Hypothesentests (parametrisch und nichtparametrisch)?

3 Warum R? R ist freeware! Läuft auf allen üblichen Plattformen Weltweit verwendet, state of the art Online Kurse (youtube etc.) Laufend Aktualisierungen Breites Anwendungsspektrum, Vielzahl an verwendbaren Paketen (derzeit 5505) Newsgroups für spezifische Problemstellungen Coole Grafiken Schnittstellen mit anderer Software, insbesondere mit Late (sweave, knitr) Sehr einfache Simulation von Daten - erhöht die Verständlichkeit von Statistik

4 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b] Histogramm: Übersichtliche, einfache Darstellung der Daten: Zerlege [a, b] in Intervalle I 1,..., I k und zähle wie viele Werte in welchem Intervall liegen, d.h. h n(i j ) := #{m : m I j }, r n(i j ) := h n(i j )/n Histogramm sum_out Histogramm sum_out sum_out sum_out

5 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b] Empirische Verteilungsfunktion: Übersichtliche, einfache Darstellung der Daten: für jedes [a, b] zähle wie viele Werte sind, d.h. F n() := #{i : i }/n Histogramm sum_out empirische Verteilungsfunktion Fn() sum_out

6 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b], F n bezeichne die empirische Verteilungsfunktion. Für jedes p [0, 1] heisst F ( 1) (p) := min{ : F n() p} p-quantil der Stichprobe. Histogramm sum_out empirische Verteilungsfunktion Fn() sum_out

7 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b] Ein boplot ist eine zusammenfassende Darstellung basierend auf den 0.25-, 0.5-, 0.75-Quantilen und Ausreißern: empirische Verteilungsfunktion Boplot pro Jahr sum_out Fn() total

8 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Warum bisher Mittelwert nicht einmal erwähnt? OeNB: Der durchschnittliche österreichische Haushalt verfügte 2004 über ein Geldvermögen von rund Euro. Informationsgehalt? Mittelwert ist sehr sensitiv auf Ausreißer - Veränderung eines einzigen Wertes kann Mittelwert etrem verändern - nicht robust! Histogramm von Histogramm von plus einmal

9 Learning by doing Verwendung der deskriptiven tools zur Analyse eines ersten realen Datensatzes: ymd weekday nr weekday sum out holiday Mon Tue Wed Thu Fri Sat Der Datensatz enthält die Zeitreihe der bei einem Bankomaten (einer Filiale einer Bank) abgehobenen täglichen Geldmenge. Ursprüngliche Problemstellung: Entwicklung von zuverlässigen forecasts für die abgehobenen täglichen Geldmenge zum Zwecke der Optimierung des Zuliefersystems (500 verschiedene Filialen, Zeitreihen von 3 Jahren). Komplettes Skript unter

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Lean Six Sigma Green Belt - Deutsch

Lean Six Sigma Green Belt - Deutsch Lean Six Sigma Green Belt - Deutsch Inhalt des aktuellen Kurses Voraussichtliche Gesamtdauer in Stunden: 80.00 Sitzung 1: Einführung in Lean Six Sigma (4 Stunden) Einführung Anatomie einer erfolgreichen

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Wissenswertes zum Lean Six Sigma Green Belt-Kurs

Wissenswertes zum Lean Six Sigma Green Belt-Kurs KMU-Praxis Dr. Roland Kemmerer Unternehmensberatung Lebuinstr. 31, D-31608 Marklohe Wissenswertes zum Lean Six Sigma Green Belt-Kurs Der Greenbelt-Kurs von KMU-Praxis beinhaltet sowohl Lean-, als auch

Mehr

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi

Motivation. Themenblock: Data Preprocessing. Einsatzgebiete für Data Mining I. Modell von Gianotti und Pedreschi Motivation Themenblock: Data Preprocessing We are drowning in information, but starving for knowledge! (John Naisbett) Was genau ist Datenanalyse? Praktikum: Data Warehousing und Data Mining Was ist Data

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Nichtparametrische Datenanalyse

Nichtparametrische Datenanalyse Statistik und ihre Anwendungen Nichtparametrische Datenanalyse Unverbundene Stichproben von Edgar Brunner, Ullrich Munzel 1. Auflage Nichtparametrische Datenanalyse Brunner / Munzel schnell und portofrei

Mehr

Inhaltsverzeichnis. a. Standorte...3 1. Minitab... 6. A. Minitab... 6 B. R...14. C. Statistik...16

Inhaltsverzeichnis. a. Standorte...3 1. Minitab... 6. A. Minitab... 6 B. R...14. C. Statistik...16 2 Inhaltsverzeichnis a. Standorte...3 1. Minitab... 6 A. Minitab... 6 i. Statistik für Ingenieure mit Minitab... 6 ii. Statistische Qualitätskontrolle mit Minitab...8 iii. Statistische Versuchsplanung

Mehr

Performance Messungen

Performance Messungen Performance Messungen 1 Einordnung titativ iv Quan Qualitat Kontrollierte Eperimente mit Probanden Fragebög en 3 Think Aloud Protokolle Mensch Computer Technisch h h Interview Fallstudien Zeitreihen analysen

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

Klausur Sommersemester 2010

Klausur Sommersemester 2010 Klausur Sommersemester 2010 Lehrstuhl: Wirtschaftspolitik Prüfungsfach: Empirische Wirtschaftsforschung Prüfer: Prof. Dr. K. Kraft Datum: 04.08.2010 Hilfsmittel: Nicht-programmierbarer Taschenrechner Klausurdauer:

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Hygienische Reiniger Wissenschaftliche Studie: 10 000 Reinigungsversuche, 6 Fälle mit mehr als 1 Bakterien Stimmt s jetzt oder was? Binomialtest:

Mehr

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse Hochschule Zittau/Görlitz, Fakultät Maschinenwesen, Fachgebiet Technische Thermodynamik M. Kunick, H. J. Kretzschmar, U. Gampe Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik

Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz. 31. Mai 2007 Dimitri Senik Neue Anforderungen an Risikomessung bei kollektiven Kapitalanlagen in der Schweiz Dimitri Senik Agenda Risikomanagement bei Fonds: neue regulatorische Vorschriften Risikomessung gemäss KKV-EBK Risikomanagement

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Medizinische Biometrie (L5)

Medizinische Biometrie (L5) Medizinische Biometrie (L5) Vorlesung II Daten Deskription Prof. Dr. Ulrich Mansmann Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie mansmann@ibe.med.uni-muenchen.de IBE,

Mehr

Managementprozesse und Performance

Managementprozesse und Performance Klaus Daniel Managementprozesse und Performance Ein Konzept zur reifegradbezogenen Verbesserung des Managementhandelns Mit einem Geleitwort von Univ.-Professor Dr. Dr. habil. Wolfgang Becker GABLER EDITION

Mehr

Hauptseminar Technische Informationssysteme

Hauptseminar Technische Informationssysteme Fakultät Informatik - Institut für Angewandte Informatik, Professur Technische Prozessanalysetools unter dem Gesichtspunkt industrieller Prozessanalyse und -modellierung Dresden, 10.07.2008 Gliederung

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Datenqualitätsmanagement im Customer Relationship Management

Datenqualitätsmanagement im Customer Relationship Management Wolfgang Leußer Datenqualitätsmanagement im Customer Relationship Management Verlag Dr. Kovac Hamburg 2011 Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis XVII XIX XXI

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

0 Einführung: Was ist Statistik

0 Einführung: Was ist Statistik 0 Einführung: Was ist Statistik 1 Datenerhebung und Messung Die Messung Skalenniveaus 2 Univariate deskriptive Statistik 3 Multivariate Statistik 4 Regression 5 Ergänzungen Grundbegriffe Statistische Einheit,

Mehr

DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN

DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN FH-Prof. Dr. Claudia Brauer Management Center Innsbruck MCI MANAGEMENT CENTER INNSBRUCK Universitätsstraße 15 office@mci.edu 1 BIG

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas.

Elisabeth Raab-Steiner/Michael Benesch. Der Fragebogen. Von der Forschungsidee zur SPSS/PASW-Auswertung. 2., aktualisierte Auflage. facultas. Elisabeth Raab-Steiner/Michael Benesch Der Fragebogen Von der Forschungsidee zur SPSS/PASW-Auswertung 2., aktualisierte Auflage facultas.wuv Inhaltsverzeichnis 1 Elementare Definitionen 11 1.1 Deskriptive

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/31 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/31 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Überblick und Ausblick

Überblick und Ausblick Letzte Vorlesung Statistik Vorlesung Datenanalyse und Statistik Gliederung 1 Sortiert nach dem Inhalt der Vorlesung Sortiert nach Daten 2 Kovarianzmatrizen Klusteranalyse Hauptkomponentenanalyse Faktorenanalyse

Mehr

Ziel: Ziel der Aufgabe Ziel ist es, die Funktionalitäten von qs-stat millennium, sowie die Beurteilung von Datensätzen kennen zu lernen.

Ziel: Ziel der Aufgabe Ziel ist es, die Funktionalitäten von qs-stat millennium, sowie die Beurteilung von Datensätzen kennen zu lernen. Datenqualität 1/19 Ziel: Ziel der Aufgabe Ziel ist es, die Funktionalitäten von qs-stat millennium, sowie die Beurteilung von Datensätzen kennen zu lernen. Ausgangssituation: Sie wollen anhand des Werteverlaufs

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

WEBINAR@LUNCHTIME THEMA: " SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE" HELENE SCHMITZ

WEBINAR@LUNCHTIME THEMA:  SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE HELENE SCHMITZ WEBINAR@LUNCHTIME THEMA: " SCHICKE BERICHTE SCHNELL ERSTELLT MIT DEM SAS ENTERPRISE GUIDE" HELENE SCHMITZ EBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS

Mehr

W.WIINM32.11 (Datawarehousing) W.WIMAT03.13 (Statistik)

W.WIINM32.11 (Datawarehousing) W.WIMAT03.13 (Statistik) Modulbeschrieb Business Intelligence and Analytics 16.10.2013 Seite 1/5 Modulcode Leitidee Art der Ausbildung Studiengang Modultyp W.WIINM42.13 Information ist eine derart wichtige Komponente bei der Entscheidungsfindung,

Mehr

Datenanalyse mit R für Administratoren

Datenanalyse mit R für Administratoren Datenanalyse mit R für Administratoren Beispiele aus der Praxis Stefan Möding 23. August 2014 Inhalt R in aller Kürze Beispiel 1: Antwortzeiten eines Tomcat Beispiel 2: Prognosen mit RRD Beispiel 3: Universal

Mehr

Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung

Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung Hintergrund Bei komplexen Baugruppen ergeben sich sehr hohe Anforderungen an die Tolerierung der einzelnen

Mehr

Social Media Nutzung deutscher Winzer und Weingüter

Social Media Nutzung deutscher Winzer und Weingüter Social Media Nutzung deutscher Winzer und Weingüter Ergebnisse einer Online-Befragung im August 2011 DR. GERGELY SZOLNOKI DIMITRI TAITS FORSCHUNGSANSTALT GEISENHEIM FACHGEBIET BETRIEBSWIRTSCHAFT UND MARKTFORSCHUNG

Mehr

MetaQuotes Empfehlungen zum Gebrauch von

MetaQuotes Empfehlungen zum Gebrauch von MetaQuotes Empfehlungen zum Gebrauch von MetaTrader 4 auf Mac OS Auch wenn viele kommerzielle Angebote im Internet existieren, so hat sich MetaQuotes, der Entwickler von MetaTrader 4, dazu entschieden

Mehr

Einführung in SPSS. 1. Die Datei Seegräser

Einführung in SPSS. 1. Die Datei Seegräser Einführung in SPSS 1. Die Datei Seegräser An 25 verschiedenen Probestellen wurde jeweils die Anzahl der Seegräser pro m 2 gezählt und das Vorhandensein von Seeigeln vermerkt. 2. Programmaufbau Die wichtigsten

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Integrierte modellgestützte Risikoanalyse komplexer Automatisierungssysteme

Integrierte modellgestützte Risikoanalyse komplexer Automatisierungssysteme Universität Stuttgart Institut für Automatisierungs- und Softwaretechnik Prof. Dr.-Ing. Dr. h. c. P. Göhner Integrierte modellgestützte Risikoanalyse komplexer Automatisierungssysteme Dipl.-Ing. Michael

Mehr

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011

MythMiner. Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner. Balázs Bárány. Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ Ein Empfehlungssystem für Fernsehprogramme auf Basis von RapidMiner Linuxwochen Wien, 7. 5. 2011 Voraussetzungen für Data Mining und Text Mining Schluÿ

Mehr

Analyse leicht gemacht - SAS Enterprise Guide. Gerd Hoffmann Technical Competence Center SAS Deutschland

Analyse leicht gemacht - SAS Enterprise Guide. Gerd Hoffmann Technical Competence Center SAS Deutschland Analyse leicht gemacht - SAS Enterprise Guide Gerd Hoffmann Technical Competence Center SAS Deutschland Agenda Was ist Enterprise Guide? Besonderheiten in Enterprise Guide Analysewerkzeuge Abfrage-Tool

Mehr

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse Schätzung Lifetime Values von Spenn mit Hilfe Überlebensanalyse Einführung in das Verfahren am Beispiel Einzugsgenehmigung Überlebensanalysen o Ereignisdatenanalysen behandeln das Problem, mit welcher

Mehr

Fallbeispiel: Kreditscoring

Fallbeispiel: Kreditscoring Fallbeispiel: Kreditscoring Stefan Lang 14. Juni 2005 SS 2005 Datensatzbeschreibung (1) Ziel Untersuchung der Bonität eines Kunden in Abhängigkeit von erklärenden Variablen Zielvariable Bonität des Kunden:

Mehr

Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs

Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs 1. Klagenfurter KMU Tagung Tanja Schuschnig Alexander Brauneis Institut für Finanzmanagement 25.09.2009

Mehr

Mehr Statistik, Mehr Graphen, Weniger Aufwand!

Mehr Statistik, Mehr Graphen, Weniger Aufwand! Mehr Statistik, Mehr Graphen, Weniger Aufwand! SYSTAT 13 Ergebnisse, denen Sie vertrauen, ein Preis, den Sie sich leisten können SYSTAT ist ein umfassendes Desktop Statistik- Programm, das leicht genug

Mehr

Das Sparverhalten der Österreicher. - Eine Studie von IMAS International im Auftrag von Erste Bank & Sparkassen

Das Sparverhalten der Österreicher. - Eine Studie von IMAS International im Auftrag von Erste Bank & Sparkassen - Eine Studie von IMAS International im Auftrag von Erste Bank & Sparkassen Studiendesign Auftraggeber: Erste Bank & Sparkassen Durchführungszeitraum: 27.7. - 4.8. 29 Methode: Die Interviews wurden telefonisch

Mehr

personal.net Neue Quellensteuertarifcodes ab dem 01.01.2014

personal.net Neue Quellensteuertarifcodes ab dem 01.01.2014 personal.net Neue Quellensteuertarifcodes ab dem 01.01.2014 Anleitung und Informationzur Handhabung ab personal.net Version 14.0.0 (ab heim.net Version 2.3.0.0) Domis Consulting AG, 6246 Altishofen personal

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Neuerungen in Minitab 16

Neuerungen in Minitab 16 Neuerungen in Minitab 16 minitab@additive-net.de - Telefon: 06172 / 5905-30 Willkommen zu Minitab 16! Die neueste Version der Minitab Statistical Software umfasst mehr als siebzig neue Funktionen und Verbesserungen,

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Bedienungsanleitungen

Bedienungsanleitungen Bedienungsanleitungen Uhren 45 50 40 55 35 60 30 25 20 5 25 10 20 15 31 15 5 10 Standard-Anleitungen 1 2 Sekundenzeiger A. Ziehen Sie die Krone auf die Position 2 heraus. B. Drehen Sie die Krone zum Einstellen

Mehr

Mobile Banking und APPs Banking der Zukunft. -Spezialanalyse aus dem INTEGRAL Austrian Internet Monitor

Mobile Banking und APPs Banking der Zukunft. -Spezialanalyse aus dem INTEGRAL Austrian Internet Monitor Mobile Banking und APPs Banking der Zukunft -Spezialanalyse aus dem INTEGRAL Austrian Internet Monitor INTEGRAL Austrian Internet Monitor - Erhebungsmethode: - Kontinuierliche Telefoninterviews (CATI)

Mehr

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik

Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Grundpraktikum der Physik Hinweise zur Fehlerrechnung im Grundpraktikum der Physik Sascha Hankele sascha@hankele.com Patrick Paul patrick.paul@uni-ulm.de 11. Mai 2011 Inhaltsverzeichnis 1 Einführung und

Mehr

Stochastik Abitur 2009 Stochastik

Stochastik Abitur 2009 Stochastik Abitur 2009 Stochastik Beilage ea (erhöhtes Anforderungsniveau) ga (grundlegendes Anforderungsniveau) ISBN 978-3-8120-0108-3 und ISBN 978-3-8120-0223-3 1 Aufgabe 2 (ea) Rauchen ist das größte vermeidbare

Mehr

Robustes Design versus Toleranzmanagement am Beispiel eines KFZ Schließsystems

Robustes Design versus Toleranzmanagement am Beispiel eines KFZ Schließsystems Robustes Design versus Toleranzmanagement am Beispiel eines KFZ Schließsystems Weimarer Optimierungs- und Stochastiktage 6.0 Peter Gust // Christoph Schluer f Lehrstuhl Konstruktion (Engineering Design)

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

Social Media in der Konfirmanden arbeit. Projektstelle Social Media / Christoph Breit

Social Media in der Konfirmanden arbeit. Projektstelle Social Media / Christoph Breit Social Media in der Konfirmanden arbeit Web 1.0 > Web 2.0 > Web 3.0 ab 1990 statische Seiten wenige content producer viele content consumer Software durch Verrieb geringe Transferraten ab 2004 Dynamische

Mehr

Computational Fluid Dynamics - CFD Overview

Computational Fluid Dynamics - CFD Overview Computational Fluid Dynamics - CFD Overview Claus-Dieter Munz Universität Stuttgart, Institut für Aerodynamik und Gasdynamik Pfaffenwaldring 21, 70550 Stuttgart Tel. +49-711/685-63401 (Sekr.) Fax +49-711/685-63438

Mehr

Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott

Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott Kundenzufriedenheit im IT-Outsourcing grundsätzliche Überlegungen und empirische Ergebnisse Prof. Dr. Eberhard Schott 21. November 2007 Agenda 1. Einige grundsätzliche Überlegungen zur Kundenzufriedenheit

Mehr

R IN DEN BIOWISSENSCHAFTEN

R IN DEN BIOWISSENSCHAFTEN R IN DEN BIOWISSENSCHAFTEN Offene Software zur statistischen Auswertung von Experimentaldaten Einführung: Was ist R? Eine Programmiersprache (imperativ, prozedural, objektorientiert, funktionale Anleihen,

Mehr

Allpura Verband Schweizer Reinigungs-Unternehmen Sektion Zürich Resultate der Mitgliederbefragung März / April 2008

Allpura Verband Schweizer Reinigungs-Unternehmen Sektion Zürich Resultate der Mitgliederbefragung März / April 2008 Mitgliederbefragung Allpura Verband Schweizer Reinigungs-Unternehmen Sektion Zürich Resultate der Mitgliederbefragung März / April 2008 Durchgeführt durch: Andreas Gerster Group GmbH Im Schörli 3 8600

Mehr

Einführung in elementare Statistik und Wahrscheinlichkeitsrechnung. Bodo Werner mailto:werner@math.uni-hamburg.de

Einführung in elementare Statistik und Wahrscheinlichkeitsrechnung. Bodo Werner mailto:werner@math.uni-hamburg.de Einführung in elementare Statistik und Wahrscheinlichkeitsrechnung Bodo Werner mailto:werner@math.uni-hamburg.de 17. Juni 2009 2 Inhaltsverzeichnis 1 Vorwort 7 1.1 Internet-Seiten....................................

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

System zur Anomalieerkennung in IP-Netzwerken: Design und Realisierung

System zur Anomalieerkennung in IP-Netzwerken: Design und Realisierung TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK System zur Anomalieerkennung in IP-Netzwerken: Design und Realisierung Diplomarbeit Tobias Sandhaas Aufgabenstellerin: Prof. Anja Feldmann, Ph.D.

Mehr

Cloud Computing mit mathematischen Anwendungen

Cloud Computing mit mathematischen Anwendungen Cloud Computing mit mathematischen Anwendungen Dr. habil. Marcel Kunze Engineering Mathematics and Computing Lab (EMCL) Institut für Angewandte und Numerische Mathematik IV Karlsruhe Institute of Technology

Mehr

Datenanalyse aus einer unklassierten Häufigkeitstabelle

Datenanalyse aus einer unklassierten Häufigkeitstabelle Datenanalyse aus einer unklassierten Häufigkeitstabelle Worum geht es in diesem Modul? Häufigkeitstabelle Stabdiagramm Die empirische Verteilungsfunktion Quantile Worum geht es in diesem Modul? Nachdem

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Die Analyse großer Datensätze mittels freier Datenbanksysteme Dr Dirk Meusel meusel@iat.uni-leipzig.de

Die Analyse großer Datensätze mittels freier Datenbanksysteme Dr Dirk Meusel meusel@iat.uni-leipzig.de Institut für Angewandte Trainingswissenschaft Leipzig ein Institut des Trägervereins IAT / FES des DOSB e.v. Die Analyse großer Datensätze mittels freier Datenbanksysteme Dr Dirk Meusel meusel@iat.uni-leipzig.de

Mehr

Die Auflösung von Aktienfonds

Die Auflösung von Aktienfonds Björn Zollenkop Die Auflösung von Aktienfonds Eine empirische Untersuchung für den deutschen Kapitalmarkt it einem Geleitwort von Prof. Dr. Wolfgang Harbrecht GABLER RESEARCH IX Inhaltsübersicht Geleitwort

Mehr

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N

Schätzer (vgl. Kapitel 1): Stichprobenmittel X N. Stichprobenmedian X N Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 8.1 Schätzer für Lage- und Skalenparameter und Verteilungsmodellwahl Lageparameter (l(x + a) = l(x) + a): Erwartungswert EX Median von X

Mehr

Daten zu ausgewählten Versicherungsmärkten

Daten zu ausgewählten Versicherungsmärkten Daten zu ausgewählten Versicherungsmärkten Economic Research München, März 205 Deutschland CAGR* 2004 204: 2,6% CAGR* 2004 204:,% Makroökonomie& Geldvermögen, 204 Vermögensstrukturder privaten Haushalte,

Mehr

Berichte aus der Betriebswirtschaft. Christoph Rüdt. Wertschöpfung in Virtual Communities

Berichte aus der Betriebswirtschaft. Christoph Rüdt. Wertschöpfung in Virtual Communities Berichte aus der Betriebswirtschaft Christoph Rüdt Wertschöpfung in Virtual Communities Management sozialer Interaktionen unter Anwendung der Netzwerkanalyse Shaker Verlag Aachen 2007 Inhalt Vorwort Inhalt

Mehr

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27

Einleitung 19. Teil I SPSS kennen lernen 25. Kapitel 1 In 25 Minuten zum SPSS-Profi 27 Inhaltsverzeichnis Einleitung 19 SPSS oder PASW oder was? 19 Über dieses Buch 20 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Törichte Annahmen über den Leser 21 Wie dieses Buch aufgebaut

Mehr

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Copyright 2005, SAS Institute Inc. All rights reserved. Ulrich Reincke, SAS Deutschland Agenda Der Neue Enterprise Miner 5.2 Der Neue Text Miner 2.3

Mehr

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff

Programmieren in C. Felder, Schleifen und Fließkommaarithmetik. Prof. Dr. Nikolaus Wulff Programmieren in C Felder, Schleifen und Fließkommaarithmetik Prof. Dr. Nikolaus Wulff Addition von Zahlen 1 2 3 4 5 #include int main() { int x,y,z,sum; x = 1; y = 2; z = 4; sum = x + y + z;

Mehr

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table("c:\\compaufg\\kredit.

Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit<-read.table(c:\\compaufg\\kredit. Lösung 16.3 Analog zu Aufgabe 16.1 werden die Daten durch folgenden Befehl eingelesen: > kredit

Mehr

1 Einführung in RStudio

1 Einführung in RStudio Markus Burkhardt (markus.burkhardt@psychologie.tu-chemnitz.de) Inhalt 1.1 Ziel... 1 1.2 Installation... 2 1.3 Nutzung von RStudio... 2 1.4 Ein neues Projekt... 3 1.5 Einlesen von Daten... 3 1.6 Einlesen

Mehr

Informationskompetenz - Was macht die Bibliothek der Universität Konstanz?

Informationskompetenz - Was macht die Bibliothek der Universität Konstanz? Informationskompetenz - Was macht die Bibliothek der Universität Konstanz? Vortrag im Rahmen der Weiterbildung zum Thema Informationskompetenz Oberwolfach, 24.-28. Oktober 2005 Überblick 1. Die Ausgangssituation

Mehr