Wolfgang Trutschnig. Salzburg, FB Mathematik Universität Salzburg

Größe: px
Ab Seite anzeigen:

Download "Wolfgang Trutschnig. Salzburg, 2014-05-08. FB Mathematik Universität Salzburg www.trutschnig.net"

Transkript

1 Auffrischungskurs Angewandte Statistik/Datenanalyse (Interne Weiterbildung FOR SS14-08) Block 1: Deskriptive Statistik, Wiederholung grundlegender Konzepte, R FB Mathematik Universität Salzburg Salzburg,

2 Inhalt Block 1 Erste Schritte in R bzw. RStudio: packages installieren, schon fertige scripts ausführen. Wiederholung elementarer Begriffe der deskriptiven Statistik (Verteilungsfunktionen, Quantile, Boplots, Histogramme, etc.) anhand von gegebenen Daten und Grafiken. Interpretation der Grafiken. Grundlagen R (falls notwendig). Ausblick auf die folgenden drei Blöcke sowie Diskussion etwaiger Ergänzungen. Geplant ist (mit R-Unterstützung): Verteilungsfamilien Regressionstechniken Grundkonzepte der Stichprobenplanung und Konfidenzintervalle Zentraler Grenzwertsatz und Starkes Gesetz der Grossen Zahlen Hypothesentests (parametrisch und nichtparametrisch)?

3 Warum R? R ist freeware! Läuft auf allen üblichen Plattformen Weltweit verwendet, state of the art Online Kurse (youtube etc.) Laufend Aktualisierungen Breites Anwendungsspektrum, Vielzahl an verwendbaren Paketen (derzeit 5505) Newsgroups für spezifische Problemstellungen Coole Grafiken Schnittstellen mit anderer Software, insbesondere mit Late (sweave, knitr) Sehr einfache Simulation von Daten - erhöht die Verständlichkeit von Statistik

4 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b] Histogramm: Übersichtliche, einfache Darstellung der Daten: Zerlege [a, b] in Intervalle I 1,..., I k und zähle wie viele Werte in welchem Intervall liegen, d.h. h n(i j ) := #{m : m I j }, r n(i j ) := h n(i j )/n Histogramm sum_out Histogramm sum_out sum_out sum_out

5 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b] Empirische Verteilungsfunktion: Übersichtliche, einfache Darstellung der Daten: für jedes [a, b] zähle wie viele Werte sind, d.h. F n() := #{i : i }/n Histogramm sum_out empirische Verteilungsfunktion Fn() sum_out

6 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b], F n bezeichne die empirische Verteilungsfunktion. Für jedes p [0, 1] heisst F ( 1) (p) := min{ : F n() p} p-quantil der Stichprobe. Histogramm sum_out empirische Verteilungsfunktion Fn() sum_out

7 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Gegeben sind numerische Daten (sample) 1,..., n im Intervall [a, b] Ein boplot ist eine zusammenfassende Darstellung basierend auf den 0.25-, 0.5-, 0.75-Quantilen und Ausreißern: empirische Verteilungsfunktion Boplot pro Jahr sum_out Fn() total

8 (Relative) Häufigkeiten, Histogramm, empirische Verteilungsfunktion, Quantile, Boplots Warum bisher Mittelwert nicht einmal erwähnt? OeNB: Der durchschnittliche österreichische Haushalt verfügte 2004 über ein Geldvermögen von rund Euro. Informationsgehalt? Mittelwert ist sehr sensitiv auf Ausreißer - Veränderung eines einzigen Wertes kann Mittelwert etrem verändern - nicht robust! Histogramm von Histogramm von plus einmal

9 Learning by doing Verwendung der deskriptiven tools zur Analyse eines ersten realen Datensatzes: ymd weekday nr weekday sum out holiday Mon Tue Wed Thu Fri Sat Der Datensatz enthält die Zeitreihe der bei einem Bankomaten (einer Filiale einer Bank) abgehobenen täglichen Geldmenge. Ursprüngliche Problemstellung: Entwicklung von zuverlässigen forecasts für die abgehobenen täglichen Geldmenge zum Zwecke der Optimierung des Zuliefersystems (500 verschiedene Filialen, Zeitreihen von 3 Jahren). Komplettes Skript unter

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

5. Schließende Statistik. 5.1. Einführung

5. Schließende Statistik. 5.1. Einführung 5. Schließende Statistik 5.1. Einführung Sollen auf der Basis von empirischen Untersuchungen (Daten) Erkenntnisse gewonnen und Entscheidungen gefällt werden, sind die Methoden der Statistik einzusetzen.

Mehr

Lean Six Sigma Green Belt - Deutsch

Lean Six Sigma Green Belt - Deutsch Lean Six Sigma Green Belt - Deutsch Inhalt des aktuellen Kurses Voraussichtliche Gesamtdauer in Stunden: 80.00 Sitzung 1: Einführung in Lean Six Sigma (4 Stunden) Einführung Anatomie einer erfolgreichen

Mehr

Parametrische Statistik

Parametrische Statistik Statistik und ihre Anwendungen Parametrische Statistik Verteilungen, maximum likelihood und GLM in R Bearbeitet von Carsten F. Dormann 1. Auflage 2013. Taschenbuch. xxii, 350 S. Paperback ISBN 978 3 642

Mehr

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik:

1. Einführung und statistische Grundbegriffe. Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: . Einführung und statistische Grundbegriffe Grundsätzlich unterscheidet man zwei Bedeutungen des Begriffs Statistik: Quantitative Information Graphische oder tabellarische Darstellung von Datenmaterial

Mehr

Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten. Frank Konietschke

Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten. Frank Konietschke Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten Frank Konietschke Abteilung für Medizinische Statistik Universität Göttingen 1 Übersicht Beispiele CGI (repeated measures) γ-gt

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik und Wahrscheinlichkeitsrechnung Übung 2 28.02.2008 1 Inhalt der heutigen Übung Beschreibende Statistik Gemeinsames Lösen der Übungsaufgaben 2.1: Häufigkeitsverteilung 2.2: Tukey Boxplot 25:Korrelation

Mehr

Datenanalyse und Statistik

Datenanalyse und Statistik Datenanalyse und Statistik p. 1/44 Datenanalyse und Statistik Vorlesung 2 (Graphik I) K.Gerald van den Boogaart http://www.stat.boogaart.de Datenanalyse und Statistik p. 2/44 Daten Schätzung Test Mathe

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen.

Beide Verteilungen der Zeiten sind leicht schief. Der Quartilsabstand für Zeiten zum Surfen ist kleiner als der zum Fernsehen. Welche der folgenden Maßzahlen sind resistent gegenüber Ausreißer? Der Mittelwert und die Standardabweichung. Der und die Standardabweichung. Der und die Spannweite. Der und der Quartilsabstand. Die Spannweite

Mehr

Maturaniveau Mathematik und Statistik

Maturaniveau Mathematik und Statistik DOKUMENTATIONSBOGEN Kooperationspartner Typ und Bezeichnung der Lehrveranstaltung(en); Anzahl der Wochenstunden Institut für Soziologie Uni Wien UE Statistik für SoziologInnen II (6 LVen); 2 VO Statistik

Mehr

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra

If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If something has a 50% chance of happening, then 9 times out of 10 it will. Yogi Berra If you torture your data long enough, they will tell you whatever you want to hear. James L. Mills Warum Biostatistik?

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

I. Deskriptive Statistik 1

I. Deskriptive Statistik 1 I. Deskriptive Statistik 1 1. Einführung 3 1.1. Grundgesamtheit und Stichprobe.................. 5 1.2. Merkmale und Verteilungen..................... 6 1.3. Tabellen und Grafiken........................

Mehr

Übersicht: Modul 2. Methoden der empirischen Sozialforschung, Statistik und computergestützte Datenanalyse. Dr. H.-G. Sonnenberg

Übersicht: Modul 2. Methoden der empirischen Sozialforschung, Statistik und computergestützte Datenanalyse. Dr. H.-G. Sonnenberg Übersicht: Modul 2 Methoden der empirischen Sozialforschung, Statistik und computergestützte Datenanalyse Dr. H.-G. Sonnenberg Modul 2 4 Kurse : Modul 2 im Bc. Psychologie: - Empirische Sozialforschung

Mehr

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18

1,11 1,12 1,13 1,14 1,15 1,16 1,17 1,17 1,17 1,18 3. Deskriptive Statistik Ziel der deskriptiven (beschreibenden) Statistik (explorativen Datenanalyse) ist die übersichtliche Darstellung der wesentlichen in den erhobenen Daten enthaltene Informationen

Mehr

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller

Physica-Lehrbuch. Ein anwendungsorientiertes Lehr- und Arbeitsbuch. von Christine Duller Physica-Lehrbuch Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch von Christine Duller Neuausgabe Einführung in die Statistik mit EXCEL und SPSS Duller schnell

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

1 Grundprinzipien statistischer Schlußweisen

1 Grundprinzipien statistischer Schlußweisen Grundprinzipien statistischer Schlußweisen - - Grundprinzipien statistischer Schlußweisen Für die Analyse zufallsbehafteter Eingabegrößen und Leistungsparameter in diskreten Systemen durch Computersimulation

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Einführung in die Statistik mit EXCEL und SPSS Ein

Mehr

DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN

DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN DER DIGITAL ANALYST SPIELERISCH DAS INTERNET UND SEINE KUNDEN VERSTEHEN FH-Prof. Dr. Claudia Brauer Management Center Innsbruck MCI MANAGEMENT CENTER INNSBRUCK Universitätsstraße 15 office@mci.edu 1 BIG

Mehr

Nichtparametrische Datenanalyse

Nichtparametrische Datenanalyse Statistik und ihre Anwendungen Nichtparametrische Datenanalyse Unverbundene Stichproben von Edgar Brunner, Ullrich Munzel 1. Auflage Nichtparametrische Datenanalyse Brunner / Munzel schnell und portofrei

Mehr

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik

Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen Hochschule Esslingen Übungsblatt 2. Statistik Dr. I. Fahrner WiSe 2016/17 Fakultät Grundlagen 6.10.2016 Hochschule Esslingen Übungsblatt 2 Statistik Stichworte: arithmetischer Mittelwert, empirische Varianz, empirische Standardabweichung, empirischer

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Ergebnisrückmeldungen an Schulen im Rahmen der Initiative komm mit! : Potenzial und Perspektiven

Ergebnisrückmeldungen an Schulen im Rahmen der Initiative komm mit! : Potenzial und Perspektiven Ergebnisrückmeldungen an Schulen im Rahmen der Initiative komm mit! : Potenzial und Perspektiven Andreas Helmke und Giang Pham Düsseldorf, 04.10.2010 Übersicht Ausgewählte Ergebnisse der Befragung Ergebnisrückmeldung

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Rückverfolgbarkeit von Lebensmitteln am Beispiel von Fleisch und Fleischwaren

Rückverfolgbarkeit von Lebensmitteln am Beispiel von Fleisch und Fleischwaren Lisa Lichtenberg Rückverfolgbarkeit von Lebensmitteln am Beispiel von Fleisch und Fleischwaren Eine empirische Analyse des Verbraucherverhaltens in Deutschland Verlag Dr. Kovac Hamburg 2013 Inhaltsverzeichnis

Mehr

Hauptseminar Technische Informationssysteme

Hauptseminar Technische Informationssysteme Fakultät Informatik - Institut für Angewandte Informatik, Professur Technische Prozessanalysetools unter dem Gesichtspunkt industrieller Prozessanalyse und -modellierung Dresden, 10.07.2008 Gliederung

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer

Statistik I WS 2014/2015. Prof. Dr. Walter Krämer Statistik I WS 2014/2015 Prof. Dr. Walter Krämer Organisatorisches Dozenten: Vorlesung: Prof. Dr. Walter Krämer Übungen: Dipl.-Stat. Marianthi Neblik cand.stat. Eva-Maria Becker cand.stat. Nicole Dauzenroth

Mehr

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.)

Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Dr. Reinhard Vonthein, Dipl. Statistiker (Univ.) Reinhard.Vonthein@imbs.uni-luebeck.de Institut für Medizinische Biometrie und Statistik Universität zu Lübeck / Universitätsklinikums Schleswig-Holstein

Mehr

4. Kumulierte Häufigkeiten und Quantile

4. Kumulierte Häufigkeiten und Quantile 4. Kumulierte Häufigkeiten und Quantile Kumulierte Häufigkeiten Oft ist man nicht an der Häufigkeit einzelner Merkmalsausprägungen interessiert, sondern an der Häufigkeit von Intervallen. Typische Fragestellung:

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Die Auflösung von Aktienfonds

Die Auflösung von Aktienfonds Björn Zollenkop Die Auflösung von Aktienfonds Eine empirische Untersuchung für den deutschen Kapitalmarkt it einem Geleitwort von Prof. Dr. Wolfgang Harbrecht GABLER RESEARCH IX Inhaltsübersicht Geleitwort

Mehr

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14

Mathematik IV: Statistik. für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Mathematik IV: Statistik für D-UWIS, D-ERDW, D-USYS und D-HEST SS14 Hygienische Reiniger Wissenschaftliche Studie: 10 000 Reinigungsversuche, 6 Fälle mit mehr als 1 Bakterien Stimmt s jetzt oder was? Binomialtest:

Mehr

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente...

1.1.1 Ergebnismengen Wahrscheinlichkeiten Formale Definition der Wahrscheinlichkeit Laplace-Experimente... Inhaltsverzeichnis 0 Einführung 1 1 Zufallsvorgänge und Wahrscheinlichkeiten 5 1.1 Zufallsvorgänge.......................... 5 1.1.1 Ergebnismengen..................... 6 1.1.2 Ereignisse und ihre Verknüpfung............

Mehr

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse

Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die Modellierung und Optimierung fortschrittlicher Energieumwandlungsprozesse Hochschule Zittau/Görlitz, Fakultät Maschinenwesen, Fachgebiet Technische Thermodynamik M. Kunick, H. J. Kretzschmar, U. Gampe Schnelle und flexible Stoffwertberechnung mit Spline Interpolation für die

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Statistische Datenanalyse mit SPSS

Statistische Datenanalyse mit SPSS Aus dem Kursangebot des Rechenzentrums: Statistische Datenanalyse mit SPSS Dozent: Termine: Raum: Johannes Hain, Lehrstuhl für Mathematik VIII Statistik 24. bis 27.08.2015 jeweils von 13:00 bis 16:00 Uhr

Mehr

Benchmark-Experimente

Benchmark-Experimente Benchmark-Experimente Viktoria Sander Seminar: Modellwahlkriterien (WS 2009/2010) 04.12.2009 Viktoria Sander (WS 2009/2010) Benchmark-Experimente 04.12.2009 1 / 50 1 Einleitung 2 Ausgangssituation Annahmen

Mehr

Thema: Bootstrap-Methoden für die Regressionsanalyse. Bachelorarbeit. im Fachgebiet Wirtschaftsinformatik am Lehrstuhl für Quantitative Methoden

Thema: Bootstrap-Methoden für die Regressionsanalyse. Bachelorarbeit. im Fachgebiet Wirtschaftsinformatik am Lehrstuhl für Quantitative Methoden Westfälische Wilhelms-Universität Münster Thema: Bootstrap-Methoden für die Regressionsanalyse Bachelorarbeit im Fachgebiet Wirtschaftsinformatik am Lehrstuhl für Quantitative Methoden Themensteller: Prof.

Mehr

Inhaltsverzeichnis. Teil I Einführung

Inhaltsverzeichnis. Teil I Einführung Inhaltsverzeichnis Teil I Einführung 1 Statistik-Programme... 1.1 Kleine Einführung in R... 1.1.1 Installieren und Starten von R. 1.1.2 R-Konsole... 1.1.3 R-Workspace... 1.1.4 R-History... 1.1.5 R-Skripteditor...

Mehr

Aufgaben zum Datenmanagement

Aufgaben zum Datenmanagement Aufgaben zum Datenmanagement Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/10 Datentransformationen Berechnung neuer Variablen Berechne das Durchschnittsalter und die Durchschnittsgröße beider

Mehr

Melanie Kaspar, Prof. Dr. B. Grabowski 1

Melanie Kaspar, Prof. Dr. B. Grabowski 1 7. Hypothesentests Ausgangssituation: Man muss sich zwischen 2 Möglichkeiten (=Hypothesen) entscheiden. Diese Entscheidung soll mit Hilfe von Beobachtungen ( Stichprobe ) getroffen werden. Die Hypothesen

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

, dt. $+ f(x) = , - + < x < +, " > 0. " 2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) =

, dt. $+ f(x) = , - + < x < +,  > 0.  2# Für die zugehörige Verteilungsfunktion F(x) ergibt sich dann: F(x) = 38 6..7.4 Normalverteilung Die Gauß-Verteilung oder Normal-Verteilung ist eine stetige Verteilung, d.h. ihre Zufallsvariablen können beliebige reelle Zahlenwerte annehmen. Wir definieren sie durch die

Mehr

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13

Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Statistische Auswertungen mit R Universität Kassel, FB 07 Wirtschaftswissenschaften Dipl.-Volksw. Markus Pullen Wintersemester 2012/13 Beispiele 8. Sitzung Konfidenzintervalle, Hypothesentests > # Anwendungsbeispiel

Mehr

Visualisierung statistischer Daten 02.06.2010

Visualisierung statistischer Daten 02.06.2010 Visualisierung statistischer Daten 0.06.010 Lehrstuhl sozialwissenschaftliche Methodenlehre und Sozialstatistik Sebastian Jeworutzki Sebastian Jeworutzki Visualisierung statistischer Daten 0.06.010 1 Ablauf

Mehr

Semester: -- Workload: 150 h ECTS Punkte: 5

Semester: -- Workload: 150 h ECTS Punkte: 5 Modulbezeichnung: Modulnummer: BMFO Marktforschung Semester: -- Dauer: Minimaldauer 1 Semester Modultyp: Pflicht Regulär angeboten im: WS, SS Workload: 150 h ECTS Punkte: 5 Zugangsvoraussetzungen: keine

Mehr

Methoden der empirischen Sozialforschung I

Methoden der empirischen Sozialforschung I Methoden der empirischen Sozialforschung I Annelies Blom, PhD TU Kaiserslautern Wintersemester 2011/12 Übersicht Quantitative Datenauswertung: deskriptive und induktive Statistik Wiederholung: Die wichtigsten

Mehr

Modellgestützte Analyse und Optimierung Übungsblatt 4

Modellgestützte Analyse und Optimierung Übungsblatt 4 Fakultät für Informatik Lehrstuhl 4 Peter Buchholz, Jan Kriege Sommersemester 2015 Modellgestützte Analyse und Optimierung Übungsblatt 4 Ausgabe: 27.04.2015, Abgabe: 04.05.2015 (12 Uhr) Aufgabe 4.1: Verteilungsfunktionen

Mehr

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten...

Inhaltsverzeichnis. 2 Kurzbeschreibung von SPSS Der SPSS-Dateneditor Statistische Analysen mit SPSS DieDaten... Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R... 3 1.1 Installieren und Starten von R... 3 1.2 R-Befehleausführen... 3 1.3 R-Workspace speichern... 4 1.4 R-History sichern........ 4 1.5

Mehr

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35

Verteilungsanalyse. Johannes Hain. Lehrstuhl für Mathematik VIII Statistik 1/35 Verteilungsanalyse Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/35 Datentypen Als Sammeln von Daten bezeichnet man in der Statistik das Aufzeichnen von Fakten. Erhobene Daten klassifziert man

Mehr

Beschreibende Statistik Eindimensionale Daten

Beschreibende Statistik Eindimensionale Daten Mathematik II für Biologen 16. April 2015 Prolog Geordnete Stichprobe Rang Maße für die mittlere Lage der Daten Robustheit Quantile Maße für die Streuung der Daten Erkennung potentieller Eindimensionales

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE. Markt+Technik Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Markt+Technik Vorwort Schreiben Sie uns! 13 15 Statistische Untersuchungen 17 Wozu Statistik? 18 Wirtschaftliche

Mehr

2. Eindimensionale (univariate) Datenanalyse

2. Eindimensionale (univariate) Datenanalyse 2. Eindimensionale (univariate) Datenanalyse Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Kennzahlen, Statistiken In der Regel interessieren uns nicht so sehr die beobachteten Einzeldaten

Mehr

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE

Statistik mit Excel. für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE Statistik mit Excel für Praktiker: Statistiken aufbereiten und präsentieren HORST-DIETER RADKE INHALTS- VERZEICHNIS Vorwort 13 Schreiben Sie uns! 15 1 Statistische Untersuchungen 17 Wozu Statistik? 18

Mehr

Weiterbildungskurs Stochastik

Weiterbildungskurs Stochastik Hansruedi Künsch Seminar für Statistik Departement Mathematik, ETH Zürich 24. Juni 2009 Inhalt STATISTIK DER BINOMIALVERTEILUNG 1 STATISTIK DER BINOMIALVERTEILUNG 2 Fragestellungen Typische Fragestellungen

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Managementprozesse und Performance

Managementprozesse und Performance Klaus Daniel Managementprozesse und Performance Ein Konzept zur reifegradbezogenen Verbesserung des Managementhandelns Mit einem Geleitwort von Univ.-Professor Dr. Dr. habil. Wolfgang Becker GABLER EDITION

Mehr

Proteinsequenzen. Raumstruktur GPCR. G-Protein gekoppelte Rezeptoren

Proteinsequenzen. Raumstruktur GPCR. G-Protein gekoppelte Rezeptoren G-Protein gekoppelte Rezeptoren Proteinsequenzen MEEPGAQCAPPPPAGSETWVPQANL SSAPSQNCSAKDYIYQDSISLPWKV LLVMLLALITLATTLSNAFVIATVY RTRKLHTPANYLIASLAVTDLLVSI LVMPISTMYTVTGRWTLGQVVCDFW LSSDITCCTASILHLCVIALDRYWA

Mehr

Misserfolgsfaktoren in der Projektarbeit Kurzfassung der Ergebnisse einer Studie der Fachgruppe Neue Perspektiven in der Projektarbeit 2012-2013

Misserfolgsfaktoren in der Projektarbeit Kurzfassung der Ergebnisse einer Studie der Fachgruppe Neue Perspektiven in der Projektarbeit 2012-2013 Misserfolgsfaktoren in der Projektarbeit Kurzfassung der Ergebnisse einer Studie der Fachgruppe Neue Perspektiven in der Projektarbeit 2012-2013 Zusammenfassung der Ergebnisse der Studie Misserfolgsfaktoren

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

1. Biometrische Planung

1. Biometrische Planung 1. Biometrische Planung Die biometrische Planung ist Teil der Studienplanung für wissenschaftliche Studien, in denen eine statistische Bewertung von Daten erfolgen soll. Sie stellt alle erforderlichen

Mehr

Histogramm und Wahrscheinlichkeitsnetz 1/16

Histogramm und Wahrscheinlichkeitsnetz 1/16 Histogramm und Wahrscheinlichkeitsnetz 1/16 Ziel: Ziel der Aufgabe Ziel ist es, die Grafiken Histogramm und Wahrscheinlichkeitsnetz und die Funktionalitäten (z.b. C-Wert-Funktion) von qs-stat ME kennen

Mehr

Festnetz-Anschlüsse in Schweizer Haushalten

Festnetz-Anschlüsse in Schweizer Haushalten Festnetz-Anschlüsse in Schweizer Haushalten August 2015 Umfrage-Basics/ Studiensteckbrief: Methode: Computer Assisted Web Interviews (CAWI) Instrument: Online-Interviews über die Marketagent.com research

Mehr

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group "CFD Steam Property Formulation"

Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task Group CFD Steam Property Formulation M. Kunick, H. J. Kretzschmar Hochschule Zittau/Görlitz, Fachgebiet Technische Thermodynamik, Zittau Schnelle und konsistente Stoffwertberechnung mit Spline Interpolation Arbeiten innerhalb der IAPWS Task

Mehr

Die Lösung für Ihre Werkzeugdatenverwaltung

Die Lösung für Ihre Werkzeugdatenverwaltung Die Lösung für Ihre Werkzeugdatenverwaltung TDM Systems Ko TDM Systems Profis für Werkzeugdatenverwaltung Seit mehr als 20 Jahren entwickelt und vermarktet die TDM Systems GmbH Software zur Organisation

Mehr

Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs

Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs Die Beurteilung von Kreditrisiken mittels künstlicher neuronaler Netze am Beispiel österreichischer KMUs 1. Klagenfurter KMU Tagung Tanja Schuschnig Alexander Brauneis Institut für Finanzmanagement 25.09.2009

Mehr

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling Einführung in die Versuchsplanung

Versuchsplanung. Teil 1 Einführung und Grundlagen. Dr. Tobias Kiesling <kiesling@stat.uni-muenchen.de> Einführung in die Versuchsplanung Versuchsplanung Teil 1 Einführung und Grundlagen Dr. Tobias Kiesling Inhalt Einführung in die Versuchsplanung Hintergründe Grundlegende Prinzipien und Begriffe Vorgehensweise

Mehr

Kapitel 1 Beschreibende Statistik

Kapitel 1 Beschreibende Statistik Beispiel 1.25: fiktive Aktienkurse Zeitpunkt i 0 1 2 Aktienkurs x i 100 160 100 Frage: Wie hoch ist die durchschnittliche Wachstumsrate? Dr. Karsten Webel 53 Beispiel 1.25: fiktive Aktienkurse (Fortsetzung)

Mehr

Klaus-Peter Wiedmann Frank Bachmann Tina Durst. Erfolgsfaktoren von Hospitality im Bereich des Sports Ergebnisse einer empirischen Untersuchung

Klaus-Peter Wiedmann Frank Bachmann Tina Durst. Erfolgsfaktoren von Hospitality im Bereich des Sports Ergebnisse einer empirischen Untersuchung Klaus-Peter Wiedmann Frank Bachmann Tina Durst Erfolgsfaktoren von Hospitality im Bereich des Sports Ergebnisse einer empirischen Untersuchung Prof. Dr. Klaus-Peter Wiedmann Institut für Marketing und

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Übungsbuch Statistik für Dummies

Übungsbuch Statistik für Dummies beborah Rumseif Übungsbuch Statistik für Dummies WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Über die Autorin 8 Über den Übersetzer 8 Einführung 15 Über dieses Buch 15 Törichte Annahmen

Mehr

Verbessern Sie Ihre Webinare

Verbessern Sie Ihre Webinare Verbessern Sie Ihre Webinare Auswertung von Informationen über Ihre Teilnehmer auf edudip zur Verbesserung Ihrer Webinare Dies ist die downloadbare CSV Datei, nur für edudip. Pro Mitglieder verfügbar Heutzutage

Mehr

Auswertung und Darstellung wissenschaftlicher Daten (1)

Auswertung und Darstellung wissenschaftlicher Daten (1) Auswertung und Darstellung wissenschaftlicher Daten () Mag. Dr. Andrea Payrhuber Zwei Schritte der Auswertung. Deskriptive Darstellung aller Daten 2. analytische Darstellung (Gruppenvergleiche) SPSS-Andrea

Mehr

Das FMH Praxiskostenbarometer Erste Einblicke in die wissenschaftliche Datenanalyse Tarifdelegierten-Tag

Das FMH Praxiskostenbarometer Erste Einblicke in die wissenschaftliche Datenanalyse Tarifdelegierten-Tag Das Erste Einblicke in die wissenschaftliche Datenanalyse Tarifdelegierten-Tag Building Competence. Crossing Borders. Alfred Angerer Winterthurer Institut für Gesundheitsökonomie Alfred.Angerer@zhaw.ch

Mehr

Statistik für Ökonomen

Statistik für Ökonomen Wolfgang Kohn Riza Öztürk Statistik für Ökonomen Datenanalyse mit R und SPSS 2., überarbeitete Auflage 4ü Springer Gabler Inhaltsverzeichnis Teil I Einführung 1 Kleine Einführung in R '! 3 1.1 Installieren

Mehr

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20b Master Informatik / Medizininformatik Numerische Mathematik Folie

Mehr

Datenqualitätsmanagement im Customer Relationship Management

Datenqualitätsmanagement im Customer Relationship Management Wolfgang Leußer Datenqualitätsmanagement im Customer Relationship Management Verlag Dr. Kovac Hamburg 2011 Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis XVII XIX XXI

Mehr

Vorlesung 1: Grundlagen, Evidenzbasierte Medizin und Gute Klinische Praxis (GCP)

Vorlesung 1: Grundlagen, Evidenzbasierte Medizin und Gute Klinische Praxis (GCP) Vorlesung 1: Grundlagen, Evidenzbasierte Medizin und Gute Klinische Praxis (GCP) 1.1. Begriffsbildung im Rahmen der Evidenzbasierten Medizin (EBM) Einsicht in die Notwendigkeit und praktische Relevanz

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

Virtuelle Maschinen Konzept von VMWare

Virtuelle Maschinen Konzept von VMWare Virtuelle Maschinen Konzept von 11.12.2007 1 Einleitung 2 Software Virtualisierung 3 Software vs. Hardware 4 Fazit und Ausblick Motivation von Steigende Beliebtheit der x86-architektur Virtualizierung

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von

Statistik. Datenanalyse mit EXCEL und SPSS. Prof. Dr. Karlheinz Zwerenz. R.Oldenbourg Verlag München Wien. Von Statistik Datenanalyse mit EXCEL und SPSS Von Prof. Dr. Karlheinz Zwerenz R.Oldenbourg Verlag München Wien Inhalt Vorwort Hinweise zu EXCEL und SPSS Hinweise zum Master-Projekt XI XII XII TEIL I GRUNDLAGEN

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse

Schätzung des Lifetime Values von Spendern mit Hilfe der Überlebensanalyse Schätzung Lifetime Values von Spenn mit Hilfe Überlebensanalyse Einführung in das Verfahren am Beispiel Einzugsgenehmigung Überlebensanalysen o Ereignisdatenanalysen behandeln das Problem, mit welcher

Mehr

SPIELKALENDER BRACK.CH CHALLENGE LEAGUE - 1. PHASE SAISON 2016/17 CALENDRIER BRACK.CH CHALLENGE LEAGUE - PHASE 1, SAISON 2016/17 RUNDEN / TOURS 01-06

SPIELKALENDER BRACK.CH CHALLENGE LEAGUE - 1. PHASE SAISON 2016/17 CALENDRIER BRACK.CH CHALLENGE LEAGUE - PHASE 1, SAISON 2016/17 RUNDEN / TOURS 01-06 SPIELKALENDER BRACK.CH CHALLENGE LEAGUE - 1. PHASE SAISON 2016/17 CALENDRIER BRACK.CH CHALLENGE LEAGUE - PHASE 1, SAISON 2016/17 RUNDEN / TOURS 01-06 DATE DAY KICKOFF HOME AWAY 23.07.16 SAT 19:00 23.07.16

Mehr

Kapitel 1: Deskriptive Statistik

Kapitel 1: Deskriptive Statistik Kapitel 1: Deskriptive Statistik Grafiken 1 Statistische Kennwerte 5 z-standardisierung 7 Grafiken Mit Hilfe von SPSS lassen sich eine Vielzahl unterschiedlicher Grafiken für unterschiedliche Zwecke erstellen.

Mehr

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig)

ETWR Teil B. Spezielle Wahrscheinlichkeitsverteilungen (stetig) ETWR Teil B 2 Ziele Bisher (eindimensionale, mehrdimensionale) Zufallsvariablen besprochen Lageparameter von Zufallsvariablen besprochen Übertragung des gelernten auf diskrete Verteilungen Ziel des Kapitels

Mehr

Seminare 2015 Sylke Rebelsky-Gey

Seminare 2015 Sylke Rebelsky-Gey Neu im Programm! wave Facilities Mit waveware arbeiten Sie mit einem mächtigen Instrument, das Ihnen bei der Planung, Optimierung und Analyse aller kostenrelevanten Vorgänge rund um beliebige Objekte schnell,

Mehr