Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015"

Transkript

1 Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015 Aufgabe 1: (20 min) a) Gegeben sei ein einperiodiger State Space-Markt mit zwei Zuständen, der aus zwei Wertpapieren bestehe, einer sicheren Anlage zum Zins 5% sowie einem risikobehafteten Wertpapier. Das Wertpapier weise einen anfänglichen Preis von 75 Geldeinheiten auf und den Rückflussvektor (105, 55) T in t = 1. i) Bestimmen Sie die State Space-Matrix V und den anfänglichen Preisvektor w! i iv) Weisen Sie nach, dass der vorstehend spezifizierte State Space-Markt arbitragefrei ist! Wie lautet der preiserzeugende Vektor? Bestimmen Sie die risikoneutralen Wahrscheinlichkeiten! Bestimmen Sie den arbitragefreien Preis des Finanztitels (c 2, c) T auf der Basis einer risikoneutralen Bewertung! v) Bestimmen Sie den arbitragefreien Preis des Finanztitels (c, c 2 ) T, wobei c = 5, durch Duplikation! vi) Wie lauten die arbitragefreien Preise der Finanztitel mit den Rückflussvektoren (1, 0) T und (0, 1) T. Argumentieren Sie hier grundsätzlich, d.h. ohne Vornahme einer konkreten Berechnung! (12 min) b) Betrachten Sie eine Finanzposition, die aus einem Short Call sowie einem Short Put besteht (Short Straddle). Put und Call beziehen sich auf einen Basistitel mit Kursent wicklung {S t ; t 0}, laufen beide ein Jahr und besitzen beide einen Ausübungspreis von X = 110. Die Wertentwicklung des Basistitels über die Periode [0, 1] folge einem Bi nomialprozess mit Startwert s 0 = 100. In T = 1 kann der Prozess um 20% gestiegen oder um 20% gefallen sein. Der Einperiodenzins beträgt 5%. Bestimmen Sie den arbitrage freien Preis der Finanzposition durch Duplikation! (8 min) Lösungsskizze: 1, a) i) V = 1,05 55, w = 1 75 Betrachte LGS V T x = w, d.h. (I) 1,05x 1 + 1,05x 2 = 1 (II) 105x x 2 = 75 Multiplikation von (I) mit 100 ergibt (Iꞌ) 105x x 2 = 100 (Iꞌ)-II) ergibt 50x 2 = 25, d.h. x 2 =1/2. Aus (I) folgt dann Seite 1 von 8

2 x 1 = 1 - (1,05)(0,5) 1,05 = 1 1,05-0,5 = 0, ,5 = 0, Die Lösung des LGS ist strikt positiv, damit ist der Markt arbitragefrei. i q 1 = 1,05x 1 = 0,475 iv) q 2 = 1,05x 2 = 0,525 Preis auf Basis risikoneutraler Bewertung lautet E Q c2 c = 0,475c2 + 0,525c = 0,452c + 0,5 c 1,05 2 v) Betrachte LGS vi) d.h. x 1 1,05 1,05 + x = 5 25, (I) 1,05x x 2 = 5 (II) 1,05x x 2 = 25 (I)-(II) 50x 2 = -20, x 2 = -2/5 Weiter: 1,05x 1 = (2/5) = = 47 x 1 = Preis: x x 2 = 44, (0,4) = 14,762. Die Lösung des Gleichungssystems unter (, der sog. preiserzeugende Vektor, entspricht den Preisen der Einheitsvektoren, d.h. der Preis von (1,0) T ist gegeben durch 0, und der Preis von (0,1) T durch 0,5. b) Entwicklung Basistitel: Finanzposition allgemein: -max(s 1-110, 0) - max(110 - S 1, 0) = -{max( S 1-110, 0) + max(110 - S 1 )} = = Seite 2 von 8

3 Duplikation: (I) 1,05x x 2 = -10 (II) 1,05x x 2 = -30 (I)-(II): 40x 2 = 20, x 2 = 1/2 (I): x 1 = ( /2)/(1,05) = ,05 = -66,6 Arbitragefreier Preis: 1 x x 2 = -16,6. Der Stillhalter der Option erhält 16.6 Geldeinheiten. Aufgabe 2: (24 min) a) Ein fünfjähriger Standardbond ist charakterisiert durch die Zahlungsreihe {Z, Z, Z, Z, Z+N} seiner Zins- und Tilgungszahlungen. Dabei bedeute N den Nennwert des Bonds und Z = Ni die Höhe der jeweiligen Zinszahlungen, wobei i den Nominalzins des Bonds bezeichne. i) Bestimmen Sie einen allgemeinen Ausdruck für den fairen Wert des Bonds unter Benutzung der geometrischen Summe, wenn ein fristigkeitsunabhängiger Marktzins in Höhe von r zu Grunde gelegt wird! Weisen Sie auf der Grundlage von i) nach, dass im Falle r = i der faire Wert des Bonds seinem Nennwert entspricht (Pari-Notierung)! i Bestimmen Sie den fairen Wert des Bonds zum Zeitpunkt s, wobei 0 < s < 1. iv) Bestimmen Sie einen allgemeinen Ausdruck für die effektive Rendite (Baldwin- Verzinsung) des Bonds bei Annahme der Wiederanlage der Rückflüsse zum Marktzins r und einem Kaufpreis von P 0! Benutzen Sie dabei die geometrische Summe. (12 min) b) i) Bestimmen Sie den Barwert einer ewigen (unbegrenzte Restlaufzeit) Anleihe mit konstanter Kuponzahlung Z = Ni! Gehen Sie dabei von einem fristigkeitsunabhängigen Marktzins r aus. Hinweis: Bei endlicher Laufzeit T gilt für den Kuponbond die Barwertformel P 0 (r, T) = N[ i r + (1 - i r ) (1 + r)-t ]. Welchen Wert nimmt die Macaulay-Duration der ewigen Kuponanleihe unter i) an? i Welchen Wert nimmt die (relative) Konvexität der ewigen Kuponanleihe unter i) an? (12 min) Seite 3 von 8

4 Lösungsskizze: a) i) Definiere den Aufzinsungsfaktor durch q:= 1 + r Es gilt dann P 0 (r) = Zq -1 + Zq -2 + Zq -3 + Zq -4 + Zq -5 + Nq -5 Alternativ: (v := q -1 ) = Zq -5 (q 4 + q 3 + q 2 + q + 1) + Nq -5 = Z q 5 q5-1 q Nq-5 = Z r 1-1 q 5 + Nq-5 P 0 (r) = Z(v + v 2 + v 3 + v 4 + v 5 ) + Nv 5 = Z v(1 + v + v 2 + v 3 + v 4 ) + Nv 5 = Z v 1 - v5 1 - v + Nv5 Für Z = N i und r = i folgt aus i) i iv) P 0 (i) = N 1-1 q 5 + Nq-5 = N P s (r) = (1 + r) s P 0 (r) = q s P 0 (r) Es muss gelten P 0 (1 + r eff ) 5 = Zq 4 + Zq Z + N und damit = Z(1 + q + q 2 + q 3 + q 4 ) + N = Z q5-1 q N 5 q 1 r eff = 5 Z + N / P0 1 r b) i) Betrachte lim T P 0 (r,t). Es gilt lim T P 0 (r,t) = Ni = Z r r Es gilt zunächst: dp 0 /dr = -Z r -2 Hieraus folgt für die absolute Duration D A : D A (r) = -dp/dr 0 = Z r -2 Seite 4 von 8

5 i Für die Macaulay-Duration folgt hieraus: D(r) = (1 + r) D A (r) P 0 = 1 + r. r Es gilt C(r) = P 0 '' (r)/ P 0 (r). = (1 + r) Z r 2 r Z Nach folgt P 0 '' (r) = d(-z r -2 )/dr = 2Z r -3. Damit gilt insgesamt: C(r) = 2 Z r 3 r Z = 2 r 2 Aufgabe 3: (28 min) a) Aktuar Z nimmt im Alter x (definitionsgemäß t = 0) eine Schuld der Höhe S 0 auf, die er mit gleichhohen nachschüssigen Zahlungen A (Annuität) in n Jahren inklusive aufge laufener Zinsen tilgen möchte. Der als fristigkeitsunabhängig angenommene Kreditzins beträgt r. Wie hoch ist die Annuität? Hinweis: Gehen Sie aus von dem Grundsatz Barwert Schuld = (Barwert der Rückzah lungen) und verwenden Sie die geometrische Summe. (6 min) b) Weisen Sie nach, dass für t = 1,, n die Restschuld RS t am Ende der jeweiligen Periode gegeben ist durch RS t = S 0 qn - q t. Hinweis: Gehen Sie von dem Ansatzpunkt aus, dass sich die Restschuld zum Zeitpunkt t als Differenz der aufgezinsten Schuld bis t und der aufgezinsten Annuitätenzahlungen der Teilaufgabe a) bis zum Zeitpunkt t ergibt. (10 min) c) Aktuar Z schließt nun eine n-jährige Risikolebensversicherung ab, deren Auszahlung im Todesfall sich kongruent zur Restschuld nach Teilaufgabe b) entwickelt. Stellen Sie den Leistungsbarwert LBW DRL dieser Todesfallversicherung in Abhängigkeit von der gestutzten Lebensdauer CT = CT x dar! Bestimmen Sie den korrespondierenden erwarteten Leistungsbarwert. Verwenden Sie dabei die Größe t q x! (12 min) Lösungsskizze: a) Barwert der nachschüssigen Rückzahlungen (q = 1 + r) Aq -1 + Aq Aq -n Seite 5 von 8

6 = Aq -n (q n q + 1) = A qn - 1 q n (q - 1) Damit gilt S 0 = A und hieraus folgt q n (q - 1) A = S 0 q n (q - 1) b) Nach Hinweis gilt (q = 1 + r) RS t = S 0 q t - A (q t q + 1) = S 0 q t - A qt - 1 q - 1 = S 0 q t - S 0 q n (q - 1) qt - 1 q - 1 = S 0 q t - qn (q t - 1) = S 0 qt () - q n (q t - 1) = S 0 qn - q t c) Ist t der Todeszeitpunkt, so erfolgt eine Zahlung der Höhe RS t. Der Todeszeitpunkt in Termen der gestutzten Lebensdauer entspricht CT + 1. Damit ist für CT = 0,, n-1 der Barwert der Zahlung in t = CT + 1 gegeben durch RS CT+1 q -(CT+1) = S 0 qn - q CT+1 q -(CT+1) = S 0 qn-(ct+1) - 1 = S 0 qn-1-ct - 1 Insgesamt gilt LBW= S qn-1-ct q n CT = 0,, n CT n und ferner Seite 6 von 8

7 Aufgabe 4: (18 min) n-1 E(LBW) = S 0 q n-1 t=0 (qn-1-ct - 1) P(CT = t) n-1 = S 0 q n-1 t=0 (qn-1-ct - 1) t q x a) Versicherungsunternehmen AAA verkauft eine einjährige aktienindexgebundene Le bensversicherung zur Gesamtprämie EUR an einen x-jährigen Kunden. Die Mo dalitäten der Versicherung in Bezug auf den Erlebensfall lauten wie folgt: Es wird eine Rückzahlung der Gesamtprämie garantiert. Im Falle einer negativen DAX- Entwicklung erhält der Versicherte einen Bonus von 50% auf die einjährige DAX-Ren dite bezogen auf einen maßgeblichen Investitionsbetrag in Höhe von EUR Das Unternehmen sieht sich der folgenden Anlagesituation in t = 0 gegenüber: Es herrscht ein sicherer Zins von 5%, der DAX steht bei und einjährige DAX-Puts mit einem Ausübungspreis von weisen eine Optionsprämie von EUR 260 auf. i) Wie lautet das Leistungsprofil der Erlebensfallleistung in t = 1? Welche Option ist in diesem Leistungsprofil eingebettet? i Wie lautet der marktkonsistente Wert dieses Leistungsprofils in t = 0? iv) Welche faire Prämie resultiert hieraus? v) Welcher Betrag verbleibt dem Unternehmen zur Deckung einer Todesfallleistung und von Betriebskosten? (8 min) b) Alternativ wird das Leistungsprofil der aktienindexgebundenen Lebensversicherung im Erlebensfall unter a) wie folgt festgelegt: Auf einen Betrag in Höhe von EUR wird eine garantierte Mindestverzinsung von 4% gewährt. Alternativ kommt im Falle einer positiven DAX-Entwicklung eine 50%- ige Partizipation zum Zuge, bezogen auf einen maßgeblichen Investitionsbetrag von EUR jedoch nur, wenn dies zu einer höheren Auszahlung führt. i) Wie lautet das Leistungsprofil der Erlebensfallleistung in t = 1? Welche Option ist in diesem Leistungsprofil eingebettet? i Wie lautet der marktkonsistente Wert dieses Leistungsprofils in t = 0? (10 min) Lösungsskizze: a) i) Rückzahlungsprofil in t = 1 (DAX(0) = 4750) L 1 = max{10000, ,5 = max{10000, DAX(1)} DAX(1) - DAX(0) } DAX(0) Seite 7 von 8

8 L 1 = max{ DAX(1), 0} Eingebettet ist ein einjähriger DAX-Put mit Ausübungspreis X = i L 1 = 10000(1,05) = 9523, = 9783,81 iv) 9783,81 p x v) ,81 p x. b) i) Rückzahlungsprofil in t = 1 L 1 = max{ , ,5 = max{9880, (DAX(1) )} Zerlegung des Rückzahlungsprofils: L 1 = max(380, DAX(1) ) = max(dax(1) , 0) = max(dax(1) , 0) DAX(1) - DAX(0) } DAX(0) Eingebettet ist ein einjähriger DAX-Call mit einem Ausübungspreis in Höhe von X = i Fairer Wert L 0 in t = 0: L 0 = 9880(1.05) -1 + C 0 (5130) = C 0 (5130). Dabei bezeichnet C 0 (5130) den Marktpreis eines einjährigen DAX-Calls mit Ausübungspreis X = 5130 in t = 0. Seite 8 von 8

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Übung zu Forwards, Futures & Optionen

Übung zu Forwards, Futures & Optionen Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg 15.05.01 1 Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts:

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

Grundlagen der Kursrechnung und Renditeermittlung

Grundlagen der Kursrechnung und Renditeermittlung Grundlagen der Kursrechnung und Renditeermittlung Eingereicht bei Herrn Dipl.-Math. Norman Markgraf von Marco Halver (MaNr. 277035) marco.halver@gmx.net Bonhoefferstraße 13 47178 Duisburg 1 Gliederung

Mehr

Zinseszins- und Rentenrechnung

Zinseszins- und Rentenrechnung Zinseszins- und Rentenrechnung 1 Berechnen Sie den Zeitpunkt, an dem sich das Einlagekapital K bei a) jährlicher b) monatlicher c) stetiger Verzinsung verdoppelt hat, wobei i der jährliche nominelle Zinssatz

Mehr

Financial Engineering....eine Einführung

Financial Engineering....eine Einführung Financial Engineering...eine Einführung Aufgabe 1: Lösung Überlegen Sie sich, wie man eine Floating Rate Note, die EURIBOR + 37 bp zahlt in einen Bond und einen Standard-Swap (der EURIBOR zahlt) zerlegen

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Finanzwirtschaft. Teil II: Bewertung

Finanzwirtschaft. Teil II: Bewertung Sparpläne und Kreditverträge 1 Finanzwirtschaft Teil II: Bewertung Sparpläne und Kreditverträge Agenda Sparpläne und Kreditverträge 2 Endliche Laufzeit Unendliche Laufzeit Zusammenfassung Sparpläne und

Mehr

Wirtschaftsmathematik für International Management (BA)

Wirtschaftsmathematik für International Management (BA) Wirtschaftsmathematik für International Management (BA) Wintersemester 2012/13 Hochschule Augsburg : Gliederung 1 Grundlegende 2 Grundlegende 3 Lineare Algebra 4 Lineare Programme 5 Folgen und Reihen 6

Mehr

DIPLOM. Abschlussklausur der Vorlesung Bank I, II:

DIPLOM. Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 9 Name: Matrikelnummer: DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Seite 2 von 9 DIPLOM Abschlussklausur der Vorlesung Bank I, II: Bankmanagement

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Kursrechnung Festverzinsliche Wertpapiere Wertpapier: Investor erwirbt für bestimmten Preis

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Finanzmathematik 1 11 Folgen und Reihen 1 111 Folgen allgemein 1 112

Mehr

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann Barwertbestimmung und Effektivzins bei Anleihen von Fanny Dieckmann Inhalt Definitionen Anleihenstruktur Anleihenbewertung Barwertbestimmung Renditebestimmung Bewertung von Sonderformen Literaturverzeichnis

Mehr

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe Finanzmathematik Kapitel 4 Investitionen Prof. Dr. Harald Löwe Sommersemester 2012 1. Abschnitt INVESTITIONSRECHNUNG Voraussetzungen Investition als Zahlungsstrom Vom Investor zur leistende Zahlungen (Anschaffungen,

Mehr

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1

Inhaltsverzeichnis. Finanzmathe Formelsammlung v.2.3 1 Finanzmathe Formelsammlung v.2.3 1 Inhaltsverzeichnis I Zinsrechnung 1 I.1 Jährliche Verzinsung..................................... 1 I.1.1 Einfache Verzinsung................................. 1 I.1.2

Mehr

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte

Anwendungen in der elementaren Zinsrechnung. Kapitalwert zum Zeitpunkt j (nach j Zinsperioden) Bsp. 1. 0 1 2 3 4 Zeitpunkte Anwendungen in der elementaren Zinsrechnung Zinssatz (Rendite) je Zinsperiode i = p% p= Prozentpunkte Zinsfaktor (Aufzinsungsfaktor) q =1+i Diskontfaktor (Abzinsungsfaktor) v =1/(1 + i) =q 1 Laufzeit n

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2014/15 Hochschule Augsburg Grundlagentest Ungleichungen! Testfrage: Ungleichungen 1 Die Lösungsmenge

Mehr

Entspricht der Basiswert einem Aktienindex, so spricht man von einer Indexanleihe (oder auch Reverse- Convertible-Bond).

Entspricht der Basiswert einem Aktienindex, so spricht man von einer Indexanleihe (oder auch Reverse- Convertible-Bond). ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN WGZ ZERTIFIKATE AUF INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung Entspricht der Basiswert einem Aktienindex, so spricht

Mehr

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1

Tutorium zur Mathematik (WS 2004/2005) - Finanzmathematik Seite 1 Tutorium zur Mathematik WS 2004/2005) - Finanzmathematik Seite 1 Finanzmathematik 1.1 Prozentrechnung K Grundwert Basis, Bezugsgröße) p Prozentfuß i Prozentsatz i = p 100 ) Z Prozentwert Z = K i bzw. Z

Mehr

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf?

Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Numerische Mathematik I 4. Nichtlineare Gleichungen und Gleichungssysteme 4.1 Wo treten nichtlineare Gleichungen auf? Andreas Rieder UNIVERSITÄT KARLSRUHE (TH) Institut für Wissenschaftliches Rechnen und

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2015/16 Hochschule Augsburg Rentenrechnung Definition Rente: Zahlungsstrom mit Zahlungen in gleichen

Mehr

Arbitrage Free Pricing

Arbitrage Free Pricing Beim CAPM wurde gezeigt, dass man Finanztitel basierend auf der Verteilung ihres künftigen Preises bewerten kann. Dabei haben wir [unter der Annahme gewisser Präferenzen des Es] den Preis eines Finanztitels

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Zinsratentheorie in der Versicherung

Zinsratentheorie in der Versicherung Zinsratentheorie in der Versicherung Julia Eisenberg 04.05.2010 Gliederung 1 Bewertung durch Diversifikation Gesetz der großen Zahl Zinssatz, Aufzinsungs- und Diskontierungsfaktoren Verluste und Äquivalenzprinzip

Mehr

Klausur zur Vorlesung Finanz- und Bankmanagement

Klausur zur Vorlesung Finanz- und Bankmanagement Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft [Aufkleber] Klausur zur Vorlesung Finanz- und Bankmanagement Prof. Dr. Marco Wilkens 06. Februar 2012

Mehr

Starthilfe Finanzmathematik

Starthilfe Finanzmathematik Bernd Luderer Starthilfe Finanzmathematik Zinsen - Kurse - Renditen 3., überarbeitete und erweiterte Auflage t. \ STUDIUM 11 VI EWEG+ TEUBNER Inhaltsverzeichnis 1 Grundlegende Formeln und Bezeichnungen

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 27. April 2015 Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg Äquivalenzprinzip der Finanzmathematik Das Äquivalenzprinzip der Finanzmathematik für Vergleich von Zahlungen, welche

Mehr

Finanzmathematik - Grundlagen

Finanzmathematik - Grundlagen Finanzmathematik - Grundlagen Formelsammlung Zugelassene Formelsammlung zur Klausur im Sommersemester 2005 Marco Paatrifon Institut für Statistik und Mathematische Wirtschaftstheorie Zinsrechnung Symbole

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

11. April 2011. Geldtheorie und -politik. Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4)

11. April 2011. Geldtheorie und -politik. Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4) Geldtheorie und -politik Definition und Bestimmung von Zinssätzen (Mishkin, Kapitel 4) 11. April 2011 Überblick Barwertkonzept Kreditmarktinstrumente: Einfaches Darlehen, Darlehen mit konstanten Raten,

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Einführung in die Obligationenmärkte

Einführung in die Obligationenmärkte Einführung in die Obligationenmärkte Einige wichtige Begriffe Obligationenmarkt (auch Anleihenmarkt) ist der Markt für festverzinsliche Wertpapiere mittlerer bis langfristiger Laufzeit und festem Fälligkeitstermin.

Mehr

Bernd Luderer. Starthilfe Finanzmathematik. Zinsen - Kurse - Renditen. 4., erweiterte Auflage. Springer Spektrum

Bernd Luderer. Starthilfe Finanzmathematik. Zinsen - Kurse - Renditen. 4., erweiterte Auflage. Springer Spektrum Bernd Luderer Starthilfe Finanzmathematik Zinsen - Kurse - Renditen 4., erweiterte Auflage Springer Spektrum Inhaltsverzeichnis 1 Grundlegende Formeln und Bezeichnungen 1 1.1 Wichtige Bezeichnungen 1 1.2

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler

Susanne Kruse. Formelsammlung. Aktien-, Zins- und. Währungsderivate. Springer Gabler Susanne Kruse Formelsammlung Aktien-, Zins- und Währungsderivate Springer Gabler Inhaltsverzeichnis Notations- und Abkürzungsverzeichnis XI Teil I Finanzmathematische Grundlagen 1 Grundprinzipien der Finanzmathematik

Mehr

Deckungskapital. Proseminar Versicherungsmathematik. TU Graz. 11. Dezember 2007

Deckungskapital. Proseminar Versicherungsmathematik. TU Graz. 11. Dezember 2007 Deckungskapital Gülnur Adanç Proseminar Versicherungsmathematik TU Graz 11. Dezember 2007 1 Inhaltsverzeichnis 1 Deckungskapital 2 1.1 Prospektive und Retrospektive Methode.................... 3 1.1.1

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 221 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Wird im Bereich der Rentenrechnung die zugehörige zu Beginn eines Jahres / einer Zeitperiode eingezahlt, so spricht

Mehr

Kreditmanagement. EK Finanzwirtschaft

Kreditmanagement. EK Finanzwirtschaft EK Finanzwirtschaft a.o.univ.-prof. Mag. Dr. Christian KEBER Fakultät für Wirtschaftswissenschaften www.univie.ac.at/wirtschaftswissenschaften christian.keber@univie.ac.at Kreditmanagement 1 Kreditmanagement

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

Abschlussklausur der Vorlesung Bank I, II:

Abschlussklausur der Vorlesung Bank I, II: Seite 1 von 23 Name: Matrikelnummer: Abschlussklausur der Vorlesung Bank I, II: Bankmanagement und Theory of Banking Hinweise: o Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf die Klausur

Mehr

Test 1 (zu den Kapiteln 1 bis 6)

Test 1 (zu den Kapiteln 1 bis 6) Test 1 1 Test 1 (zu den Kapiteln 1 bis 6) Bearbeitungszeit: 90 Minuten Aufgabe T1.1: Bekanntmachung EUR 1.000.000.000,- Anleihe mit variablem Zinssatz der Fix AG von 2003/2013, Serie 111 Zinsperiode: 12.10.2006

Mehr

Wie teuer ist der Verzicht auf eine Zinsdifferenz von 0,5% über die gesamte Laufzeit?

Wie teuer ist der Verzicht auf eine Zinsdifferenz von 0,5% über die gesamte Laufzeit? Martin Cremer Finanzmathematiker Wie teuer ist der Verzicht auf eine Zinsdifferenz von 0,5% über die gesamte Laufzeit? Kornwestheim 2008 Prisma 2008 Martin Cremer Finanzmathematiker Präambel Ausgangspunkt

Mehr

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2009 über Grundprinzipien der Versicherungs- und Finanzmathematik (Grundwissen) Berich zur Prüfung i Okober 9 über Grundrinziien der Versicherungs- und Finanzaheaik (Grundwissen Peer lbrech (Mannhei 6 Okober 9 wurde zu vieren Mal eine Prüfung i Fach Grundrinziien der Versicherungs-

Mehr

KBC-Life Capital 1 ist eine Sparte 21 Lebensversicherung mit einer vom Versicherungsunternehmen garantierten Mindestertrag.

KBC-Life Capital 1 ist eine Sparte 21 Lebensversicherung mit einer vom Versicherungsunternehmen garantierten Mindestertrag. KBC-Life Capital Art der Lebens- Versicherung KBC-Life Capital 1 ist eine Sparte 21 Lebensversicherung mit einer vom Versicherungsunternehmen garantierten Mindestertrag. Hauptdeckung: Auszahlung der Reserve

Mehr

Finanzmathematik. Zinsrechnung I 1.)

Finanzmathematik. Zinsrechnung I 1.) Finanzmathematik Zinsrechnung I 1.) Ein Vater leiht seinem Sohn am 1.1. eines Jahres 1.000.- DM. Es wird vereinbart, dass der Sohn bei einfacher Verzinsung von 8% das Kapital einschließlich der Zinsen

Mehr

Unter einer Rente versteht man eine regelmässige und konstante Zahlung.

Unter einer Rente versteht man eine regelmässige und konstante Zahlung. Anwendungen aus der Finanzmathematik a) Periodische Zahlungen: Renten und Leasing Unter einer Rente versteht man eine regelmässige und konstante Zahlung Beispiele: monatliche Krankenkassenprämie, monatliche

Mehr

Finanzmathematik mit Excel

Finanzmathematik mit Excel Finanzmathematik mit Excel Seminar zur Finanzwirtschaft im Wintersemester 2014/15 Dipl.-Math. Timo Greggers B.Sc. VWL Janina Mews M.Sc. BWL Dienstag 14.15-15.45 (Beginn: 28.10.2014) PC-Labor (Walter-Seelig-Platz

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

Inhaltsverzeichnis. - Beschreibung - Rendite - Kaufpreis - Stückzinsen - Verzinsung - Rendite - Berechnung. - Fazit. Beschreibung

Inhaltsverzeichnis. - Beschreibung - Rendite - Kaufpreis - Stückzinsen - Verzinsung - Rendite - Berechnung. - Fazit. Beschreibung Inhaltsverzeichnis - Beschreibung - Rendite - Kaufpreis - Stückzinsen - Verzinsung - Rendite - Berechnung - Fazit Beschreibung Die US-Dollar Bundesanleihe ist eine Schuldverschreibung der Bundesrepublik

Mehr

4. Versicherungsangebot

4. Versicherungsangebot 4. Versicherungsangebot Georg Nöldeke Wirtschaftswissenschaftliche Fakultät, Universität Basel Versicherungsökonomie (FS 11) Versicherungsangebot 1 / 13 1. Einleitung 1.1 Hintergrund In einem grossen Teil

Mehr

3.3. Tilgungsrechnung

3.3. Tilgungsrechnung 3.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit Es

Mehr

Renditeberechnung Generali

Renditeberechnung Generali Renditeberechnung Generali Jahr Parameter Prämie / Einzahlung Cash-Flows Sparteilbeiträge und Rückkaufswerte 1) Prämiendatum Prämie total Davon für Prämienbefr. 2) Davon für Todesfall 3) Prämie netto für

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 204 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Bei der Rentenrechnung geht es um aus einem angesparten Kapital bzw. um um das Kapital aufzubauen, die innerhalb

Mehr

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14):

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): a. Bruttogewinn 760.000,- $ - Zinszahlungen 100.000,- $ (10 % auf 1 Mio. $) = EBT (Earnings before Taxes) 660.000,- $ - Steuern (35 % auf 660.000,-

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 22. Juni 2015 Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Finanz- und bankwirtschaftliche Modelle (32521) Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 23. September

Mehr

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S;

Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; 1 5.3. Tilgungsrechnung Grundbegriffe Gegenstand der Tilgungsrechnung ist ein von einem Gläubiger (z. B. Bank) an einen Schuldner ausgeliehener Geldbetrag S; Bezeichnung: S... Schuld, Darlehen, Kredit

Mehr

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Finanz- und bankwirtschaftliche Modelle (32521) Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 20. März 2013

Mehr

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011

Mathematik-Klausur vom 08.07.2011 und Finanzmathematik-Klausur vom 14.07.2011 Mathematik-Klausur vom 08.07.20 und Finanzmathematik-Klausur vom 4.07.20 Studiengang BWL DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 200: Aufgaben 2,,4 Dauer der Klausur: 60 Min

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

III. Grundlagen der Lebensversicherungsmathematik III.5. Deckungskapital für Lebensversicherungsprodukte

III. Grundlagen der Lebensversicherungsmathematik III.5. Deckungskapital für Lebensversicherungsprodukte III. Grundlagen der Lebensversicherungsmathematik III.5. Deckungskapital für Lebensversicherungsprodukte Universität Basel Herbstsemester 2015 Dr. Ruprecht Witzel ruprecht.witzel@aktuariat-witzel.ch www.aktuariat-witzel.ch

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 5.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind zwei

Mehr

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens

Einführung in einige Teilbereiche der Wirtschaftsmathematik für Studierende des Wirtschaftsingenieurwesens in einige Teilbereiche der für Studierende des Wirtschaftsingenieurwesens Sommersemester 2013 Hochschule Augsburg Unterjährige Raten und jährliche Verzinsung Aufteilung der Zinsperiode in mehrere gleich

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag studienbegleitende Klausur Finanzmathematik I Aufgabe (7 Punkte) Vorgelegt sei ein Wahrscheinlichkeitsraum (Ω, F, P) und

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Finanzmathematik. Grundlagen und Anwendungsmöglichkeiten in der Investitions- und Bankwirtschaft. begründet von Eugen Caprano f

Finanzmathematik. Grundlagen und Anwendungsmöglichkeiten in der Investitions- und Bankwirtschaft. begründet von Eugen Caprano f Finanzmathematik Grundlagen und Anwendungsmöglichkeiten in der Investitions- und Bankwirtschaft 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated

Mehr

Risikoeinstellungen empirisch

Risikoeinstellungen empirisch Risikoeinstellungen empirisch Risk attitude and Investment Decisions across European Countries Are women more conservative investors than men? Oleg Badunenko, Nataliya Barasinska, Dorothea Schäfer http://www.diw.de/deutsch/soep/uebersicht_ueber_das_soep/27180.html#79569

Mehr

Zinssätze. Georg Wehowar. 4. Dezember 2007

Zinssätze. Georg Wehowar. 4. Dezember 2007 4. Dezember 2007 Grundlagen der Zinsrechnung Verschiedene Anleihen Forward Rate Agreement Forward Zinsen Allgemeines Allgemeine Grundlagen K 0... Anfangskapital K t... Kapital nach einer Zeitspanne t Z

Mehr

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER

Kirsten Wüst. Finanzmathematik. Vom klassischen Sparbuch zum modernen Zinsderivat GABLER Kirsten Wüst Finanzmathematik Vom klassischen Sparbuch zum modernen Zinsderivat GABLER I Inhaltsverzeichnis VORWORT V INHALTSVERZEICHNIS VII ABBILDUNGSVERZEICHNIS XV TABELLENVERZEICHNIS XVII 1 ZINSFINANZINSTRUMENTE

Mehr

SS 2014 Torsten Schreiber

SS 2014 Torsten Schreiber SS 2014 Torsten Schreiber 239 Diese Lücken sollten nicht auch bei Ihnen vorhanden sein: Durch die wird ein Zahlungsstrom beschrieben, der zur Rückführung eines geliehenen Geldbetrags dient. Der zu zahlende

Mehr

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden

TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische und iterative Methoden anwenden BspNr: G0010 Themenbereich Finanzmathematik - Rentenrechnung Ziele vorhandene Ausarbeitungen Arbeiten mit geom. Reihen TI-83/92 (G0010a) DERIVE (G0010b nur Teile) Anwendung von geeigneten Funktionen numerische

Mehr

SR MVP die Sharpe Ratio des varianzminimalen

SR MVP die Sharpe Ratio des varianzminimalen Prüfung inanzmahemaik und Invesmenmanagemen 4 Aufgabe : (4 Minuen) a) Gegeben seien zwei Akien mi zugehörigen Einperiodenrendien R und R. Es gele < ρ(r,r )

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Optionspreistheorie Seminar Stochastische Unternehmensmodelle

Optionspreistheorie Seminar Stochastische Unternehmensmodelle Seminar Stochastische Unternehmensmodelle Lukasz Galecki Mathematisches Institut Universität zu Köln 1. Juni 2015 1 / 30 Inhaltsverzeichnis 1 Was ist eine Option? Definition einer Option Übersicht über

Mehr

Zinsen, Zinseszins, Rentenrechnung und Tilgung

Zinsen, Zinseszins, Rentenrechnung und Tilgung Zinsen, Zinseszins, Rentenrechnung und Tilgung 1. Zinsen, Zinseszins 2. Rentenrechnung 3. Tilgung Nevzat Ates, Birgit Jacobs Zinsrechnen mit dem Dreisatz 1 Zinsen Zinsrechnen mit den Formeln Zinseszins

Mehr

ifa Institut für Finanz- und Aktuarwissenschaften

ifa Institut für Finanz- und Aktuarwissenschaften Wechselwirkungen von Asset Allocation, Überschussbeteiligung und Garantien in der Lebensversicherung WIMA 2004 Ulm, 13.11.2004 Alexander Kling, IFA Ulm Helmholtzstraße 22 D-89081 Ulm phone +49 (0) 731/50-31230

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53 zu Aufgabe 3b) Binomialmodell: C 0 S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 S 0 0,909 65,8 6,53 Frage: Wie setzt sich das Duplikationsportfolio des Calls (anteiliger Aktienkauf teilweise kreditfinanziert)

Mehr

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN

Hypothekendarlehen. Festlegungen im Kreditvertrag. Beispiel 1. Beispiel 1 / Lösung 16.04.2012. Finanzmathematik HYPOTHEKENDARLEHEN Finanzmathematik Kapitel 3 Tilgungsrechnung Prof. Dr. Harald Löwe Sommersemester 2012 Abschnitt 1 HYPOTHEKENDARLEHEN Festlegungen im Kreditvertrag Der Kreditvertrag legt u.a. folgende Daten fest Kreditsumme

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Übungsaufgaben Tilgungsrechnung

Übungsaufgaben Tilgungsrechnung 1 Zusatzmaterialien zu Finanz- und Wirtschaftsmathematik im Unterricht, Band 1 Übungsaufgaben Tilgungsrechnung Überarbeitungsstand: 1.März 2016 Die grundlegenden Ideen der folgenden Aufgaben beruhen auf

Mehr

FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft. Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff.

FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft. Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff. FernUniversität in Hagen Matr.-Nr.: Fakultät für Wirtschaftswissenschaft Name: Vorname: Klausur: Prüfer: Banken und Börsen (Prüfungs-Nr. 31521) PD Dr. Karin Niehoff Termin: 06. September 2012 11:30 13:30

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung

Im weiteren werden die folgenden Bezeichnungen benutzt: Zinsrechnung 4.2 Grundbegriffe der Finanzmathematik Im weiteren werden die folgenden Bezeichnungen benutzt: K 0 Anfangskapital p Zinsfuß pro Zeiteinheit (in %) d = p Zinssatz pro Zeiteinheit 100 q = 1+d Aufzinsungsfaktor

Mehr

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf

Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf Vorlesung Gesamtbanksteuerung Mathematische Grundlagen I Dr. Klaus Lukas Carsten Neundorf 1 Agenda Zinsrechnung Zinseszins Zinskurve Forward-Rates Zeitwert des Geldes Zinsgeschäfte und der zugehörige Cashflow

Mehr

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen

Grundlagen: Folgen u. endliche Reihen Zinsrechnung Renten-/Investitionsrechnung Tilgungsrechnung Abschreibungen. Finanzmathematik. Fakultät Grundlagen Finanzmathematik Fakultät Grundlagen September 2011 Fakultät Grundlagen Finanzmathematik Grundlagen: Folgen und endliche Reihen Rentenrechnung Fakultät Grundlagen Finanzmathematik Folie: 2 Folgen Reihen

Mehr

Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths

Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths Finanzmärkte Teil 2 BiTS, Wintersemester 2004/2005 Dr. Stefan Kooths KOOTHS BiTS: Finanzmärkte, WS 2004/2005 Teil 2 1 Gliederung 1. Einführung und Einordnung 2. Geld- und Kreditschöpfung 3. Rentenmärkte

Mehr

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre)

n... Laufzeit der Kapitalanlage = Zeit, während der Zinsen zu zahlen sind (oder gezahlt werden) in Zinsperioden (z.b. Jahre) 3. Finanzmathematik 3.1. Zinsrechnung 3.1.1. Grundbegriffe K... Kapital (caput - das Haupt) = Betrag, der der Verzinsung unterworfen ist; Geldbetrag (Währung) z... Zinsen = Vergütung (Preis) für das Überlassen

Mehr

E2.6.2.1-1 Auf dem Markt wird ein Jahreszinssatz von 7,00% p.a. und ein Halbjahreszinssatz (183 Tage) von 6,50% p.a.quotiert.

E2.6.2.1-1 Auf dem Markt wird ein Jahreszinssatz von 7,00% p.a. und ein Halbjahreszinssatz (183 Tage) von 6,50% p.a.quotiert. 2.6.2.1 Forward Rate Agreement (FRA) E2.6.2.1-1 Auf dem Markt wird ein Jahreszinssatz von 7,00% p.a. und ein Halbjahreszinssatz (183 Tage) von 6,50% p.a.quotiert. Ermitteln Sie hieraus den impliziten Forwardsatz

Mehr

NRW EONIA-Anleihe. Schatzanweisung des Landes Nordrhein-Westfalen

NRW EONIA-Anleihe. Schatzanweisung des Landes Nordrhein-Westfalen NRW EONIA-Anleihe Schatzanweisung des Landes Nordrhein-Westfalen EONIA Beschreibung EONIA = Euro OverNight Index Average Stellt den offiziellen Durchschnittstageszinssatz dar, der von Finanzinstituten

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 29. Juni 2015 Erinnerung Bewertung eines Bonds mit Kupon k, Nominal N, Laufzeit t n: n Π(t) = N k δ(t i 1, t i ) P (t, t i ) + N P (t,

Mehr

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen -

Die Duration von Standard-Anleihen. - Berechnungsverfahren und Einflussgrößen - Die Duration von Standard-Anleihen - Berechnungsverfahren und Einflussgrößen - Gliederung Einleitendes Herleitung einer Berechnungsvorschrift Berechnungsvorschriften für Standardfälle Einflussgrößen und

Mehr

Option Analysis of Plattform Decisions. Raeed Mayrhofer

Option Analysis of Plattform Decisions. Raeed Mayrhofer Option Analysis of Plattform Decisions Raeed Mayrhofer Softwareplattform ist ein Bündel von Funktionen, das das Ausführen von Applikationen ermöglicht bildet gemeinsam mit Hardware und Know-how die IT-Infrastruktur

Mehr

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen

Rente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren Rentenperiode = Zeitabstand zwischen zwei Rentenzahlungen 1 3.2. entenrechnung Definition: ente = laufende Zahlungen, die in regelmäßigen Zeitabschnitten (periodisch) wiederkehren entenperiode = Zeitabstand zwischen zwei entenzahlungen Finanzmathematisch sind

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 20

Aufgaben Brealey/Myers [2003], Kapitel 20 Folie 0 Quiz: 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14 Practice Questions: 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17, 18, 21 Challenge Questions: 2 Folie 1 Lösungshinweis zu Quiz 4: Put-Call Parität: Fälligkeit

Mehr

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche Optionen Termingeschäfte Bedingte Termingeschäfte bedingte Ansprüche (contingent claims) Optionen Kreditderivate Unbedingte Termingeschäfte, unbedingte Ansprüche Forwards und Futures Swaps 2 Optionen Der

Mehr