Übungsserie Nr. 10 mit Lösungen

Größe: px
Ab Seite anzeigen:

Download "Übungsserie Nr. 10 mit Lösungen"

Transkript

1 Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung: SEX = 1 für Frauen; SEX = 2 für Männer). Die nachfolgende Computerausgabe zeigt die diesbezüglichen Resultate. * * * * * * A n a l y s i s o f V a r i a n c e * * * * * * Cell Means and Standard Deviations Variable.. X1 FACTOR CODE Mean Std. Dev. N SEX SEX For entire sample Variable.. X2 FACTOR CODE Mean Std. Dev. N SEX SEX For entire sample Variable.. X3 FACTOR CODE Mean Std. Dev. N SEX SEX For entire sample Univariate Homogeneity of Variance Tests Variable.. X1 Cochrans C(8,2) =.67355, P =.326 (approx.) Bartlett-Box F(1,736) =.97920, P =.323 Variable.. X2 Cochrans C(8,2) =.71691, P =.253 (approx.) Bartlett-Box F(1,736) = , P =.262 Variable.. X3 Cochrans C(8,2) =.50875, P =.962 (approx.) Bartlett-Box F(1,736) =.00226, P =.962 Multivariate test for Homogeneity of Dispersion matrices Boxs M = F WITH (6,1582) DF =.94211, P =.464 (Approx.) Chi-Square with 6 DF = , P =.460 (Approx.) WITHIN CELLS Correlations with Std. Devs. on Diagonal X1 X2 X3 X X X

2 Statistics for WITHIN CELLS correlations Log(Determinant) = Bartlett test of sphericity = with 3 D. F. Significance =.153 * * * * * * A n a l y s i s o f V a r i a n c e -- design 1 * * * * * * EFFECT.. SEX Multivariate Tests of Significance (S = 1, M = 1/2, N = 6 ) Test Name Value Exact F Hypoth. DF Error DF Sig. of F Pillais Hotellings Wilks Roys Univariate F-tests with (1,16) D. F. Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F X X X a Welche Voraussetzungen müssen erfüllt sein, damit ein multivariater Stichprobenvergleich zulässig ist? Die Variablen X1, X2 und X3 müssen intervall- oder proportional skaliert, stochastisch abhängig und in den Populationen näherungsweise multivariat normalverteilt sein. Zudem müssen die Quadratsummen-Matrizen der erhobenen Merkmale homogen sein. 1b Welche dieser Voraussetzungen können anhand obiger Computerausgabe beurteilt werden? Die Computerausgabe gibt uns Informationen zur stochastischen Abhängigkeit der Variablen X1, X2 und X3 (Bartlett test of sphericity) und zur Homogenität der Quadratsummen-Matrizen (Boxs M-test). 1c Formulieren Sie die Arbeitshypothese H 0 zum multivariaten Stichprobenvergleich und eine zugehörige unspezifische, ungerichtete Alternativhypothese H 1. H 0 : Die beiden Stichproben stammen bezüglich der Gesamtheit der Merkmalsmittelwerte aus identischen Populationen. H 1 : Die beiden Stichproben stammen bezüglich der Gesamtheit der Merkmalsmittelwerte aus unterschiedlichen Populationen. 1d Kann die Arbeitshypothese zum multivariaten Stichprobenvergleich verworfen werden? Über die Arbeitshypothese zum multivariaten Stichprobenvergleich kann nicht entschieden werden, da die Voraussetzung der stochastischen Abhängigkeit der Variablen X1, X2 und X3 nicht erfüllt ist (Bartlett test of sphericity). 1e Was können Sie im Rahmen dieser Auswertung den Univariate F-tests entnehmen?

3 Unter 'Univariate F-tests' finden sich die Kennwerte zu univariaten Mittelwertsvergleichen bezüglich der Variablen X1, X2, und X3. Der Name 'Univariate F-tests' erklärt sich dadurch, dass die Stichprobenmittelwerte anhand einer F-verteilten Prüfgrösse verglichen werden. Da sich diese in eine t-verteilte Prüfgrösse überführen lässt, entsprechen die Resultate den Resultaten univariater t-tests. Ein signifikanter Unterschied zwischen den beiden Stichproben zeigt sich nur bezüglich des Merkmals X1. 2 In einer Stichprobe von 106 Probandinnen und Probanden wurden zwei Merkmale X und Y erhoben. Es interessiert die Frage, inwieweit zwischen diesen Merkmalen ein stochastischer Zusammenhang besteht. Zur Charakterisierung und Prüfung stochastischer Zusammenhänge bietet die Statistik verschiedene Verfahren, dazu gehören: a. Regressionsanalyse d. Kovarianzanalyse b. Korrelationsanalyse e. k l-χ2 -Verfahren c. Varianzanalyse f. 4-Felder-Tafeln 2a 2b 2c 2d Welches oder welche der obenstehenden Verfahren ist/sind in erster Linie angezeigt, wenn die beiden Merkmale X und Y dichotom skaliert sind? Für dichotome Merkmale kann ein stochastischer Zusammenhang mit einer 4-Felder-Tafel nachgewiesen werden. Welches oder welche der obenstehenden Verfahren ist/sind in erster Linie angezeigt, wenn die beiden Merkmale X und Y ordinal skaliert sind? Für zwei ordinal skalierte Merkmale kann die Rangkorrelation bestimmt und deren Signifikanz abgeschätzt werden. Vorausgesetzt wird dabei ein monotones gleich- oder gegensinniges Kovariieren der ordinal skalierten Ausprägungen der Merkmale X und Y. Welches oder welche der obenstehenden Verfahren ist/sind in erster Linie angezeigt, wenn die beiden Merkmale proportional skaliert sind? Für zwei proportional skalierte Merkmale kann ein Regressionsmodell bestimmt werden. Ist dieses linear, so kann die Korrelation bestimmt und auf Signifikanz geprüft werden, wenn die beiden Merkmale X und Y in der Population näherungsweise bivariat normalverteilt sind. Welches oder welche der obenstehenden Verfahren ist/sind in erster Linie angezeigt, wenn das Merkmal A mit vier Ausprägungsgraden nominal, das Merkmal X intervall-skaliert ist? Erste Möglichkeit: Denkbar ist ein univariates, einfaktorielles varianzanalytisches Design mit Merkmal A als unabhängige Variable (Faktor A) und Merkmal X als abhängige Variable. Voraussetzung ist ein in der Population näherungsweise normalverteiltes Merkmal X und homogene Stichprobenvarianzen. Zweite Möglichkeit: Das Merkmal X kann kategorisiert werden. Damit kann der stochastische Zusammenhang zwischen A und X mit einem k l-χ 2 auf Signifikanz geprüft werden. Voraussetzung ist, dass sich für nicht mehr als in 20% der Zellen erwartete absolute Häufigkeiten ergeben, die kleiner sind als 5.

4 3 Die untenstehende Computerausgabe zeigt die Resultate einer multivariaten, einfaktoriellen Varianzanalyse, in deren Rahmen die Daten aus 3 unabhängigen Stichproben analysiert wurden. * * Analysis of Variance * * Univariate Homogeneity of Variance Tests Variable.. T1 Cochrans C(5,3) =.40621, P =.942 (approx.) Bartlett-Box F(2,476) =.10801, P =.898 Variable.. T2 Cochrans C(5,3) =.36297, P = (approx.) Bartlett-Box F(2,476) =.02082, P = Multivariate test for Homogeneity of Dispersion matrices Boxs M = F WITH (6,3202) DF =.13025, P =.993 (Approx.) Chi-Square with 6 DF =.78331, P =.993 (Approx.) WITHIN CELLS Correlations with Std. Devs. on Diagonal T1 T2 T T Statistics for WITHIN CELLS correlations Log(Determinant) = Bartlett test of sphericity = with 1 D. F. Significance =.000 F(max) criterion = with (2,15) D. F. * * Analysis of Variance -- design 1 * * EFFECT.. STICHPRO Multivariate Tests of Significance (S = 2, M = -1/2, N = 6 ) Test Name Value Approx. F Hypoth. DF Error DF Sig. of F Pillais Hotellings Wilks Roys Univariate F-tests with (2,15) D. F. Variable Hypoth. SS Error SS Hypoth. MS Error MS F Sig. of F T T

5 3a Welche Voraussetzungen müssen erfüllt sein, damit die Resultate der multivariaten Varianzanalyse interpretiert werden können? Die abhängigen Variablen T1 und T2 müssen zumindest intervall-skaliert und in der Population näherungsweise multivariat normalverteilt sein, zudem müssen T1 und T2 stochastisch abhängig und die Varianz-Kovarianzmatrizen der erhobenen Merkmale homogen sein. Sind die Varianz-Kovarianzmatrizen homogen, so ist in der Regel auch sichergestellt, dass die Varianzen in den einzelnen Merkmalen homogen sind. 3b 3c 3d Welche dieser Voraussetzungen können Sie anhand der Computerausgabe beurteilen? Die Computerausgabe macht Angaben zur stochastischen Abhängigkeit der Variablen T1 und T2 (Bartlett test of sphericity), zur Homogenität der Varianz-Kovarianzmatrizen (Boxs M-Test) und zur Homogenität der Varianzen in den einzelnen Variablen T1 und T2 (Bartlett-Box-Tests). Wieviele Personen müssen im Rahmen dieses Designs zumindest untersucht worden sein, damit für die multivariate Varianzanalyse die Prüfgrösse von Hotellings gewählt werden darf? Wir wählen die Prüfgrösse nach Hotellings, wenn die folgende Bedingung erfüllt ist: N > 10* m*( p 1) + p wobei p N = n die Gesamtzahl der analysierten Daten bezeichnet. i= 1 i In unserem Fall gilt mit m = 2 (2 abhängige Variablen) und p = 3 (3 Stichproben): N > 10 2 (3 1) + 3 = 43 Wir wählen die Prüfgrösse nach Hotellings, wenn im Rahmen dieses Designs gesamthaft mindestens 44 Personen untersucht wurden. Was kann dieser Computerausgabe bezüglich der multivariaten Varianzanalyse entnommen werden, wenn jede der drei Stichproben 25 Personen umfasste? Die abhängigen Variablen T1 und T2 sind stochastisch abhängig und die Varianz- Kovarianzmatrizen (wie auch die univariat analysierten Varianzen) sind homogen. Zum Skalenniveau der abhängigen Variablen und deren multivariater Verteilung kann der Computerausgabe nichts entnommen werden. Sind T1 und T2 intervall-skaliert, und darf für diese in der Population eine multivariate Normalverteilung angenommen werden, so kann die multivariate Varianzanalyse interpretiert werden. Bei total 75 untersuchten Personen wählen wir hierfür die Prüfgrösse von Hotellings und stellen fest, dass das Resultat der multivariaten Varianzanlyse auf dem 1%-Niveau signifikant ist. 3e Unter der Rubrik "Univariate F-tests..." finden sich die Resultate univariater, einfaktorieller Varianzanalysen bezüglich der beiden abhängigen Variablen T1 und T2. Welche Voraussetzungen müssen erfüllt sein, damit Sie diese univariaten Varianzanalysen vollumfänglich interpretieren dürfen? Die abhängigen Variablen T1 und T2 müssen zumindest intervall-skaliert und in der Population näherungsweise normalverteilt sein. Weiter wird vorausgesetzt, dass die Varianzen der einzelnen abhängigen Variablen T1 und T2 homogen sind und dass T1 und T2 stochastisch unabhängig sind. 3f Welche der unter 3e aufgezählten Voraussetzungen können Sie anhand der Computerausgabe beurteilen?

6 Der Computerausgabe können Angaben zur Homogenität der Stichprobenvarianzen (Bartlett- Box-Tests's) und zur stochastischen Unabhängigkeit der abhängigen Variablen T1 und T2 entnommen werden (Bartlett test of sphericity). 3g Was kann diesen univariaten Varianzanalysen im Fall der vorliegenden Auswertung entnommen werden? Den univariaten Varianzanalysen kann im Fall dieser Datenanalyse nur entnommen werden, dass das signifikante multivariate Resultat insbesondere auf die Stichprobenunterschiede bezüglich der Variablen T1 zurückzuführen ist. 4 Welche/s der folgenden Stichworte passt/passen aus der Sicht der dahinter stehenden Konzepte nicht zu der Mehrheit der anderen Stichworte? a. U-Test nach Mann-Whitney b. Wilcoxon-Test c. Vergleich der zentralen Tendenzen in den Stichprobendaten d. Vergleich der Mittelwerte in den Stichprobendaten e. H-Test nach Kruskal-Wallis f. Friedman-Test Das Stichwort d passt nicht zu den anderen, da es intervall- oder proportional skalierte Daten voraussetzt. Alle anderen Stichworte fokussieren nichtparametrische Verfahren, die nur die Ranginformation der Daten betreffen.

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen

Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Einfaktorielle Rangvarianzanalyse mit Messwiederholungen Inhaltsverzeichnis Einfaktorielle Rangvarianzanalyse mit Messwiederholungen... 2 Lernhinweise... 2 Einführung... 3 Theorie (1-3)... 3 Teil 1 -

Mehr

Business Value Launch 2006

Business Value Launch 2006 Quantitative Methoden Inferenzstatistik alea iacta est 11.04.2008 Prof. Dr. Walter Hussy und David Tobinski UDE.EDUcation College im Rahmen des dokforums Universität Duisburg-Essen Inferenzstatistik Erläuterung

Mehr

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel

Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel Grundlagen quantitativer Sozialforschung Interferenzstatistische Datenanalyse in MS Excel 16.11.01 MP1 - Grundlagen quantitativer Sozialforschung - (4) Datenanalyse 1 Gliederung Datenanalyse (inferenzstatistisch)

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Inferenzstatistik Vergleich mehrerer Stichproben - Varianzanalyse

Inferenzstatistik Vergleich mehrerer Stichproben - Varianzanalyse Vergleich mehrerer Stichproben - Varianzanalyse Zweifache VA mit hierarchischen Faktoren Voraussetzungen zwei unabhängige Variablen (Faktoren), die unabhängige Gruppen definiert zweite Faktor ist innerhalb

Mehr

Nichtparametrische statistische Verfahren

Nichtparametrische statistische Verfahren Nichtparametrische statistische Verfahren (im Wesentlichen Analyse von Abhängigkeiten) Kategorien von nichtparametrischen Methoden Beispiel für Rangsummentests: Wilcoxon-Test / U-Test Varianzanalysen 1-faktorielle

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

V A R I A N Z A N A L Y S E

V A R I A N Z A N A L Y S E V A R I A N Z A N A L Y S E Ziel / Funktion: statistische Beurteilung des Einflusses von nominal skalierten (kategorialen) Faktoren auf intervallskalierte abhängige Variablen Vorteil: die Wirkung von mehreren,

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Einflussfaktoren auf die Macht der Hypothesenprüfung

Einflussfaktoren auf die Macht der Hypothesenprüfung Einflussfaktoren auf die Macht der Hypothesenprüfung Einflussfaktoren auf die Macht Die Jagd nach den Sternen In der Wissenschaft gilt der Blick oft nur den Sternen * p

Mehr

Bivariate Chi-Quadrat-Verfahren

Bivariate Chi-Quadrat-Verfahren Inhaltsverzeichnis Bivariate Chi-Quadrat-Verfahren... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-3)... 3 1. Kontingenztafeln... 3 2. Vergleich einer bivariaten mit einer theoretisch erwarteten Verteilung...

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Prüfen von Mittelwertsunterschieden: t-test

Prüfen von Mittelwertsunterschieden: t-test Prüfen von Mittelwertsunterschieden: t-test Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) t-test

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Statistische Auswertung:

Statistische Auswertung: Statistische Auswertung: Die erhobenen Daten mittels der selbst erstellten Tests (Surfaufgaben) Statistics Punkte aus dem Punkte aus Surftheorietest Punkte aus dem dem und dem Surftheorietest max.14p.

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Überblick über die Verfahren für Ordinaldaten

Überblick über die Verfahren für Ordinaldaten Verfahren zur Analyse ordinalskalierten Daten 1 Überblick über die Verfahren für Ordinaldaten Unterschiede bei unabhängigen Stichproben Test U Test nach Mann & Whitney H Test nach Kruskal & Wallis parametrische

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

VS PLUS

VS PLUS VS PLUS Zusatzinformationen zu Medien des VS Verlags Statistik II Inferenzstatistik 2010 Übungsaufgaben und Lösungen Inferenzstatistik 2 [Übungsaufgaben und Lösungenn - Inferenzstatistik 2] ÜBUNGSAUFGABEN

Mehr

Willkommen zur Vorlesung Statistik (Master)

Willkommen zur Vorlesung Statistik (Master) Willkommen zur Vorlesung Statistik (Master) Thema dieser Vorlesung: Verteilungsfreie Verfahren Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften

Mehr

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar

Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung: Test nach McNemar Inhaltsverzeichnis Univariates Chi-Quadrat-Verfahren für ein dichotomes Merkmal und eine Messwiederholung:

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II

ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II ÜBUNGSAUFGABEN ZU INFERENZSTATISTIK II 1.1 Durch welche Elemente lässt sich laut der Formel für die multiple Regression der Wert einer Person auf einer bestimmten abhängigen Variable Y vorhersagen? a)

Mehr

Varianzanalyse * (1) Varianzanalyse (2)

Varianzanalyse * (1) Varianzanalyse (2) Varianzanalyse * (1) Einfaktorielle Varianzanalyse (I) Die Varianzanalyse (ANOVA = ANalysis Of VAriance) wird benutzt, um Unterschiede zwischen Mittelwerten von drei oder mehr Stichproben auf Signifikanz

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Teil II: Einführung in die Statistik

Teil II: Einführung in die Statistik Teil II: Einführung in die Statistik (50 Punkte) Bitte beantworten Sie ALLE Fragen. Es handelt sich um multiple choice Fragen. Sie müssen die exakte Antwortmöglichkeit angeben, um die volle Punktzahl zu

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Willkommen zur Vorlesung Statistik

Willkommen zur Vorlesung Statistik Willkommen zur Vorlesung Statistik Thema dieser Vorlesung: Varianzanalyse Prof. Dr. Wolfgang Ludwig-Mayerhofer Universität Siegen Philosophische Fakultät, Seminar für Sozialwissenschaften Prof. Dr. Wolfgang

Mehr

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08

Computergestützte Methoden. Master of Science Prof. Dr. G. H. Franke WS 07/08 Computergestützte Methoden Master of Science Prof. Dr. G. H. Franke WS 07/08 1 Seminarübersicht 1. Einführung 2. Recherchen mit Datenbanken 3. Erstellung eines Datenfeldes 4. Skalenniveau und Skalierung

Mehr

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.) ue biostatistik: nichtparametrische testverfahren / ergänzung 1/6 h. Lettner / physik Statistische Testverfahren Einige Statistische Tests für den Ein- Zwei- und k-stichprobenfall (Nach Sachs, Stat. Meth.)

Mehr

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen

Motivation. Wilcoxon-Rangsummentest oder Mann-Whitney U-Test. Wilcoxon Rangsummen-Test Voraussetzungen. Bemerkungen Universität Karlsruhe (TH) Forschungsuniversität gegründet 825 Wilcoxon-Rangsummentest oder Mann-Whitney U-Test Motivation In Experimenten ist die Datenmenge oft klein Daten sind nicht normalverteilt Dann

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13

Inhaltsverzeichnis. Vorwort 1. Kapitel 1 Einführung 3. Kapitel 2 Messtheorie und deskriptive Statistik 13 Inhaltsverzeichnis Vorwort 1 Kapitel 1 Einführung 3 1.1 Ziele... 4 1.2 Messtheorie und deskriptive Statistik... 8 1.3 Grundlagen der Wahrscheinlichkeitsrechnung... 9 1.4 Inferenzstatistik... 9 1.5 Parametrische

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 Webergänzung zu Kapitel 10 10.1.4 Varianzanalyse (ANOVA: analysis of variance) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder

Mehr

Einfache Varianzanalyse für unabhängige Stichproben

Einfache Varianzanalyse für unabhängige Stichproben Einfache Varianzanalyse für unabhängige Stichproben VARIANZANALYSE Die Varianzanalyse ist das dem t-test entsprechende Mittel zum Vergleich mehrerer (k 2) Stichprobenmittelwerte. Sie wird hier mit VA abgekürzt,

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS Statistics 20.0

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS Statistics 20.0 1 Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS Statistics 20.0 Text: grund1_spss20.doc Daten: grund1_?.sav Lehrbuch: W. Timischl, Biostatistik.

Mehr

t-test für abhängige Stichproben

t-test für abhängige Stichproben Inhaltsverzeichnis t-test für abhängige Stichproben... 2 Lernhinweise... 2 Einführung... 3 Theorie (1-7)... 4 1. Inhaltliche Fragestellung... 4 2. Statistisch bearbeitbare Fragestellung... 5 3. Prüfgrösse...

Mehr

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007

Einführung in SPSS. Sitzung 5: Faktoranalyse und Mittelwertsvergleiche. Knut Wenzig. 22. Januar 2007 Sitzung 5: Faktoranalyse und Mittelwertsvergleiche 22. Januar 2007 Verschiedene Tests Anwendungsfall und Voraussetzungen Anwendungsfall Mehrere Variablen, die Gemeinsamkeiten haben, werden gebündelt. (Datenreduktion)

Mehr

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum

Franz Kronthaler. Statistik angewandt. Datenanalyse ist (k)eine Kunst. Excel Edition. ^ Springer Spektrum Franz Kronthaler Statistik angewandt Datenanalyse ist (k)eine Kunst Excel Edition ^ Springer Spektrum Inhaltsverzeichnis Teil I Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

Biostatistik Erne Einfuhrung fur Biowissenschaftler

Biostatistik Erne Einfuhrung fur Biowissenschaftler Matthias Rudolf Wiltrud Kuhlisch Biostatistik Erne Einfuhrung fur Biowissenschaftler PEARSON Studium Inhaltsverzeichnis Vorwort xi Kapitel 1 Einfiihrung 1 1.1 Biostatistik als Bestandteil biowissenschafllicher

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

Einfache Varianzanalyse für abhängige

Einfache Varianzanalyse für abhängige Einfache Varianzanalyse für abhängige Stichproben Wie beim t-test gibt es auch bei der VA eine Alternative für abhängige Stichproben. Anmerkung: Was man unter abhängigen Stichproben versteht und wie diese

Mehr

Kursangebote für Studierende über das Leibniz-Rechenzentrum (http://www.lrzmuenchen.de/services/schulung/)

Kursangebote für Studierende über das Leibniz-Rechenzentrum (http://www.lrzmuenchen.de/services/schulung/) Statistik-Manual für SPSS Anmerkung: Softwarebezug über das Leibniz-Rechenzentrum (Barer Straße 21, 80333 München, Telefon: (089) 289-28886 oder (089) 289-28784, http://www.lrz-muenchen.de/services /swbezug/lizenzen/spss/).

Mehr

SPSS 13.0 Advanced. Mittelwertvergleiche

SPSS 13.0 Advanced. Mittelwertvergleiche Mittelwertvergleiche Der Vergleich von verschiedenen Stichproben hinsichtlich ihrer Mittelwerte gehört zu den gängigsten statistischen Analysen. Dabei soll stets die Frage geklärt werden, ob auftretende

Mehr

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10

Analytische Statistik I. Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Analytische Statistik I Statistische Methoden in der Korpuslinguistik Heike Zinsmeister WS 2009/10 Testen Anpassungstests (goodness of fit) Weicht eine gegebene Verteilung signifikant von einer bekannten

Mehr

Mann-Whitney-U-Test für zwei unabhängige Stichproben

Mann-Whitney-U-Test für zwei unabhängige Stichproben Mann-Whitney-U-Test für zwei unabhängige Stichproben Wir haben bis jetzt einen einzigen Test für unabhängige Stichproben kennen gelernt, nämlich den T-Test. Wie wir bereits wissen, sind an die Berechnung

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

Formelsammlung und Entscheidungsbaum

Formelsammlung und Entscheidungsbaum Fakultät für Human- und Sozialwissenschaften Institut für Anewandte Beweunswissenschaft JP Forschunsmethoden & Analyseverfahren Formelsammlun und Entscheidunsbaum JP Dr. Christian Maiwald christian.maiwald@hsw.tu

Mehr

Einfache statistische Testverfahren

Einfache statistische Testverfahren Einfache statistische Testverfahren Johannes Hain Lehrstuhl für Mathematik VIII (Statistik) 1/29 Hypothesentesten: Allgemeine Situation Im Folgenden wird die statistische Vorgehensweise zur Durchführung

Mehr

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16

Inhaltsverzeichnis. II. Statistische Modelle und sozialwissenschaftliche Meßniveaus 16 Vorwort 1 1. Kapitel: Der Stellenwert der Statistik für die sozialwissenschaflliche Forschung 1 1. Zur Logik (sozial-)wissenschaftlicher Forschung 1 1. Alltagswissen und wissenschaftliches Wissen 1 2.

Mehr

Statistik II (Sozialwissenschaften)

Statistik II (Sozialwissenschaften) Dr. Hans-Otfried Müller Institut für Mathematische Stochastik Fachrichtung Mathematik Technische Universität Dresden http://www.math.tu-dresden.de/sto/mueller/ Statistik II (Sozialwissenschaften) 2. Konsultationsübung,

Mehr

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik

(VU) Übungen zur Einführung in die statistische Datenanalyse II. Inhalte Statistik I. Inhalte Statistik I Deskriptive Statistik II Übungen zur II Organisatorische Hinweise Keine Anwesenheitspflicht (aber empfehlenswert) Einführung in die statistische Datenanalyse II (VU) Lehrinhalte (.ppt Folien): elearning.univie.ac.at 3 Prüfungstermine:

Mehr

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen

Statistik. Für Sozialwissenschaftler. Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Jürgen Bortz Statistik Für Sozialwissenschaftler Dritte, neu bearbeitete Auflage Mit 71 Abbildungen und 224 Tabellen Springer-Verlag Berlin Heidelberg Newlfork London Paris Tokyo Inhaltsverzeichnis Einleitung

Mehr

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage

Achim Bühl, Peter Zöfel. SPSS Version 10. Einführung in die moderne Datenanalyse unter Windows. 7., überarbeitete und erweiterte Auflage Achim Bühl, Peter Zöfel SPSS Version 10 Einführung in die moderne Datenanalyse unter Windows 7., überarbeitete und erweiterte Auflage ADDISON-WESLEY An imprint of Pearson Education München Bosten San Francisco

Mehr

Vergleich der zentralen Tendenz in zwei unabhängigen Stichprobenerhebungen

Vergleich der zentralen Tendenz in zwei unabhängigen Stichprobenerhebungen Vergleich der zentralen Tendenz in zwei unabhängigen Stichprobenerhebungen Inhaltsverzeichnis Vergleich der zentralen Tendenz in zwei unabhängigen Stichprobenerhebungen... 2 Lernhinweise... 2 Theorie

Mehr

Statistik II für Betriebswirte Vorlesung 2

Statistik II für Betriebswirte Vorlesung 2 PD Dr. Frank Heyde TU Bergakademie Freiberg Institut für Stochastik Statistik II für Betriebswirte Vorlesung 2 21. Oktober 2014 Verbundene Stichproben Liegen zwei Stichproben vor, deren Werte einander

Mehr

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen

Univariate/ multivariate Ansätze. Klaus D. Kubinger. Test- und Beratungsstelle. Effektgrößen Univariate/ multivariate Ansätze Klaus D. Kubinger Effektgrößen Rasch, D. & Kubinger, K.D. (2006). Statistik für das Psychologiestudium Mit Softwareunter-stützung zur Planung und Auswertung von Untersuchungen

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk

Test-Finder. Inhalt. Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Test-Finder 1 Test-Finder Orientierung im Test-Chaos Dipl.-Psych. Dr. Guido Strunk Inhalt 1 Grundlagen... 2 2 Maße der zentralen Tendenz vergleichen Zwei Gruppen... 3 2.1 T-Test für unabhängige Daten...

Mehr

Statistische Tests (Signifikanztests)

Statistische Tests (Signifikanztests) Statistische Tests (Signifikanztests) [testing statistical hypothesis] Prüfen und Bewerten von Hypothesen (Annahmen, Vermutungen) über die Verteilungen von Merkmalen in einer Grundgesamtheit (Population)

Mehr

Statistische Datenanalyse mit SPSS

Statistische Datenanalyse mit SPSS Jürgen Janssen Wilfried Laatz Statistische Datenanalyse mit SPSS Eine anwendungsorientierte Einführung in das Basissystem und das Modul Exakte Tests Siebte, neu bearbeitete und erweiterte Auflage 4ü Springer

Mehr

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:..

Bitte schreiben Sie in Druckbuchstaben und vergessen Sie nicht zu unterschreiben. Name, Vorname:. Studiengang/ Semester:. Matrikelnummer:.. Institut für Erziehungswissenschaft der Philipps-Universität Marburg Prof. Dr. Udo Kuckartz Arbeitsbereich Empirische Pädagogik/Methoden der Sozialforschung Wintersemester 004/005 KLAUSUR FEBRUAR 005 /

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Lehrbuch der Statistik

Lehrbuch der Statistik Jürgen Bortz Lehrbuch der Statistik Für Sozialwissenschaftler Zweite, vollständig neu bearbeitete und erweiterte Auflage Mit 71 Abbildungen und 223 Tabellen Springer-Verlag Berlin Heidelberg New York Tokyo

Mehr

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG

STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG STATISTISCHE MUSTERANALYSE - DARSTELLUNGSVORSCHLAG Statistische Methoden In der vorliegenden fiktiven Musterstudie wurden X Patienten mit XY Syndrom (im folgenden: Gruppe XY) mit Y Patienten eines unauffälligem

Mehr

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd

Statistik. Average requirement. deficiency. Sufficient supply for 97.5% of the population. 2 sd 2 sd Themenübersicht: Grundlegende statistische Verfahren: Mittelwert, Median,Standardabweichung, Standardfehler Regression mit Beispielen (Eichkurven, Korrelationskoeffizienten) t-tests, Normalverteilung,

Mehr

Log-lineare Analyse I

Log-lineare Analyse I 1 Log-lineare Analyse I Einleitung Die log-lineare Analysemethode wurde von L.A. Goodman in den 60er und 70er Jahren entwickelt. Sie dient zur Analyse von Zusammenhängen in mehrdimensionalen Kontingenztafeln

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen

Zusammenhangsanalyse mit SPSS. Messung der Intensität und/oder der Richtung des Zusammenhangs zwischen 2 oder mehr Variablen - nominal, ordinal, metrisch In SPSS: - Einfache -> Mittelwerte vergleichen -> Einfaktorielle - Mehrfaktorielle -> Allgemeines lineares Modell -> Univariat In SPSS: -> Nichtparametrische Tests -> K unabhängige

Mehr

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen.

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen. Explorative Datenanalyse Erstmal die Grafiken: Aufreisskraft und Temperatur 3 1-1 N = 1 15 17 Temperatur Diagramm 3 1 95% CI -1 N = 1 15 17 Temperatur Etwas positive Tendenz ist beim Wechsel der Temperatur

Mehr

Dr. A. Yassouridis Max-Planck-Institut für Psychiatrie AG: Statistik

Dr. A. Yassouridis Max-Planck-Institut für Psychiatrie AG: Statistik Statistische Analyse von Genexpress ions daten Dr. A. Yassouridis Max-Planck-Institut für Psychiatrie AG: Statistik Die exakten Wissenschaften Die schönste Forschungsaufgabe in einer Wissenschaft ist,

Mehr

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1

Inhaltsverzeichnis. Regressionsanalyse. http://mesosworld.ch - Stand vom: 20.1.2010 1 Inhaltsverzeichnis Regressionsanalyse... 2 Lernhinweise... 2 Einführung... 2 Theorie (1-8)... 2 1. Allgemeine Beziehungen... 3 2. 'Best Fit'... 3 3. 'Ordinary Least Squares'... 4 4. Formel der Regressionskoeffizienten...

Mehr

Modul G.1 WS 07/08: Statistik 31.01.2008 1

Modul G.1 WS 07/08: Statistik 31.01.2008 1 Modul G.1 WS 07/08: Statistik 31.01.2008 1 Varianzanalyse Als Varianzanalyse bezeichnet man eine große Gruppe datenanalytischer und mustererkennender statistischer Verfahren, die zahlreiche unterschiedliche

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

Evaluation der Normalverteilungsannahme

Evaluation der Normalverteilungsannahme Evaluation der Normalverteilungsannahme. Überprüfung der Normalverteilungsannahme im SPSS P. Wilhelm; HS SPSS bietet verschiedene Möglichkeiten, um Verteilungsannahmen zu überprüfen. Angefordert werden

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

Kapitel 8: Verfahren für Rangdaten

Kapitel 8: Verfahren für Rangdaten Kapitel 8: Verfahren für Rangdaten Der Mann-Whitney U-Test In Kapitel 8.1 dient eine Klassenarbeit in einer Schule als Beispielanwendung für einen U-Test. Wir werden an dieser Stelle die Berechnung dieses

Mehr

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER

METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER METHODENLEHRE I WS 2013/14 THOMAS SCHÄFER DAS THEMA: INFERENZSTATISTIK IV INFERENZSTATISTISCHE AUSSAGEN FÜR ZUSAMMENHÄNGE UND UNTERSCHIEDE Inferenzstatistik für Zusammenhänge Inferenzstatistik für Unterschiede

Mehr

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden

Inhaltsverzeichnis. Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden Inhaltsverzeichnis Teil 1 Basiswissen und Werkzeuge, um Statistik anzuwenden 1 Statistik ist Spaß 3 Warum Statistik? 3 Checkpoints 4 Daten 4 Checkpoints 7 Skalen - lebenslang wichtig bei der Datenanalyse

Mehr

Grundlagen Statistik Angewandte Statistik 3. Semester

Grundlagen Statistik Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Zur Person Constantin von Craushaar Consultant / Partner Innstat e.u. (www.innstat.com) info@innstat.com Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS

Mehr

Master of Science in Pflege

Master of Science in Pflege Master of Science in Pflege Modul: Statistik Analyse von Kategoriedaten / Nicht-parametrische Methoden Dezember 2012 Prof. Dr. Jürg Schwarz Folie 2 Programm 19. Dezember 2012: Vormittag (09.15 12.30) Vorlesung

Mehr

Psychologische Methodenlehre und Statistik II

Psychologische Methodenlehre und Statistik II Psychologische Methodenlehre und Statistik II Pantelis Christodoulides & Karin Waldherr 9. Juni 2010 Pantelis Christodoulides & Karin Waldherr Psychologische Methodenlehre und Statistik II 1/47 Allgemeines

Mehr

Marktforschung I. Marktforschung I 2

Marktforschung I. Marktforschung I 2 Marktforschung I Marktforschung I Einführung in die Testtheorie (Toporowski) Mathematische Grundlagen (Toporowski) Varianzanalyse (Toporowski) Regressionsanalyse (Boztuğ) Diskriminanzanalyse (Hammerschmidt)

Mehr