Formelsammlung zu Multivariate Verfahren

Größe: px
Ab Seite anzeigen:

Download "Formelsammlung zu Multivariate Verfahren"

Transkript

1 Institut für Statistik Gerhard Tutz, Moritz, Wolfgang Pößnecker Sommersemester 204 Formelsammlung zu Multivariate Verfahren Inhaltsverzeichnis Version Diese Formelsammlung darf in der Klausur verwendet werden Eigene Notizen und Ergänzungen dürfen eingefügt, aber keine zusätzlichen Blätter eingeheftet werden Multivariate Schätz und Testprobleme 2 Schätzung im Ein Stichprobenfall 2 2 Schätzung im Mehr Stichprobenfall 3 3 Tests, Konfidenzbereiche für Erwartungswerte im Ein Stichprobenfall; Σ bekannt 4 4 Tests, Konfidenzbereiche für Erwartungswerte im Ein Stichprobenfall; Σ unbekannt 4 5 Tests im Zwei Stichprobenfall unabhängige Stichproben 5 6 Tests im Zwei Stichprobenfall verbundene Stichproben 5 2 Diskriminanzanalyse/Klassifikation 6 2 Relevante Größen: 6 22 Bayes Zuordnung: 6 23 Kostenoptimale Bayes Zuordnung: 8 24 Zuordnungsregel unter der Voraussetzung Normalverteilung 9 25 Fishersche Diskriminanzanalyse 0 3 Clusteranalyse 3 Distanzmaße für Objekte: 32 Distanzmaße: 33 Distanzmaße für Klassen: 2 34 Einige Grundbegriffe: 3 35 Gütekriterien: quantitative Merkmale 4 4 Multivariate lineare Regression 4 4 Konzept 4 42 Schätzen 6 43 Testverfahren 7 5 Assoziationsstrukturen 7 5 Marginale, bedingte und partielle Korrelation 7 52 Korrelationskoeffizienten bei vektoriellen Größen 8 53 Multiple Korrelation 8 54 Kanonische Korrelation 9 6 Hauptkomponentenanalyse 20 7 Faktorenanalyse 2 MULTIVARIATE SCHÄTZ UND TESTPROBLEME 2 Multivariate Schätz und Testprobleme Schätzung im Ein Stichprobenfall Seien x,, x n unabhängige Wiederholungen von x mit E(x) = µ und Kovarianz Var(x) = Σ x x x p Bezeichne X die (n p) Datenmatrix X = = x n x np Erwartungswertschätzung: Empirische Kovarianzmatrix: Alternativer Schätzer für Σ: x n n x = x i x = ; n n x ip x p S = n n (x i x)(x i x) = ( n ) n x ix i n x x Schätzung der Korrelationsmatrix: ˆR = (r ij ) p p Satz: ˆΣ = n S nicht erwartungstreu n r ij = n n s= (x si x i )(x sj x j ) s= (x si x i ) 2 n s= (x sj x j ) 2 x,, x n seien unabhängig und identisch p(µ, Σ) verteilt Dann gilt a) E( x) = µ, E(S) = Σ (Unverzerrtheit), b) cov( x) = n Σ, c) E x µ 2 E ˆµ µ 2 für jeden anderen unverzerrten linearen Schätzer ˆµ = ˆµ(x,, x n ) = a x + + a n x n Sind x, x n zusätzlich normalverteilt, dann gilt außerdem d) x N p ( µ, n Σ) und (n )S = Σ n (x i x)(x i x) T W p (Σ, n ) e) x und S sind unabhängig

2 MULTIVARIATE SCHÄTZ UND TESTPROBLEME 3 MULTIVARIATE SCHÄTZ UND TESTPROBLEME 4 2 Schätzung im Mehr Stichprobenfall Grundgesamtheit ist aufgespalten in disjunkten Klassen Ω,, Ω g Separat in den Klassen werden Stichproben gezogen Arithmetrisches Mittel in Klasse k: x () x () n (aus Ω ) x (g) x (g) ng (aus Ω g ) x (k) = n k nk Empirische Kovarianzmatrix in Klasse k: S (k) = nk n k Häufige Annahme: Σ = Σ 2 = Σ g = Σ x(k) (x(k) i i µ k = µ (k) µ (k) p x (k) )(x (k) i x (k) ) Σ k Wenn Gleichheit gilt, dann nimmt man die gepoolte empirische Kovarianzmatrix: S = g n g (n k )S (k) = g nk k= n g k= W = g nk k= Weiter bezeichnet (x(k) i (x(k) i x (k) )(x (k) i x (k) ) = n g W x (k) )(x (k) i x (k) ) die Streuung innerhalb der Gruppen bezeichnet B = g n k( x (k) x)( x (k) x) k= die Streuung zwischen den Gruppen, 3 Tests, Konfidenzbereiche für Erwartungswerte im Ein Stichprobenfall; Σ bekannt x,, x n unabhängige Realisierungen der Stichprobenvariablen x i N(µ, Σ); i =,, n Hypothesen: Teststatistik: H 0 ablehnen, wenn gilt: H 0 : µ = µ 0, H : µ µ 0 T 2 = n( x µ 0 ) T Σ ( x µ 0 ), T 2 H0 χ 2 (p) T 2 > χ 2 (p; α) 4 Tests, Konfidenzbereiche für Erwartungswerte im Ein Stichprobenfall; Σ unbekannt x,, x n unabhängige Realisierungen der Stichprobenvariablen x i N(µ, Σ) mit unbekanntem Σ Hypothesen: x = n g den großen Mittelwert über alle Klassen bezeichnet, mit k= n k x (k) Teststatistik: T s = H 0 : µ = µ 0, H : µ µ 0 n(n p) p(n ) ( x µ 0) T S ( x µ 0 ), n = n + n n g H0 T s F (p, n p) für die Gesamtstreuungsmatrix T = g k= nk (x(k) i x)(x (k) i x) H 0 ablehnen, wenn gilt: T s > F (p, n p; α) gilt die folgende Zerlegung T = W + B

3 MULTIVARIATE SCHÄTZ UND TESTPROBLEME 5 2 DISKRIMINANZANALYSE/KLASSIFIKATION 6 5 Tests im Zwei Stichprobenfall unabhängige Stichproben X = (x,, x n ) T ist eine unabhängige Stichprobe aus einer N p (µ, Σ) verteilten Grundgesamtheit, X 2 = (x 2,, x 2n2 ) T ist eine unabhängige Stichprobe aus einer N p (µ 2, Σ) verteilten Grundgesamtheit, Es werden gleiche Kovarianzmatrizen vorausgesetzt Hypothesen: Teststatistik: H 0 ablehnen: H 0 : µ = µ 2, H : µ µ 2 T 2 = n n 2 ( x x 2 ) T S ( x x 2 ) n + n 2 mit S = n + n 2 2 [(n )S + (n 2 ) S 2 ] ni und S i = n i j= (x(i) j x (i) )( x (i) j x (i) ) T n + n 2 p (n + n 2 2) p T 2 > F (p; n + n 2 p ; α) weil n + n 2 p (n + n 2 2) p T 2 H0 F (p; n + n 2 p ) 6 Tests im Zwei Stichprobenfall verbundene Stichproben Hypothesen: ( ()) x i x (2) i (( ) µ N 2p ; µ 2 ( )) Σ Σ 2 Σ 2 Σ 22 Unbekannte Kovarianzmatrix: H 0 ablehnen (n p) n (n ) p d T S d d > F (p; n p; α) mit d = S d = Bekannte Kovarianzmatrix von d sei Σ d : H 0 ablehnen n Σn d i n n 2 Diskriminanzanalyse/Klassifikation 2 Relevante Größen: Wichtige Größen für das Klassifikationsproblem sind (d i d)(d i d) T n d T Σ d d > χ 2 (p; α) die a priori Wahrscheinlichkeiten p(r) = P (Y = r), r =,, k, die a posteriori Wahrscheinlichkeiten P (r x) = P (Y = r x), r =, k, die Verteilung der Merkmale, gegeben die Klasse, bestimmt durch die Dichten f(x ),, f(x k) die Mischverteilung der Population f(x) = p()f(x ) + + p(k)f(x k) Satz von Bayes: 22 Bayes Zuordnung: P (r x) = f(x r)p(r) f(x) = f(x r)p(r) p(i)p (x i) H 0 : µ = µ 2 µ µ 2 = 0, H : µ µ 2 d i = x () i x (2) i H 0 besagt: E(d i ) = 0 d i N p (µ µ 2 ; Σ + Σ 22 Σ 2 Σ 2 ) δ (x) = r P (r x) = max P (i x),,k

4 2 DISKRIMINANZANALYSE/KLASSIFIKATION 7 2 DISKRIMINANZANALYSE/KLASSIFIKATION 8 Fehlklassifikationswahrscheinlichkeiten: Es lassen sich verschiedene Formen der Fehlklassifikationen durch die Zuordnungsregel δ unterscheiden Wahrscheinlichkeit einer Fehlklassifikation, gegeben der feste Merkmalsvektor x ε(x) = P (δ(x) Y x) = P (δ(x) = Y x) = P (δ(x) x) Verwechslungswahrscheinlichkeit oder individuelle Fehlerrate ε rs = P (δ(x) = s Y = r) = f(x r)dx, x:δ(x)=s Globale Fehlklassifikationswahrscheinlichkeit oder Gesamt Fehlerrate ε = P (δ(x) Y ) r s Wahrscheinlichkeit einer Fehlklassifikation, gegeben das Objekt entstammt der Klasse r Es gilt der Zusammenhang: ε r = P (δ(x) r Y = r) = s r ε = P (δ(x) Y ) = P (δ(x) r Y = r)p(r) = ε r p(r) = ε rs p(r) r= s r r= ε = P (δ(x) Y ) = ε rs P (δ(x) Y x)f(x)dx = Optimalität der Bayes Zuordnung Die Bayes Zuordnung minimiert die Gesamtfehlerrate ε Äquivalente Diskriminanzfunktionen: a) d r (x) = P (r x), b) d r (x) = f(x r)p(r)/f(x) c) d r (x) = f(x r)p(r) d) d r (x) = log(f(x r)) + log(p(r)) δ (x) = r P (r x) = max P (i x),,k r= ε(x)f(x)dx Maximum Likelihood (ML) Zuordnungsregel 23 Kostenoptimale Bayes Zuordnung: δ ML (x) = r f(x r) = max f(x i),,k c(i, j) = c ij = Kosten einer Zuordnung eines Objekts aus Klasse i in die Klasse j Für I = j gelte c ii = 0 dh die Kosten einer richtigen Zuordnung sind Null, während c ij 0 für i j Bedingtes Risiko, gegeben x Individuelles Risiko Risiko, gegeben Klasse i r(x) = c i,δ(x) P (i x) r ij = c ij P (δ(x) = j Y = i) = c ij r i = r ij j= x:δ(x)=j f(x i)dx Das gesamte Bayes Risiko, dh die zu erwartenden Kosten, lassen sich darstellen durch R = E(c(Y, δ(x))) = r i p(i) = r(x)f(x)dx Bayes Zuordnung mit Kosten Bei Vorliegen des Beobachtungsvektors x wird das Bayes Risiko minimiert durch die Zuordnung Mit den Diskrimininanzfunktionen erhält man δ (x) = r P (i x)c ir = min d r (x) = j=,,k P i (i x)c ir, δ (x) = r d r (x) = max,,k d i(x) P (i x)c ij

5 2 DISKRIMINANZANALYSE/KLASSIFIKATION 9 2 DISKRIMINANZANALYSE/KLASSIFIKATION 0 24 Zuordnungsregel unter der Voraussetzung Normalverteilung Klassenverteilungen: Bayes Regel: f(x i) = (2π) p/2 (det Σ i ) /2 exp{ 2 (x µ i) T Σ i (x µ i )} 25 Fishersche Diskriminanzanalyse x i x ini in der Klasse i Grundprinzip (Zwei Klassen Fall): Projektion y = a T x mit a =, so dass das folgende Kriterium maximiert wird d i (x) = ln(f(x i)) + ln(p(i)) d i (x) = 2 (x µ i) T Σ i (x µ i ) 2 ln(det Σ i) + ln p(i), i =,, k Zusätzlich unabhängige standardisierte Merkmale, Σ i = σ 2 I: d i (x) = x µ i 2 2σ 2 + ln p(i) Sind die a priori Wahrscheinlichkeiten gleich groß, so reduziert sich die Diskriminanzfunktion auf d i (x) = x µ i 2 Klassenweise identische Kovarianzmatrizen; Σ i = Σ, i =,, k : d i (x) = 2 (x µ i) T Σ (x µ i ) + ln p(i) Lösung: Q(a) = (ȳ ȳ 2 ) 2 s 2 + s 2 2 ȳ i = ni a T x ij = a T x i Klassenmittelpunkt, n i j= s 2 i = (a T x ij a x i ) 2 Quadratische Abweichungen i te Klasse mit a = W ( x x 2 ) W = (n + n 2 2)S =, 2 ni (x ij x i )(x ij x i ) T j= Für k=2 erhält man: d i (x) = µ T i Σ x 2 µt i Σ µ i + ln p(i), i =,, k d(x) = d (x) d 2 (x) = [x 2 (µ + µ 2 )] T Σ (µ µ 2 ) ln p(2) p() Für die ML Regel sind die ln Terme wegzulassen Schätzer für µ k und Σ : ˆµ i = x i, ˆΣ = S = N g ni (x in x i )(x in x i ) T n= Mehr Klassen Fall: Kriterium: Resultierende Eigenvektoren: Resultierende Eigenwerte: mit Q(a) = g n i(ȳ i ȳ) 2 g s2 i a,, a q, q = rg(b) λ = at Ba a T Wa B = W = max,, λ q = a qba q a T q Wa q g n i ( x i x)( x i x) T g ni (x ij x i )(x ij x i ) T j=

6 3 CLUSTERANALYSE 3 CLUSTERANALYSE 2 3 Clusteranalyse Objektmenge Ω = {a,, a n } Zugehörige Merkmalsvektoren {x,, x n } Gesucht: Partition = disjunkte vollständige Zerlegung C,, C g so daß g C i = {a,, a n }, C i C j = 3 Distanzmaße für Objekte: d : Ω Ω IR + mit d(a i, a i ) = 0, d(a i, a j ) 0, d(a i, a j ) = d(a j, a i ) Für metrische Distanzmaße: zusätzlich Dreiecksungleichung 32 Distanzmaße: Binäre Merkmale d(a i, a j ) d(a i, a m ) + d(a m, a j ) für alle a i, a j, a m x T i = (x i,, x ip ) mit x ij {0, } h ij (y, z) bezeichnet die Anzahl der übereinstimmenden Komponenten in x i und x j mit Ausprägung y in x i und z in x j h ij (y, z) = {s (x is, x js ) = (y, z)} für (y, z) {(0, 0), (0, ), (, 0), (, )} Matching Koeffizient s ij = h ij(, ) + h ij (0, 0) p Distanz Matching Koeffizient (Anzahl nicht übereinstimmender Merkmale) d ij = s ij Metrische Merkmale L q Metrik q = City Block Metrik q = 2 Euklidische Metrik Mahalanobis Distanz mit empirischer Kovarianzmatrix S 33 Distanzmaße für Klassen: Form: D(C r, C s ) C r, C s Ω Single Linkage Verfahren 2 Complete Linkage Verfahren 3 Average Linkage Verfahren 4 Zentroid Verfahren x = (x,, x p ), y = (y,, y p ) ( p ) /q d(x, y) = x i y i q d(x, y) = (x y) T S (x y) D(C r, C s ) = min a i Cr a j Cs D(C r, C s ) = max a i Cr D(C r, C s ) = n r n s mit n i = C i a j Cs d(a i, a j ) d(a i, a j ) ai Cr aj Cs d(a i, a j ) D(C r, C s ) = x r x s 2 mit x i = n i xj Ci x j

7 3 CLUSTERANALYSE 3 4 MULTIVARIATE LINEARE REGRESSION 4 34 Einige Grundbegriffe: 35 Gütekriterien: quantitative Merkmale Mittelwert in Klasse C k xk = n k Streuung in Klasse C k Streuung der Partition IC innerhalb der Klassen nk x i mit n k = C k W(C k ) = (x i x k )(x i x k ) T xi Ck Partition IC = {C,, C g } Varianzkriterium g H(IC) = x i x k 2 k= xi Ck g W(IC) = W(C k ) k= Streuung der Partition IC zwischen den Klassen B(IC) = Die Gesamtstreuung ist zerlegbar in g n k ( x k x)( x k x) T mit x = n n k= n T = (x i x)(x i x) T T = W(IC) + B(IC) x i Minimum Distanz Eigenschaft x i x k x i x j für x i C k 2 Determinantenkriterium H(IC) = W(IC) Minimum Distanz Eigenschaft (x i x k ) T W(IC) (x i x k ) (x i x j ) T W(IC) (x i x j ) für x i C k 3 Verallgemeinertes Determinantenkriterium g H(IC) = n k ln( W(C k ) ) n k k= 4 Multivariate lineare Regression 4 Konzept (y i, x i ), i =,, n mit y T i x T i = (y i,, y iq ) q abhängige Variablen = (, x i,, x ip ) p konstante und fixe Prädiktoren

8 4 MULTIVARIATE LINEARE REGRESSION 5 4 MULTIVARIATE LINEARE REGRESSION 6 Klassisches lineares Modell: Matrixdarstellungen: Vektorielle Form bzw und als Gesamtmodell y i = y iq Multivariate Formulierung I Multivariate Formulierung II bzw als Gesamtmodell y ij = x T i β (j) + ε ij, i =,, n, j =, q, x T i x T i β T (j) = (β 0j, β j, β qj ), y T y T n = (y (),, y (q) ) = x T mit X 0 = x T n Annahmen: () E(ɛ i ) = 0 (2) cov(ɛ i ) = Σ, i =,, n cov(ɛ i, ɛ j ) = 0, i j cov(ɛ (s), ɛ (t) ) = σ st I, s t (3) Normalverteilung, ɛ i N(0, Σ) x T x T n x T x T n β () ε i + x T i y i = X i β + ɛ i y = Xβ + ɛ β (q) ε iq β T = (β T (),, β T (q)) ɛ T (β (),, β (q) ) + ɛ T n (β (),, β (q) ) + (ɛ (),, ɛ (q) ) Y = X 0 B + E β 0j β pj y j, β (j) =, y (j) =, ɛ (j) = y nj ɛ j ɛ nj 42 Schätzen Kleinste Quadrate Schätzung Lösung (voller Rang von X): Als Vektor mit Schätzung der Kovarianz: q (y (j) X 0 β (j) ) T (y (j) X 0 β (j) ) min j= ˆβ (j) = (X T 0 X 0 ) X T 0 y (j) bzw ˆB = (X T 0 X 0 ) X T 0 Y ˆβ = BDiag{(X T 0 X 0 ) X T 0 }y 0 oder ˆβ = (X T X) X T y y T 0 = (y T (),, y T (q)), y T = (y T,, y T n ) ˆΣ = n p ˆΣ = n T (y i X i ˆβ)(yi X i ˆβ) Gauß Markov Theorem (Annahmen () und (2)) () E( ˆB) = B, E( ˆΣ) = Σ (2) Var(ˆβ (i), ˆβ (j) ) = σ ij (X T 0 X 0 ) (3) ˆB ist BLUE Weiter gilt mit Normalverteilungsannahme (4) ˆB ist normalverteilt (5) Q e = ÊT Ê W p(σ, n p ) (6) ˆB und ˆΣ sind unabhängig n p ET E E = Y X 0 ˆB Residuenmatrix

9 5 ASSOZIATIONSSTRUKTUREN 7 5 ASSOZIATIONSSTRUKTUREN 8 43 Testverfahren Tests: (Unter Normalverteilungsannahme) H 0 : CB = Γ H : CB Γ rg(c) = s Λ = Q e Λ(q, n p, s) Q 0 mit Q e = (Y X 0 ˆB) T (Y X 0 ˆB) ohne Restriktion Q 0 = (Y X 0 ˆB0 ) T (Y X 0 ˆB0 ) mit Restriktion H 0 ablehnen, wenn Λ < Λ α (q, n p, s) 52 Korrelationskoeffizienten bei vektoriellen Größen Ausgangspunkt: Zufallsvektoren y, x und z mit y µ y y µ = E x = µ x, Σ = cov x = z z µ z Marginale Korrelationsmatrix für y gegeben x: Σ yy Σ yx Σ yz Σ xy Σ xx Σ xz Σ zy Σ zx Σ zz K = (k ij ) mit k ij = σ yixj /(σ yi σ xi ), 5 Assoziationsstrukturen 5 Marginale, bedingte und partielle Korrelation Marginale Korrelation von Y und X ρ Y X = Bedingte Korrelation von Y und X, gegeben Z = z ρ Y X Z=z = cov(y, X) σ Y σ X cov(y, X Z = z) var(y Z = z) var(x Z = z) Partielle Korrelation von Y und X nach Elimination des linearen Anteils von Z ρ XY Z = cov(ε Y Z, ε X Z ) var(εy Z ) var(ε X Z ) = ρ Y X ρ XZ ρ Y Z, ρ 2 Y Z ρ 2 XZ mit ε Y Z, ε X Z als Residuen aus den Regressionsmodellen Y = β 0 + βz + ε Y Z und X = γ 0 + γz + ε X Z σ yixj Einträge von Σ yx Matrix der bedingten Kovarianzen für y und x gegeben z = z: Σ yx z= z = (cov(y i, x j z = z)) ij Partielle Korrelation skalarer Merkmale y und x nach Elimination des linearen Anteils von z: ϱ xy z = cov(ε y z, ε x z ) var(εy z ) var(ε x z ) = ε y z = y z T β und ε x z = x z T γ 53 Multiple Korrelation σ 2 y Σ yz Σ z σ yx Σ yz Σ z Σ zx, Σ zy σ 2 x Σ xz Σ z Σ zx Ausgangspunkt: lineares Regressionsmodell y = x T β + ε y x, damit ergibt sich var(x T β) = Σ yx Σ x Σ xy = cov(y, x T β) var(y x) = var(ε y x ) = σy 2 Σ yx Σ x Σ xy Für (Y, X, Z) gemeinsam normalverteilt gilt ρ Y X Z=z = ρ XY Z und die Zerlegung Multipler Korrelationskoeffizient: var(y) = var(x T β) + var(y x) R = ϱ(y, x T β) = cov(y, x T β) var(y) var(xt β) Es gilt R 2 = var(xt β) var(y) = var(y x) var(y)

10 5 ASSOZIATIONSSTRUKTUREN 9 6 HAUPTKOMPONENTENANALYSE Kanonische Korrelation Ausgangspunkt: Zufallsvektoren y und x der Länge p bzw q mit Σ xy = cov(x, y) Betrachte Maximierungsproblem ϱ(a T x, b T y) a,b max ϱ(a, b) = ϱ(a T x, b T y) = mit der Nebenbedingung var(a T x) = var(b T y) = cov(a T x, b T y) var(at x) var(b T y) = a T Σ xy b at Σ xx a b T Σ yy b Lösen des Maximierungsproblems für i =,, s = min{p, q} mit ergibt cov(a i x, a j x) = cov(b i y, b j y) = 0 für i j a i, b i als die iten Korrelationsvektoren, u i = a T i x, v i = b T i y als ite Korrelationsvariablen und ϱ i = ϱ(u i, v i ) als ite kanonische Korrelationskoeffizienten Für u T = (u,, u s ) und v T = (v,, v s ) gilt cor ( ) u v Schärfere Formulierung des Maximierungsproblems: 0 ϱ ϱ s = ϱ ϱ s 0 6 Hauptkomponentenanalyse Ausgangsgrößen: Problem: y i = a T i x, i =,, p so dass Restriktionen: () a T i a i = (2) a T i a j = 0, j =,, i Äquivalent ist cov(y i, y j ) = 0, j =,, i Lösung: Σ = ΨΛΨ T Λ = diag(λ,, λ p ), λ λ 2 λ p Ψ = (a,, a p ) Eigenschaften: x T = (x,, x p ) µ = E(x), Σ = cov(x) var(y i ) = a T i Σa i maximal y = Ψ T x mit y T = (y,, y p ) () cov(y) = Λ (var(y i ) = λ i, cov(y i, y j ) = 0, i j) (2) tr(σ) = tr(λ) ϱ(a T i x, b T i y) ai,bi max mit den Nebenbedingungen var(a T i x) = var(b T i y) =, i =,, s cov(a T i x, a T j x) = cov(b T i y, b T j y) = 0, j =,, i Lösungen (a i, b i ) über das kombinierte Eigenwertproblem (Σ xy Σ yyσ yx λ i Σ xx )a i = 0 (Σ yx Σ xxσ xy λ i Σ yy )b i = 0

11 7 FAKTORENANALYSE 2 7 Faktorenanalyse Modell: X µ = ΓF + U, X (p ) - Vektor der beobachtbaren Größen µ Erwartungswert von X F (k ) - Vektor der Faktoren Γ (p k) - Matrix der Faktorladungen U (p ) - Vektor der spezifischen Faktoren Annahmen: () E(F) = 0 (2) U V (0, Ψ), mit Ψ = diag(ψ 2,, Ψ 2 p) (3) cov(f, U) = 0 (4) cov(f) = I orthogonales Faktormodell Fundamentaltheorem für s = cov(x) Insbesondere: s = ΓΓ + Ψ m var(x i ) = γij 2 + Ψ 2 i j=, cov(x, F) = Γ Rotationsproblem (Eindeutigkeit von Γ bei gegebenem k, Ψ) Γ Ψ Γ = diag(λ,, λ k ), λ λ 2,, λ k

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Risikomessung und Value at Risk Wintersemester 2013/14

Risikomessung und Value at Risk Wintersemester 2013/14 Risikomessung und Value at Risk Wintersemester 2013/14 Walter Sanddorf-Köhle Statistik und Ökonometrie Foliensatz Nr. 11 Version vom 24. Januar 2014 1 / 45 6.5.1 Bisherige Vorgehensweise zur Berechnung

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Diskriminanzanalyse 9.1 Problemstellung Ziel einer Diskriminanzanalyse: Bereits bekannte Objektgruppen (Klassen/Cluster) anhand ihrer Merkmale charakterisieren und unterscheiden sowie neue Objekte in

Mehr

Kapitel 4: Binäre Regression

Kapitel 4: Binäre Regression Kapitel 4: Binäre Regression Steffen Unkel (basierend auf Folien von Nora Fenske) Statistik III für Nebenfachstudierende WS 2013/2014 4.1 Motivation Ausgangssituation Gegeben sind Daten (y i, x i1,...,

Mehr

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik

Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik Ludwig Fahrmeir, Nora Fenske Institut für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit dem Wahlfach Statistik 29. März 21 Hinweise:

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch

Allgemeine Regressionsanalyse. Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl. deterministisch Prof. Dr. J. Franke Statistik II für Wirtschaftswissenschaftler 9.1 Allgemeine Regressionsanalyse Daten (X j, Y j ), j = 1,..., N unabhängig Kovariablen / Prädiktoren / unabhängige Variablen X j R d, evtl.

Mehr

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche

25. Januar 2010. Ruhr-Universität Bochum. Methodenlehre III, WS 2009/2010. Prof. Dr. Holger Dette. 4. Multivariate Mittelwertvergleiche Ruhr-Universität Bochum 25. Januar 2010 1 / 75 2 / 75 4.1 Beispiel: Vergleich von verschiedenen Unterrichtsmethoden Zwei Zufallsstichproben (A und B) mit je 10 Schülern und 8 Schülern Gruppe A wird nach

Mehr

Diskriminanzanalyse Beispiel

Diskriminanzanalyse Beispiel Diskriminanzanalyse Ziel bei der Diskriminanzanalyse ist die Analyse von Gruppenunterschieden, d. h. der Untersuchung von zwei oder mehr Gruppen hinsichtlich einer Vielzahl von Variablen. Diese Methode

Mehr

Umweltmonitoring Datenverarbeitung 1, Teil 2: Statistische Verfahren der Datenanalyse

Umweltmonitoring Datenverarbeitung 1, Teil 2: Statistische Verfahren der Datenanalyse Umweltmonitoring Datenverarbeitung 1, Teil 2: Statistische Verfahren der Datenanalyse Roland Stigge stigge@informatik.hu-berlin.de Humboldt Universität zu Berlin 9. Januar 2003 Umweltmonitoring: Statistische

Mehr

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren)

Multiple Regression. Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Multiple Regression 1 Was ist multiple lineare Regression? Ziel: Vorhersage der Werte einer Variable (Kriterium) bei Kenntnis der Werte von zwei oder mehr anderen Variablen (Prädiktoren) Annahme: Der Zusammenhang

Mehr

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08

Statistik II. Universität Ulm Abteilung Stochastik. Vorlesungsskript Prof. Dr. Volker Schmidt Stand: Wintersemester 2007/08 CURANDO UNIVERSITÄT ULM SCIENDO DOCENDO Statistik II Universität Ulm Abteilung Stochastik Vorlesungsskript Prof Dr Volker Schmidt Stand: Wintersemester 2007/08 Ulm, im Februar 2008 INHALTSVERZEICHNIS 2

Mehr

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

29. Mai 2006. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 29. Mai 2006 Hinweise:

Mehr

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt.

8. Februar 2007. 5. Bei Unterschleif gilt die Klausur als nicht bestanden und es erfolgt eine Meldung an das Prüfungsamt. L. Fahrmeir, C. Belitz Department für Statistik Bitte für die Korrektur freilassen! Aufgabe 1 2 3 4 Punkte Klausur zur Vorlesung Statistik III für Studenten mit Wahlfach Statistik 8. Februar 2007 Hinweise:

Mehr

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS?

ε heteroskedastisch BINARY CHOICE MODELS Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? BINARY CHOICE MODELS 1 mit Pr( Y = 1) = P Y = 0 mit Pr( Y = 0) = 1 P Beispiele: Wahlentscheidung Kauf langlebiger Konsumgüter Arbeitslosigkeit Schätzung mit OLS? Y i = X i β + ε i Probleme: Nonsense Predictions

Mehr

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall )

Regressionsanalysen. Zusammenhänge von Variablen. Ziel der Regression. ( Idealfall ) Zusammenhänge von Variablen Regressionsanalysen linearer Zusammenhang ( Idealfall ) kein Zusammenhang nichtlinearer monotoner Zusammenhang (i.d.regel berechenbar über Variablentransformationen mittels

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Multinomiale logistische Regression

Multinomiale logistische Regression Multinomiale logistische Regression Die multinomiale logistische Regression dient zur Schätzung von Gruppenzugehörigkeiten bzw. einer entsprechenden Wahrscheinlichkeit hierfür, wobei als abhänginge Variable

Mehr

12. Vergleich mehrerer Stichproben

12. Vergleich mehrerer Stichproben 12. Vergleich mehrerer Stichproben Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Häufig wollen wir verschiedene Populationen, Verfahren, usw. miteinander vergleichen. Beipiel: Vergleich

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt 10 21.12.2009 Aufgabe 35: Thema: Singulärwertzerlegung und assoziierte Unterräume Sei A eine m n Matrix mit Rang r und A = UDV T ihre Singulärwertzerlegung.

Mehr

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression

Institut für Soziologie. Methoden 2. Regressionsanalyse I: Einfache lineare Regression Institut für Soziologie Methoden 2 Regressionsanalyse I: Einfache lineare Regression Programm Anwendungsbereich Vorgehensweise Interpretation Annahmen Zusammenfassung Übungsaufgabe Literatur # 2 Anwendungsbereich

Mehr

6.1 Grundbegriffe und historischer Hintergrund

6.1 Grundbegriffe und historischer Hintergrund Kapitel 6 Regression 61 Grundbegriffe und historischer Hintergrund Bedeutung der Regression: Eines der am häufigsten verwendeten statistischen Verfahren Vielfache Anwendung in den Sozialwissenschaften

Mehr

Binäre abhängige Variablen

Binäre abhängige Variablen Binäre abhängige Variablen Thushyanthan Baskaran thushyanthan.baskaran@awi.uni-heidelberg.de Alfred Weber Institut Ruprecht Karls Universität Heidelberg Einführung Oft wollen wir qualitative Variablen

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

8. Methoden der klassischen multivariaten Statistik

8. Methoden der klassischen multivariaten Statistik 8. Methoden der klassischen multivariaten Statistik 8.1. Darstellung von Daten Voraussetzungen auch in diesem Kapitel: Grundgesamtheit (Datenraum) Ω von Objekten (Fällen, Instanzen), denen J-Tupel von

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests

Beispiel: Sonntagsfrage. Einführung in die induktive Statistik. Statistische Tests. Statistische Tests Beispiel: Sonntagsfrage Vier Wochen vor der österreichischen Nationalratswahl 1999 wurde 499 Haushalten die Sonntagsfrage gestellt: Falls nächsten Sonntag Wahlen wären, welche Partei würden Sie wählen?

Mehr

Kommentierte Formelsammlung multivariater statistischer Verfahren. Prof. Dr. Irene Rößler Prof. Dr. Albrecht Ungerer

Kommentierte Formelsammlung multivariater statistischer Verfahren. Prof. Dr. Irene Rößler Prof. Dr. Albrecht Ungerer Kommentierte Formelsammlung multivariater statistischer Verfahren Prof Dr Irene Rößler Prof Dr Albrecht Ungerer Inhaltsverzeichnis i Inhaltsverzeichnis Verfahren im Überblick Beispieldatensatz 1 1 Multiple

Mehr

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung

Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios. Bernd Rosenow, 3. Kölner Workshop Quantitative Finanzmarktforschung Modellierung von Korrelationen zwischen Kreditausfallraten für Kreditportfolios Bernd Rosenow Rafael Weißhaupt Frank Altrock Universität zu Köln West LB AG, Düsseldorf Gliederung Beschreibung des Datensatzes

Mehr

Statistische Methoden: Tests, Regression und multivariate Verfahren

Statistische Methoden: Tests, Regression und multivariate Verfahren (CM)²-Nachwuchsring, Workshop Statistik, 25.Januar 2013 Statistische Methoden: Tests, Regression und multivariate Verfahren Ralf Korn ((CM)², TU Kaiserslautern, Fraunhofer ITWM) 0. Einige Probleme aus

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten:

KAPITEL 4. Lineare Ausgleichsrechnung Beispiel 4.1. Das Ohmsche Gesetz: U = RI. Eine Meßreihe von Daten: KAPITEL 4 Lineare Ausgleichsrechnung Beispiel 41 Das Ohmsche Gesetz: Eine Meßreihe von Daten: U = RI (U i, I i ) (Spannung, Stromstärke), i = 1,, m Aufgabe: man bestimme aus diesen Meßdaten den Widerstand

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

Die Verteilung dieser Werte y ist eine Normalverteilung. hängt nicht von u ab

Die Verteilung dieser Werte y ist eine Normalverteilung. hängt nicht von u ab Einfache lineare Regression als Beispiel für das ALM ALM : Allgemeines Lineares Modell Y : Kriterium U : Prädiktor Modell : Erwartungswert von Y ist lineare Funktion von U Genauer : Für festes u gilt für

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

3.3 Eigenwerte und Eigenräume, Diagonalisierung

3.3 Eigenwerte und Eigenräume, Diagonalisierung 3.3 Eigenwerte und Eigenräume, Diagonalisierung Definition und Lemma 3.3.1. Sei V ein K-Vektorraum, φ End K (V ), λ K. Wir defnieren den zu λ gehörigen Eigenraum von φ als Dies ist ein Unterraum von V.

Mehr

Multivariate Analysemethoden

Multivariate Analysemethoden Multivariate Analysemethoden 30.04.2014 Günter Meinhardt Johannes Gutenberg Universität Mainz Einführung Was sind multivariate Analysemethoden? Vorlesung Übung/Tut Prüfung Verfahrensdarstellung in Überblick

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Klausur Wirtschaftsmathematik Lösungshinweise

Klausur Wirtschaftsmathematik Lösungshinweise Klausur Wirtschaftsmathematik Lösungshinweise Prüfungsdatum: 27. Juni 2015 Prüfer: Etschberger Studiengang: Wirtschaftsingenieurwesen Aufgabe 1 16 Punkte Anton Arglos hat von seiner Großmutter 30 000 geschenkt

Mehr

Kapitel 3. Erste Schritte der Datenanalyse. 3.1 Einlesen und Überprüfen der Daten

Kapitel 3. Erste Schritte der Datenanalyse. 3.1 Einlesen und Überprüfen der Daten Kapitel 3 Erste Schritte der Datenanalyse 3.1 Einlesen und Überprüfen der Daten Nachdem die Daten erfasst worden sind, etwa mit Hilfe eines Fragebogens, ist die nächste Frage, wie ich sie in den Rechner

Mehr

Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear":

Das Dialogfeld für die Regressionsanalyse (Lineare Regression) findet sich im Statistik- Menu unter Regression-Linear: Lineare Regression Das Dialogfeld für die Regressionsanalyse ("Lineare Regression") findet sich im Statistik- Menu unter "Regression"-"Linear": Im einfachsten Fall werden mehrere Prädiktoren (oder nur

Mehr

Varianzanalyse ANOVA

Varianzanalyse ANOVA Varianzanalyse ANOVA Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/23 Einfaktorielle Varianzanalyse (ANOVA) Bisher war man lediglich in der Lage, mit dem t-test einen Mittelwertsvergleich für

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2014 Walter Sanddorf-Köhle Foliensatz Nr. 8 1 / 40 Erweiterungen des Binomialmodells Dividendenzahlungen Sei S der Wert einer Aktie

Mehr

Methoden der multivariaten Statistik

Methoden der multivariaten Statistik Meteorologisches Institut der Universität Bonn Skript zur Vorlesung Methoden der multivariaten Statistik Sommersemester 2002 Andreas Hense Version: April 2002 (mit Korrekturen Nov. 2005, PF) 1 Inhaltsverzeichnis

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Geoadditive Regression

Geoadditive Regression Seminar: Stochastische Geometrie und ihre Anwendungen - Zufallsfelder Universität Ulm 27.01.2009 Inhalt Einleitung 1 Einleitung 2 3 Penalisierung 4 Idee Variogramm und Kovarianz Gewöhnliches Ansatz für

Mehr

2 Multivariate Statistik

2 Multivariate Statistik MS13 1 2 Multivariate Statistik 21 Grundbegriffe In diesem Abschnitt sollen die ersten wichtigen Grundbegriffe der Multivariaten Statistik eingeführt werden: Mehrdimensionale Variablen, Erwartungswerte,

Mehr

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur.

Einseitig gerichtete Relation: Mit zunehmender Höhe über dem Meeresspiegel sinkt im allgemeinen die Lufttemperatur. Statistik Grundlagen Charakterisierung von Verteilungen Einführung Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsverteilungen Schätzen und Testen Korrelation Regression Einführung Die Analyse und modellhafte

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau

Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 1 Einführung in die statistische Datenanalyse Bachelorabschlussseminar Dipl.-Kfm. Daniel Cracau 2 Gliederung 1.Grundlagen 2.Nicht-parametrische Tests a. Mann-Whitney-Wilcoxon-U Test b. Wilcoxon-Signed-Rank

Mehr

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen

Beispiel 48. 4.3.2 Zusammengesetzte Zufallsvariablen 4.3.2 Zusammengesetzte Zufallsvariablen Beispiel 48 Ein Würfel werde zweimal geworfen. X bzw. Y bezeichne die Augenzahl im ersten bzw. zweiten Wurf. Sei Z := X + Y die Summe der gewürfelten Augenzahlen.

Mehr

Abschlussklausur (60 Minuten), 15. Juli 2014

Abschlussklausur (60 Minuten), 15. Juli 2014 Prof. Dr. Amelie Wuppermann Volkswirtschaftliche Fakultät Universität München Sommersemester 2014 Empirische Ökonomie 1 Abschlussklausur (60 Minuten), 15. Juli 2014 Bearbeitungshinweise Die Bearbeitungszeit

Mehr

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik

Hans-Friedrich Eckey SS 2004. Skript zur Lehrveranstaltung Multivariate Statistik Hans-Friedrich Eckey SS 2004 Skript zur Lehrveranstaltung Multivariate Statistik Vormerkungen I Vorbemerkungen Das Manuskript beinhaltet den gesamten Stoff, der Bestandteil der Lehrveranstaltung "Multivariate

Mehr

2.Tutorium Generalisierte Regression

2.Tutorium Generalisierte Regression 2.Tutorium Generalisierte Regression - Binäre Regression - Moritz Berger: 04.11.2013 und 11.11.2013 Shuai Shao: 06.11.2013 und 13.11.2013 Institut für Statistik, LMU München 1 / 16 Gliederung 1 Erweiterte

Mehr

Quantitative Methoden der Bildungsforschung

Quantitative Methoden der Bildungsforschung Glieung Wieholung Korrelationen Grundlagen lineare Regression Lineare Regression in SPSS Übung Wieholung Korrelationen Standardisiertes Zusammenhangsmaß (unstandardisiert: Kovarianz) linearer Zusammenhang

Mehr

Entscheidungsbaumverfahren

Entscheidungsbaumverfahren Entscheidungsbaumverfahren Allgemeine Beschreibung Der Entscheidungsbaum ist die Darstellung einer Entscheidungsregel, anhand derer Objekte in Klassen eingeteilt werden. Die Klassifizierung erfolgt durch

Mehr

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt!

Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! Grundlagen der Inferenzstatistik: Was Ihnen nicht erspart bleibt! 1 Einführung 2 Wahrscheinlichkeiten kurz gefasst 3 Zufallsvariablen und Verteilungen 4 Theoretische Verteilungen (Wahrscheinlichkeitsfunktion)

Mehr

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17

Computer Vision: 3D-Geometrie. D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Computer Vision: 3D-Geometrie D. Schlesinger () Computer Vision: 3D-Geometrie 1 / 17 Lochkamera Modell C Projektionszentrum, Optische Achse, Bildebene, P Hauptpunkt (optische Achse kreuzt die Bildebene),

Mehr

Vorlesung. Informationsökonomik und die Theorie der Firma

Vorlesung. Informationsökonomik und die Theorie der Firma Vorlesung Informationsökonomik und die Theorie der Firma Ulrich Schwalbe Universität Hohenheim 5. Vorlesung 28.11.2007 Ulrich Schwalbe (Universität Hohenheim) Informationsökonomik 5. Vorlesung 28.11.2007

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 2 Multivariate Verfahren Musterlösung Aufgabe 1 (28 Punkte) Der Marketing-Leiter einer Lebensmittelherstellers möchte herausfinden, mit welchem Richtpreis eine neue Joghurt-Marke auf

Mehr

Seminararbeit für das SE Reine Mathematik- Graphentheorie

Seminararbeit für das SE Reine Mathematik- Graphentheorie Seminararbeit für das SE Reine Mathematik- Graphentheorie Der binäre Rang, der symplektische Graph, die Spektralzerlegung und rationale Funktionen Vortrag am 24.01.2012 Heike Farkas 0410052 Inhaltsverzeichnis

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze

Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im Fach Ökonometrie im WS 2011/12 Lösungsskizze Lehrstuhl für Statistik und empirische irtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Prüfung im ach Ökonometrie im S 20/2 Lösungsskizze Aufgabe (.5 Punkte) Sie verfügen über einen Datensatz, der Informationen

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17)

Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) R.Niketta Multiple Regressionsanalyse Kommentierter SPSS-Output für die multiple Regressionsanalyse (SPSS-Version 17) Daten: Selbstdarstellung und Kontaktsuche in studi.vz (POK VIII, AG 3) Fragestellung:

Mehr

Faktorenanalyse. Marcel Noack

Faktorenanalyse. Marcel Noack Faktorenanalyse Marcel Noack 12. April 2007 Inhaltsverzeichnis 1 Einleitung 3 1.1 Grundlagen............................ 3 1.2 Vorüberlegungen......................... 8 1.3 Probleme.............................

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung

Kernel, Perceptron, Regression. Erich Schubert, Arthur Zimek. 2014-07-20 KDD Übung Kernel, Perceptron, Regression Erich Schubert, Arthur Zimek Ludwig-Maximilians-Universität München 2014-07-20 KDD Übung Kernel-Fukctionen Kernel kann mehrdeutig sein! Unterscheidet zwischen: Kernel function

Mehr

Logistische Regression

Logistische Regression TU Chemnitz SoSe 2012 Seminar: Multivariate Analysemethoden 26.06.2012 Dozent: Dr. Thomas Schäfer Logistische Regression Ein Verfahren zum Schätzen von Wahrscheinlichkeiten Referentinnen: B. Sc. Psych.

Mehr

Univariate Lineare Regression. (eine unabhängige Variable)

Univariate Lineare Regression. (eine unabhängige Variable) Univariate Lineare Regression (eine unabhängige Variable) Lineare Regression y=a+bx Präzise lineare Beziehung a.. Intercept b..anstieg y..abhängige Variable x..unabhängige Variable Lineare Regression y=a+bx+e

Mehr

1 Übungsaufgaben. 1.1 Übungsaufgaben zu Operations Research 1 ÜBUNGSAUFGABEN 0

1 Übungsaufgaben. 1.1 Übungsaufgaben zu Operations Research 1 ÜBUNGSAUFGABEN 0 1 ÜBUNGSAUFGABEN 0 1 Übungsaufgaben In diesem Kapitel sind Übungsaufgaben zusammengestellt, die den Stoff der Vorlesung vertiefen und die für Prüfungen erforderliche Praxis und Schnelligkeit vermitteln

Mehr

Multivariate Verfahren

Multivariate Verfahren Multivariate Verfahren Lineare Reression Zweck: Vorhersae Dimensionsreduktion Klassifizierun Hauptkomponentenanalyse Korrespondenzanalyse Clusteranalyse Diskriminanzanalyse Eienschaften: nicht-linear verteilunsfrei

Mehr

Multivariate Analyse: FS 2012. Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour

Multivariate Analyse: FS 2012. Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour Multivariate Analyse: FS 2012 Ergänzungen zur Mitschrift der Vorlesung über Multivariate Datenanalyse von Prof. A. Barbour by PD Dr. Daniel Mandallaz Chair of Land Use Engineering Department of Environmental

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

SLAM. Simultaneous Localization and Mapping. KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann

SLAM. Simultaneous Localization and Mapping. KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann SLAM Simultaneous Localization and Mapping KogSys-Sem-M2: Reading Club - SLAM - Andreas Habermann Simultaneous Localization And Mapping SLAM Problematik SLAM Arten SLAM Methoden: (E)KF SLAM GraphSLAM Fast

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Einführung in die statistische Datenanalyse

Einführung in die statistische Datenanalyse Einführung in die statistische Datenanalyse Jens Röder & Matthias Wieler 8.-12. Oktober 2007 Inhaltsverzeichnis 1 Deskriptive Statistik für die Explorative Datenanalyse 3 2 Zufallsvariablen 5 2.1 Grundlegende

Mehr

Test für hochdimensionale Messwiederholungen mit unbekannten Kovarianzmatrizen

Test für hochdimensionale Messwiederholungen mit unbekannten Kovarianzmatrizen Test für hochdimensionale Messwiederholungen mit unbekannten Kovarianzmatrizen Diplomarbeit vorgelegt von Benjamin Markus Becker aus Stuttgart angefertigt am Institut für Mathematische Stochastik Georg-August-Universität

Mehr

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse

Multiple Regression II: Signifikanztests, Gewichtung, Multikollinearität und Kohortenanalyse Multiple Regression II: Signifikanztests,, Multikollinearität und Kohortenanalyse Statistik II Übersicht Literatur Kausalität und Regression Inferenz und standardisierte Koeffizienten Statistik II Multiple

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

Abhängigkeit zweier Merkmale

Abhängigkeit zweier Merkmale Abhängigkeit zweier Merkmale Johannes Hain Lehrstuhl für Mathematik VIII Statistik 1/33 Allgemeine Situation Neben der Untersuchung auf Unterschiede zwischen zwei oder mehreren Untersuchungsgruppen hinsichtlich

Mehr

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140

4. Woche Decodierung; Maximale, Perfekte und Optimale Codes. 4. Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 4 Woche Decodierung; Maximale, Perfekte und Optimale Codes 4 Woche: Decodierung; Maximale, Perfekte und Optimale Codes 69/ 140 Szenario für fehlerkorrigierende Codes Definition (n, M)-Code Sei C {0, 1}

Mehr

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema

Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema Division Für diesen Abschnitt setzen wir voraus, dass der Koeffizientenring ein Körper ist. Betrachte das Schema 2x 4 + x 3 + x + 3 div x 2 + x 1 = 2x 2 x + 3 (2x 4 + 2x 3 2x 2 ) x 3 + 2x 2 + x + 3 ( x

Mehr

Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc.

Credit Metrics. Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. Wurde bei J.P.Morgan entwickelt. Credit Metrics Wird in erster Linie für die Evaluierung von Bond Portfolios verwendet. (Siehe Crouhy et al. (2000), J.P.Morgan Inc. (1997)) Basiert auf ein Bonität-Einstufungssystem

Mehr

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012

Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Mathematik-Klausur vom 08.02.2012 Finanzmathematik-Klausur vom 01.02.2012 Studiengang BWL DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3, Dauer der Klausur: 60

Mehr

Petra Stein, Monika Pavetic, Marcel Noack. Multivariate Analyseverfahren

Petra Stein, Monika Pavetic, Marcel Noack. Multivariate Analyseverfahren Petra Stein, Monika Pavetic, Marcel Noack Multivariate Analyseverfahren INHALTSVERZEICHNIS 1 Multiple Regression 4 1.1 Least Squares & Varianzzerlegung................. 5 1.2 OLS mathematisch..........................

Mehr

Computer Vision: Optische Flüsse

Computer Vision: Optische Flüsse Computer Vision: Optische Flüsse D. Schlesinger TUD/INF/KI/IS Bewegungsanalyse Optischer Fluss Lokale Verfahren (Lukas-Kanade) Globale Verfahren (Horn-Schunck) (+ kontinuierliche Ansätze: mathematische

Mehr

Symmetrie und Anwendungen

Symmetrie und Anwendungen PC II Kinetik und Struktur Kapitel 6 Symmetrie und Anwendungen Symmetrie von Schwingungen und Orbitalen, Klassifizierung von Molekülschwingungen Auswahlregeln: erlaubte verbotene Übergänge IR-, Raman-,

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Fragestellungen der Schließenden Statistik

Fragestellungen der Schließenden Statistik Fragestellungen der Schließenden Statistik Bisher: Teil I: Beschreibende Statistik Zusammenfassung von an GesamtheitM N {e,,e N } erhobenem Datensatz x,,x N durch Häufigkeitsverteilung und Kennzahlen für

Mehr

Lösung des Kleinste-Quadrate-Problems

Lösung des Kleinste-Quadrate-Problems Lösung des Kleinste-Quadrate-Problems Computergestützte Statistik Lisakowski, Christof 15.05.2009 Lisakowski, Christof ()Lösung des Kleinste-Quadrate-Problems 15.05.2009 1 / 34 Themen 1 Problemstellung

Mehr

Angewandte multivariate Statistik mit R Landau 2007. Kaarina Foit und Ralf Schäfer

Angewandte multivariate Statistik mit R Landau 2007. Kaarina Foit und Ralf Schäfer Angewandte multivariate Statistik mit R Landau 2007 Kaarina Foit und Ralf Schäfer Die vorliegenden Folien sind der zweite Teil einer Vorlesung zum Thema multivariate Statistik mit R. Mehrere Einführungen

Mehr

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen.

Modul G.1 WS 07/08: Statistik 17.01.2008 1. Die Korrelation ist ein standardisiertes Maß für den linearen Zusammenhangzwischen zwei Variablen. Modul G.1 WS 07/08: Statistik 17.01.2008 1 Wiederholung Kovarianz und Korrelation Kovarianz = Maß für den linearen Zusammenhang zwischen zwei Variablen x und y Korrelation Die Korrelation ist ein standardisiertes

Mehr

1 wenn i weiblich, w i = 0 sonst.

1 wenn i weiblich, w i = 0 sonst. Kapitel 10 Multikollinearität God abhors a naked singularity. (Stephen Hawking) 10.1 Problem Von Multikollinearität, bzw. Kollinearität, spricht man, wenn zwei oder mehrere erklärende x Variablen hoch

Mehr

Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften

Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften Hauptseminar am Fachgebiet für Quantitative Methoden der Wirtschaftswissenschaften Fehlende Daten in der Multivariaten Statistik SS 2011 Allgemeines Das Seminar richtet sich in erster Linie an Studierende

Mehr

Seminar Data Mining and Learning from Data. Predictive Modeling. Thorsten Holz

Seminar Data Mining and Learning from Data. Predictive Modeling. Thorsten Holz Seminar Data Mining and Learning from Data Predictive Modeling Thorsten Holz Human Language Technology and Pattern Recognition Lehrstuhl für Informatik VI, Computer Science Department RWTH Aachen University

Mehr

Likelihood-basierte Methoden für das Testen einer endlichen Anzahl von Zuständen in unabhängigen und Markov abhängigen Mischungsmodellen

Likelihood-basierte Methoden für das Testen einer endlichen Anzahl von Zuständen in unabhängigen und Markov abhängigen Mischungsmodellen Likelihood-basierte Methoden für das Testen einer endlichen Anzahl von Zuständen in unabhängigen und Markov abhängigen Mischungsmodellen Diplomarbeit vorgelegt von Florian Schwaiger angefertigt am Fachbereich

Mehr

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge

Füllmenge. Füllmenge. Füllmenge. Füllmenge. Mean = 500,0029 Std. Dev. = 3,96016 N = 10.000. 485,00 490,00 495,00 500,00 505,00 510,00 515,00 Füllmenge 2.4 Stetige Zufallsvariable Beispiel. Abfüllung von 500 Gramm Packungen einer bestimmten Ware auf einer automatischen Abfüllanlage. Die Zufallsvariable X beschreibe die Füllmenge einer zufällig ausgewählten

Mehr

Statistik Musterlösungen

Statistik Musterlösungen Statistik Musterlösungen Regina Tüchler & Achim Zeileis Institut für Statistik & Mathematik Wirtschaftsuniversität Wien 1 Grundbegriffe (1.23) Skript Reaktionen auf Videofilm. Aussagen M, E, P, S h(m)

Mehr