Nomenklatur - Übersicht

Größe: px
Ab Seite anzeigen:

Download "Nomenklatur - Übersicht"

Transkript

1 Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen realer und synthetscher Varable Multvarate Regresson Clusteranalyse Hautkomonentenanalyse Korresondenzanalyse Dskrmnanzanalyse Regressand Hautkomonente - Clusterzugehörgket Dskrmnanzfunkton Schätzwert für reale Varable erklärte Varanz Faktorwert Wert n 1./. Dmenson Antel der Egenwerte Antel der Egenwerte (der Träghet, der Streuung, der Inerta) - Kommunaltät Antel der Egenwerte (der Träghet, der Streuung, der Inerta) (Clusterzugehörgket) (Antel der quadratsumme) Dskrmnanzwert Antel der Egenwerte (Dskrmanzantel) - - artelle Korrelaton Ladung - - Ladung Multvarate Analyse: Take-Home Message 1. De mesten Standardmethoden baseren auf lnearen Zusammenhängen m Datensatz.. In der Regel gbt es verschedene Maßzahlen für de Güte des Verfahrens, de unbedngt beachtet werden sollten (en großes r allene sagt noch ncht vel aus!). 3. Multvarate Verfahren werden überwegend engesetzt, um enzelne Werte vorherzusagen (Regresson) de Dmenson des Datensatzes zu reduzeren (Prozessanalyse, Vsualserung) Gruen zu dentfzeren (klassfzeren). 4. De Verfahren verlangen.d.r. ±subjektve Entschedungen des Anwenders, de zu begründen snd. 5. De Ergebnsse der her vorgestellten Verfahren snd ncht unabhängg vonenander. 1

2 Versuch / Exerment En Versuch st ene (1) systematsche Beobachtung der () Auswrkungen ener lanmäßgen Veränderung (3) unter wetestgehender Ausschaltung oder Kontrolle von Störfaktoren. (Abhängge Varable AV) (Unabhängge Varable UV) (Störvarable SV) => Forderungen (MaxKonMn-Prnz; Krelnger 1973): zu (): zu (3): zu (1): Maxmale Varaton der ostulerten Enflussgrößen (Prmärvaranz) Kontrolle der Randbedngungen, Mnmerung hrer Varanz (Sekundärvaranz) Mnmerung der Beobachtungsfehler (varanz) Grundbegrffe der Versuchslanung Defntonen: Kausaltät Hyothesen: H 0 : μ 1 = μ = μ 3 =...; H 1 : μ μ j = für mndestens zwe μ, μ j Valdtät = Zulässgket der Schlussfolgerungen aus dem Exerment ntern: Ergebnsse der Untersuchung snd logsch endeutg nterreterbar extern: Ergebnsse der Untersuchung snd generalserbar n-faktorell: n Enflussfaktoren (UV), -fach gestuft unabhängge Varable UV = Enflussgröße = Behandlung = Treatment: belebg skalert abhängge Varable AV: mnd. ntervallskalert (=> Mttelwerte und Varanzen nterreterbar)

3 Mnmerung der varanz Rchtgket und Präzson der Messung Ausreßer Fehlende Werte Maxmerung der Prmärvaranz Wenn de Bezehung zwschen UV und AV lnear st: Wahl von extremen Werten der UV kurvlnear st: Wahl von otmalen Werten der UV unbekannt st: Untertelung n möglchst vele Stufen der UV (möglchst klene Abstufungen) UV = unabhängge Varable AV = abhängge Varable 3

4 Mnmerung der Sekundärvaranz 1. Elmnerung der Störvarablen. Konstanthaltung (Annahme ener lnearen Bezehung zwschen SV und AV) 3. Umwandlung von Störvarablen n unabhängge Varablen (SV UV) 4. Parallelserung (Enzelmessungen werden n ene Rangrehe der Werte bzgl. der Störvarablen gebracht, dann nachenander den Versuchsbedngungen zugeordnet) 5. Wederholungsmessung (deselbe Grue wrd unter den verschedenen Versuchsbedngungen getestet) 6. Blockbldung (Blöcke = Gruen homogener Unterenheten, auf de de enzelnen Versuchs-Varanten vertelt werden) 7. Randomserung (zufällge Vertelung der SV auf de enzelnen Gruen) Latensches Quadrat (Latn Square) Zel: Methode: Enschränkungen: Mnmerung des Enflusses zweer Störvarabler. Jede Varante st genau enmal n jeder Zele und n jeder Salte vertreten. Wechselwrkungen zwschen AV, SV1 und SV können ncht untersucht werden. n-dmensonale Erweterung: Latn Hyercube Zunahme von SV 1 Zunahme von SV A D C B C B A D D A B C B C D A 4

5 Versuch / Exerment En Versuch st ene (1) systematsche Beobachtung der () Auswrkungen ener lanmäßgen Veränderung (3) unter wetestgehender Ausschaltung oder Kontrolle von Störfaktoren. (Abhängge Varable AV) (Unabhängge Varable UV) (Störvarable SV) => Forderungen (MaxKonMn-Prnz; Krelnger 1973): zu (): zu (3): zu (1): Maxmale Varaton der ostulerten Enflussgrößen (Prmärvaranz) Kontrolle der Randbedngungen, Mnmerung hrer Varanz (Sekundärvaranz) Mnmerung der Beobachtungsfehler (varanz) Varanzanalyse = ANOVA (Analyss of Varance) Zel: Bestmmung des Antels verschedener Enflussfaktoren (UV) an der beobachteten Varanz der AV => Untersuchung der Sgnfkanz von Mttelwertdfferenzen Varanz:= mttlere quadrerte Abwechung = Summe der quadrerten Abwechungen, getelt durch de Anzahl der Frehetsgrade beachte: alle der bsher vorgestellten multvaraten Verfahren führen ene Zerlegung der Varanz durch, der Begrff der ANOVA st jedoch für deses Verfahren reservert! 5

6 Quadratsummenzerlegung für enen enfaktorellen, -fach gestufter Versuch mt jewels n Wederholungen generell: Quadratsumme ( QS) Varanz ( σ ) ) = Frehetsgrade ( ) QS tot = QS + QS und tot = + Gesamt-Varanz (Stchrobenvaranz): Treatment-Varanz: x : Mttelwert der Merkmalsausrägungen für de enzelnen Stufen der Behandlung -Varanz: n QStot = 1 σˆ tot = = tot QS ( x x) ( n ) 1 n I = 1 σˆ = = σ ) QS = = ( x = 1 m= 1 1 n ( x x) m ( n 1) x ) Prüfgröße: F-Wert Wenn de H 0 glt (H 0 : μ 1 = μ = μ 3 =...), dann stellt de Treatmentvaranz ene ) ) erwartungsgetreue Schätzung der varanz dar: σ = σ Prüfgröße F: ) F = σ ) σ zu verglechen mt tabellerten Werten für = -1 Zählerfrehetsgrade und = (n-1) Nennerfrehetsgrade Interretaton: wrd der tabellerte F-Wert überschrtten, so unterscheden sch mndestens zwe der Stufen der Behandlung sgnfkant vonenander 6

7 Ungleche Stchrobenumfänge n : Stchrobenumfang für de Treatmentstufe N: Summe aller Untersuchungsenheten N = n für gleche Stchrobenumfänge: QS = I = 1 ( x x) für ungleche Stchrobenumfänge: QS = I = 1 ( x x) n tot = ( n ) 1 = ( n 1) = N 1 = 1 = N tot = N 1 = 1 = N Besel 5 Konzentraton [mg/l] %-Konfdenzntervall a a a a b b Gr. 1 Gr. Gr. 3 a a b 0 Cl SO4 S 7

8 Mehrere t-tests oder ene ANOVA? Für den enfaktorellen, zwefach gestuften Ansatz entsrcht de ANOVA enem t-test Für den mehrfaktorellen und/oder mehrfach gestuften Ansatz wären 1. vele enzelne t-tests erforderlch => stegende Wahrschenlchket, dass enzelne Tests fälschlcherwese sgnfkante Unterschede aufwesen. Untersuchungen der Wechselwrkungen zwschen verschedenen UV mttels t-test ncht möglch Wechselwrkungen zwschen UVs = der Antel des Gesamteffekts verschedener Faktoren, der von der adderten Wrkung (Sueroston) der Enzeleffekte abwecht Bs.: Erhöhung des Wezenertrags durch N-Düngung um 5%, Alkaton enes Fungzds um 0%, Kombnaton aus N-Düngung und Fungzd-Alkaton um 30% (statt um 50%). 8

9 Voraussetzungen der ANOVA 1. Quadratsummenzerlegung Voraussetzungs-fre. F-Test Voraussetzungen: Normalvertelung der komonenten (= Abwechungen der Messwerte vom jewelgen Stchrobenmttel) (selten überrüft) gleche Varanzen der komonenten (Bartlett-Test, Levene-Test) Unabhänggket der komonenten nnerhalb und zwschen den Stchroben (s. Randomserung) krtsch: klene, unglechgroße Stchroben und heterogene Varanzen => Auswechen auf vertelungsfree Verfahren (Kruskal-Walls) Aufgabe 1. Testen Se jewels mttels t-test und enfaktoreller ANOVA de beden Gruen auf sgnfkante Unterschede der Mttelwerte für verschedene Varablen.. Stellen Se zum Verglech de Mttelwerte und 95%-Konfdenzntervalle aller Varablen sowe der Hautkomonentenwerte der beden Gruen grafsch dar. Kennzechnen Se sgnfkante Unterschede mttels unterschedlcher Buchstaben. 3. Führen Se zum Verglech für de dre Gruen ene Dskrmnanzanalyse mt den Werten der Varablen durch. 9

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Schätzfehler in der linearen Regression (1) Einführung

Schätzfehler in der linearen Regression (1) Einführung Schätzfehler ( Reduum: Schätzfehler n der lnearen Regreon ( e Enführung Zel der Regreontattk t e, Schätzglechungen nach dem Krterum der klenten Quadrate aufzutellen und anzugeben, we groß der jewelge Schätzfehler

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

9 Diskriminanzanalyse

9 Diskriminanzanalyse 9 Dskrmnanzanalyse Zel ener Dskrmnanzanalyse: Berets bekannte Objektgruppen (Klassen/Cluster) anhand hrer Merkmale charakterseren und unterscheden sowe neue Objekte n de Klassen enordnen. Nötg: Lernstchprobe

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe

Portfoliothorie (Markowitz) Separationstheorem (Tobin) Kapitamarkttheorie (Sharpe Portfolothore (Markowtz) Separatonstheore (Tobn) Kaptaarkttheore (Sharpe Ene Enführung n das Werk von dre Nobelpresträgern zu ene Thea U3L-Vorlesung R.H. Schdt, 3.12.2015 Wozu braucht an Theoren oder Modelle?

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

BAM-Leitfaden zur Ermittlung von Messunsicherheiten bei quantitativen Prüfergebnissen 1. Fassung 11. vom März 2004

BAM-Leitfaden zur Ermittlung von Messunsicherheiten bei quantitativen Prüfergebnissen 1. Fassung 11. vom März 2004 Dr. rer. nat. Werner Hässelbarth BAM-Letfaden zur Ermttlung von Messunscherheten be quanttatven Prüfergebnssen. Fassung. vom März 004 Forschungsbercht 66 Berln 004 Autor: Textbeträge: Redakton: Fregabe:

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Statistische Datenanalyse und Optimierung

Statistische Datenanalyse und Optimierung Statstsche Datenanalyse und Optmerung.0.00 Glederung Vertelungsfunktonen Normalvertelung Normalvertelung mehrerer Vayrablen Abgeletete Vertelungen: χ -Vertelung, Student-t-Vertelung Statstsche ests Fehlerfortpflanzung

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord

Kreditrisikomodellierung und Risikogewichte im Neuen Baseler Accord 1 Kredtrskomodellerung und Rskogewchte m Neuen Baseler Accord erschenen n: Zetschrft für das gesamte Kredtwesen (ZfgK), 54. Jahrgang, 2001, S. 1004-1005. Prvatdozent Dr. Hans Rau-Bredow, Lehrstuhl für

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Teil 2: Statistische Versuchsplanung

Teil 2: Statistische Versuchsplanung Tel : Statstsche Versuchsplanung 4. Enführung n de stat. Versuchsplanung 4. Arten statstscher Versuchspläne - Faktorelle Versuchspläne. Ordnung k und k- - Zentral zusammengesetzte Versuchspläne - Mschungspläne

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung Grundraktkum Physkalsche Cheme Versuch 22 Bestmmung des Aktvtätskoeffzenten mttels Damfdruckernedrgung Überarbetetes Versuchsskrt, 27..204 Grundraktkum Physkalsche Cheme, Versuch 22: Aktvtätskoeffzent

Mehr

Lineare Regressionsanalyse mit SPSS

Lineare Regressionsanalyse mit SPSS Unverstät Trer Zentrum für Informatons-, Medenund Kommunkatonstechnologe (ZIMK) Bernhard Baltes-Götz Lneare Regressonsanalyse mt SPSS 850 800 750 Y 0 700 5 5 X 0 0 X 0 5 5 04 (Rev. 40804) Herausgeber:

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften

Grundlagen der makroökonomischen Analyse kleiner offener Volkswirtschaften Bassmodul Makroökonomk /W 2010 Grundlagen der makroökonomschen Analyse klener offener Volkswrtschaften Terms of Trade und Wechselkurs Es se en sogenannter Fall des klenen Landes zu betrachten; d.h., de

Mehr

Statistische Regressionsmodelle

Statistische Regressionsmodelle Statstsche Regressonsmodelle Tel II: Verallgemenerte Lneare Modelle Werner Stahel Semnar für Statstk, ETH Zürch März 2005 / Ma 2008 Zweter Tel der Unterlagen zu enem Kurs über Regressonsmodelle, gehalten

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung

Mobile Sicherheit durch effiziente Public-Key-Verschlüsselung Moble cherhet durch effzente ublc-key-verschlüsselung Hagen loog Drk Tmmermann Unverstät Rostock, Insttut für Angewandte Mkroelektronk und Datenverarbetung Rchard-Wagner-tr., 9 Rostock Hagen.loog@un-rostock.de

Mehr

Koch 2 Monte-Carlo-Simulation für für Regularisierungsparameter

Koch 2 Monte-Carlo-Simulation für für Regularisierungsparameter Fachbeträge Koch 2 Monte-Carlo-Smulaton für für Regularserungsparameter Karl-Rudolf Koch Zusammenfassung Zur Regularserung nverser Probleme wrd de Bestmmung des Regularserungsparameters aus Varanzkomponenten

Mehr

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen. IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 4

Serie: Bestimmung von Ausfallwahrscheinlichkeiten - Teil 4 45 www.rsknews.de 11.2002 Kredtrsko Sere: Bestmmung von Ausfallwahrschenlchketen - Tel 4 Ausfallwahrschenlchketen m Konjunkturzyklus Credt Portfolo Vew En Betrag von Uwe Wehrspohn Wr haben n unserer Sere

Mehr

VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE

VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE VERGLEICH EINER EXPERIMENTELLEN UND SIMULATIONSBASIERTEN SENSITIVITÄTSANALYSE EINER ADAPTIVEN ÖLWANNE Y. L*, S-O. Han*, T. Pfeffer** *) Fachgebet Systemzuverlässgket und Maschnenakustk, TU Darmstadt **)

Mehr

Physikalisches Praktikum PAP 1 für Physiker (B.Sc.) September 2010

Physikalisches Praktikum PAP 1 für Physiker (B.Sc.) September 2010 Physkalsches Praktkum PAP 1 für Physker (B.Sc.) September 010 (Kurze) Enführung n de Grundlagen der Fehlerrechnung oder besser: Bestmmung von Messunscherheten Step nsde, lades & gentlemen, sad the museum

Mehr

Klausuren zum Üben. Gesamtdauer der Anrufe in [Min]: bis 20 bis 40 bis 60 bis 90 bis 120 Anzahl der Schüler/innen:

Klausuren zum Üben. Gesamtdauer der Anrufe in [Min]: bis 20 bis 40 bis 60 bis 90 bis 120 Anzahl der Schüler/innen: Klausuren zum Üben Aufgabentyp I. Unter den Schülernnen und Schülern der Klassenstufe 5 ener Realschule bestzen 40 en Handy. Unter desen wurde ene Erhebung durchgeführt über de Anzahl von Anrufen (Merkmal

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Qualitative Evaluation einer interkulturellen Trainingseinheit

Qualitative Evaluation einer interkulturellen Trainingseinheit Qualtatve Evaluaton ener nterkulturellen Tranngsenhet Xun Luo Bettna Müller Yelz Yldrm Kranng Zur Kulturgebundenhet schrftlcher und mündlcher Befragungsmethoden und hrer Egnung zur Evaluaton m nterkulturellen

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Crashkurs Meta-Analysen

Crashkurs Meta-Analysen Crashkurs Meta-Analysen Ulrch Grouven IQWG Köln 1 Überscht Defnton / Zele / Nutzen ener Meta-Analyse Darstellung der Ergebnsse Modelle Effektschätzer Berechnung enes gepoolten Schätzers Heterogentät Senstvtäts-/Subgruppenanalysen

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Beschreibende Statistik Mittelwert

Beschreibende Statistik Mittelwert Beschrebende Statstk Mttelwert Unter dem arthmetschen Mttel (Mttelwert) x von n Zahlen verstehen wr: x = n = x = n (x +x +...+x n ) Desen Mttelwert untersuchen wr etwas genauer.. Zege für n = 3: (x x )

Mehr

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes

Statistik. 1. Vorbereitung / Planung - präzise Formulierung der Ziele - detaillierte Definition des Untersuchungsgegenstandes Statstk Defnton: Entwcklung und Anwendung von Methoden zur Erhebung, Aufberetung, Analyse und Interpretaton von Daten. Telgebete der Statstk: - Beschrebende (deskrptve) Statstk - Wahrschenlchketsrechnung

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Entscheidungsprobleme der Marktforschung (1)

Entscheidungsprobleme der Marktforschung (1) Prof. Dr. Danel Baer. Enführung 2. Informatonsbedarf 3. Datengewnnung 2. Informatonsbedarf Entschedungsprobleme der () Informatonsbedarf Art Qualtät Menge Informatonsbeschaffung Methodk Umfang Häufgket

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Prozeß-Controlling in der Softwareentwicklung

Prozeß-Controlling in der Softwareentwicklung Prozeß-Controllng n der Softwareentwcklung De Orenterung an Refegradmodellen n der Softwareentwcklung zwngt zur Ausenandersetzung mt Prozeß- Controllng. Der vorlegende Artkel stellt für das Prozeß-Controllng

Mehr

Basel III Kontrahentenrisiken

Basel III Kontrahentenrisiken Basel III Kontrahentenrsken Chrstoph Hofmann De Fnanzkrse hat gezegt, dass das aus ncht börsengehandelten (OTC) Dervaten hervorgehende Kontrahentenrsko von entschedender Bedeutung für de Stabltät des Bankensystems

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

A robust algorithm for point set registration using mixtures of gaussians

A robust algorithm for point set registration using mixtures of gaussians A robust algorthm for pont set regstraton usng mxtures of gaussans von Robert Pyttel Inhalt 1 Enletung 54 1.1 Regstrerung........................................... 54 1.2 Zusammenhang/Verwendung n der

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

Fähigkeitsuntersuchungen beim Lotpastendruck

Fähigkeitsuntersuchungen beim Lotpastendruck Fakultät Elektrotechnk und Informatonstechnk Insttut für Aufbau- und Verbndungstechnk der Elektronk Fähgketsuntersuchungen bem Lotpastendruck Dr.-Ing. H. Wohlrabe Ottobrunn, 2. Februar 2009 Qualtätsmerkmale

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Theoretische Grundlagen. Anhang: Softwareprofil, Modellbildungen und Aufbau der ASCII- Datendatei

Theoretische Grundlagen. Anhang: Softwareprofil, Modellbildungen und Aufbau der ASCII- Datendatei NEZD Verson 4. Programm zur Ausglechung und Analyse (Planung) zwedmensonaler terrestrscher Netze, relatver und absoluter GPS-Netze und zur GPS-Integraton heoretsche Grundlagen Anhang: Softwareprofl, Modellbldungen

Mehr

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten.

Man unterscheidet zwischen gewichteten und ungewichteten Faktorwerten. Faktorwerte Da es das Zel der Faktorenanalyse st, de Zahl der Kennwerte zu reduzeren (aus velen Items sollen deutlch wenger Faktoren resulteren, st es nötg, Kennwerte für de Ausprägungen der Personen n

Mehr

Rainer Diaz-Bone/Harald Künemund. Einführung in die binäre logistische Regression

Rainer Diaz-Bone/Harald Künemund. Einführung in die binäre logistische Regression Free Unverstät Berln Fachberech Poltk u. Sozalwssenschaften Insttut für Sozologe Abtelung Methodenlehre und Statstk Garystr. 55 14195 Berln Raner Daz-Bone/Harald Künemund Enführung n de bnäre logstsche

Mehr

Hat die Wahl des Performancemaßes einen Einfluss auf die Beurteilung von Hedgefonds-Indizes?

Hat die Wahl des Performancemaßes einen Einfluss auf die Beurteilung von Hedgefonds-Indizes? Hat de Wahl des Performancemaßes enen Enfluss auf de Beurtelung von Hedgefonds-Indzes? Von Martn Elng, St. Gallen, und Frank Schuhmacher, Lepzg Ene zentrale Fragestellung n der wssenschaftlchen Ausenandersetzung

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein?

ifh@-anwendung ifh@-anwendung Technische Rahmenbedingungen Welche Mindestvoraussetzungen müssen erfüllt sein? FH@-Anwendung Für de Umsetzung von Strukturfonds-Förderungen st laut Vorgaben der EU de Enrchtung enes EDV- Systems für de Erfassung und Übermttlung zuverlässger fnanzeller und statstscher Daten sowe für

Mehr

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften

Ertragsmanagementmodelle in serviceorientierten IT- Landschaften Ertragsmanagementmodelle n servceorenterten IT- Landschaften Thomas Setzer, Martn Bchler Lehrstuhl für Internetbaserte Geschäftssysteme (IBIS) Fakultät für Informatk, TU München Boltzmannstr. 3 85748 Garchng

Mehr

Fahrzeugdetektion und -erkennung mittels mehrdimensionaler Farbhistogrammanalyse

Fahrzeugdetektion und -erkennung mittels mehrdimensionaler Farbhistogrammanalyse Fahrzeugdetekton und -erkennung mttels mehrdmensonaler Farbhstogrammanalyse Uwe Knauer, Ralf Reulke und Beate Meffert Humboldt-Unverstät zu Berln Insttut für Informatk Unter den Lnden 6, 10099 Berln emal:

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten

Klasse : Name1 : Name 2 : Datum : Nachweis des Hookeschen Gesetzes und Bestimmung der Federkonstanten Versuch r. 1: achwes des Hook schen Gesetzes und Bestmmung der Federkonstanten achwes des Hookeschen Gesetzes und Bestmmung der Federkonstanten Klasse : ame1 : ame 2 : Versuchszel: In der Technk erfüllen

Mehr

Kapitel 8: Graph-Strukturierte Daten

Kapitel 8: Graph-Strukturierte Daten Ludwg Maxmlans Unerstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscoery n Dtb Databases II m Wntersemester 2011/2012 Kaptel 8: Graph-Strukturerte

Mehr

Was haben Schüler und Großbanken gemein?

Was haben Schüler und Großbanken gemein? Armn Fügenschuh Aleander Martn Was haben Schüler und Großbanken gemen? Mathematsche Modellerung Analyse und Lösung am Bespel des Rucksackproblems Unter gegebenen Randbedngungen optmale Entschedungen zu

Mehr

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN

ZUSATZBEITRAG UND SOZIALER AUSGLEICH IN ZUSAZBEIRAG UND SOZIALER AUSGLEICH IN DER GESEZLICHEN KRANKENVERSICHERUNG: ANREIZEFFEKE UND PROJEKION BIS 2030 Martn Gasche 205-2010 Zusatzbetrag und sozaler Ausglech n der Gesetzlchen Krankenverscherung:

Mehr

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung

Y 1 (rein) Y 2 (rein) Mischphase Bezeichnung (g) (g) (g) Mischung (l) (l) (l) Mischung,Lösung (l) (s) (l) Lösung. (s) (g) (s) Lösung 3 Lösungen 3. Mschungen und Lösungen Homogene Phasen, n denen alle Komonenten glechartg behandelt werden, heßen Mschungen. Wenn ene Komonente m Überschuß vorlegt, kann man von Lösungen srechen. Sezfsche

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Kapitel 3: Interpretation und Vergleich von Regressionsmodellen

Kapitel 3: Interpretation und Vergleich von Regressionsmodellen Kaptel 3: Interpretaton und Verglech von Regressonsmodellen 3. Interpretaton des lnearen Modells 3. Auswahl der unabhänggen Varablen 3.3 Fehlspezfkaton der funktonalen Form 3.4 Illustraton: De Erklärung

Mehr

Validierung der Software LaborValidate Testbericht

Validierung der Software LaborValidate Testbericht Valderung der Software LaborValdate Tetbercht De Software LaborValdate dent dazu Labormethoden zu Valderen. Dazu mu nachgeween en, da de engeetzten Funktonen dokumentert und nachvollzehbar nd. De Dokumentaton

Mehr

HAT DIE WAHL DES PERFORMANCEMAßES EINEN EINFLUSS

HAT DIE WAHL DES PERFORMANCEMAßES EINEN EINFLUSS HAT DIE WAHL DES PERFORMANCEMAßES EINEN EINFLUSS AUF DIE BEURTEILUNG VON HEDGEFONDS-INDIZES? MARTIN ELING FRANK SCHUHMACHER WORKING PAPERS ON RISK MANAGEMENT AND INSURANCE NO. 10 EDITED BY HATO SCHMEISER

Mehr

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die "Schuldverschreibungen") unter dem

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die Schuldverschreibungen) unter dem Kondtonenblatt Erste Group Bank AG 24.04.2012 Daueremsson Erste Group Reale Werte Express II (Sere 211) (de "Schuldverschrebungen") unter dem Programm zur Begebung von Schuldverschrebungen an Prvatkunden

Mehr

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen.

Der technische Stand der Antriebstechnik einer Volkswirtschaft läßt sich an ihrem Exportanteil am Gesamtexportvolumen aller Industrieländer messen. - 14.1 - Antrebstechnk Der technsche Stand der Antrebstechnk ener Volkswrtschaft läßt sch an hrem Exportantel am Gesamtexportvolumen aller Industreländer messen. Mt 27,7 % des gesamten Weltexportvolumens

Mehr