Bivariate Zeitreihenanalyseverfahren Tests auf Nichtlinearität

Größe: px
Ab Seite anzeigen:

Download "Bivariate Zeitreihenanalyseverfahren Tests auf Nichtlinearität"

Transkript

1 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Skewness, Kurtosis ür zirkuläre Maße z.b. Phasenkohärenz R Problem: nur statische Nichtlinearitäten Statistik Ansatz: transormiere Phasen Phasendierenzen au Einheitskreis N N C cosϕ i; S sinϕi N N m m a m C a N R i + is allgemeiner + ib N i e im cos R e ϕ i Ansatz i 0 ; b i S 0 arctan C Momente - ter Ordnung N N i sin ϕ i Mardia, 972

2 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität mit olgt m ür R e im : a C ; b S ; R R ; m 0 arctan De.: zirkuläre Skewness S C Statistik Skew circ 3/ 2 m 2 / S S R2 sin 2 0 R Skew circ 0 ür unimodale smmetrische Verteilungen De.: zirkuläre Kurtosis Kurt circ [ 4 ] 2 R cos m 2 S S / Kurt circ > < latkurtisch unimodal letokurtisch

3 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Fourierraum Sektren höherer Ordnung C.L. Niklas & A.P. Petroulu: Higher-order sectral analsis: a nonlinear signal rocessing ramework. Prentice Hall, New Jerse, 993 T. Subba Rao & M.M. Gabr: An introduction to bisectral analsis and bilinear time series models. Lecture Notes in Statistics, vol. 24, Sringer, Berlin, 984 Polsektren/Kumulanten/Statistische Momente: Leistungssektrum Kumulant 2. Ordnung Moment 2.Ordnung P-DFTAKF 2 AKF 2 τ t τ Varianz Bisektrum Kumulant 3. Ordnung Moment 3.Ordnung B2-DFTAKF 3 AKF 3 τ t τ 2τ Skewness Trisektrum Kumulant 4. Ordnung Moment 4.Ordnung T3-DFTAKF 4 AKF 4 τ t τ 2τ 3τ Kurtosis

4 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Fourierraum Sektren höherer Ordnung Erweiterung ür bivariaten Fall seziell: 2. Ordnung gegeben zwei stochastische Prozesse t, t De.: Kreuz-Bisektren,,,, X X Y B X Y Y B Y Y X B Y X X B X FT t Y FT t

5 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Sektren höherer Ordnung Erweiterung ür bivariaten Fall seziell: 2. Ordnung gegeben zwei stochastische Prozesse t, t Fourierraum De.: Bikohärenz Kohärenz 3. Ordnung - normalisiertes Bisektrum Normierungsaktoren: Leistungssektren, Kreuzsektrum - Deinitionsbereich: [0,] - erlaubt Detektion von quadratischen Phasenkolungen eaks der Bikohärenz bei bestimmten Frequenz-Paaren - Probleme: Rechenauwand, Rauschen, Statistik erordert lange Zeitreihen

6 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Fourierraum Bikohärenz Beisiel: 3-Wellensstem mit quadratischer Phasenkolung 3 Moden: k cos 2π k + ϕ + cos 2π k + ϕ + cos π + k + ϕ + ϕ [ ] [ ] [ { } ] BetragBikohärenz PhaseBikohärenz Dilomarbeit K. Ulbrich, 2000

7 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Surrogat - "Ersatzsto" - versucht Eigenschaten des Originals zu reroduzieren Überrüung einer seziellen Eigenschat z.b. Nichtlinearität - zu untersuchende Eigenschat dar im Surrogat nicht enthalten sein - alle anderen Eigenschaten müssen vom Surrogat reroduziert werden - Nullhothesen-Test: z.b. H 0 Die Daten wurden von stationären, Gaußschen, linearen stochastischen Prozeß generiert - arametrisch / nicht-arametrische Statistik

8 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Wiederholung: Erstellung von univariaten Surrogaten bedingte Realisationen: bootstraing, keine Modellanassung notwendig! - "random shuling" - Phasenrandomisierung unter Erhaltung des Amlitudensektrums FT - amlitudenangeaßte hasenrandomisierte Surrogate AAFT - iterativ amlitudenangeaßte hasenrandomisierte Surrogate IAAFT

9 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Prichard & Theiler, PRL 73, 95, 994 multivariate hasenrandomisierte Surrogate MFT Basis: hasenrandomisierte univariate Surrogate FT Forderung: MFT-Surrogat soll lineare Korrelationen innerhalb der einzelnen Zeitreihen reroduzieren und lineare Korrelationen zwischen ihnen gegeben: M simultan gemessene Observablen t, 2 t,..., M t mit Mittelwert 0 und Varianz ; X, X 2,..., X M seien die jeweiligen Fouriertransormierten Kreuzsektrum: X * j Nichtlinearität in Phasendierenz! X k A j A k i e ϕ ϕ k j

10 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Prichard & Theiler, PRL 73, 95, 994 Nullhothese: Daten wurden von stationären, linear korrelierten Gaußschen stochastischen Prozessen generiert Methode: erhalte lineare Eigenschaten: Kreuzsektrum Wiener-Khinchin: Kreuzkorrelationsunktion randomisiere nichtlineare Eigenschaten: ersetze Phasendierenzen δϕ ϕ k - ϕ j durch φ [0,2π] Rücktransormation ergibt MFT: ~ j j i F φ X e j

11 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Schreiber & Schmitz, Phsica D 42, 346, 2000 multivariate iterativ amlitudenangeasste hasenrandomisierte Surrogate MIAAFT Basis: univariate IAAFT-Surrogate Forderung wie MFT: Surrogat soll lineare Korrelationen innerhalb der einzelnen Zeitreihen reroduzieren und lineare Korrelationen zwischen ihnen zusätzlich zu MFT: iterative Erhaltung der jeweiligen möglicherweise nicht-gaußschen Amlitudenverteilungen

12 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Schreiber & Schmitz, Phsica D 42, 346, 2000 Methode: ersetze Phasendierenzen δϕ ϕ k - ϕ j durch φ [0,2π] mit den Eigenschaten: Erhaltung der Original-Phasendierenzeigenschaten: Ansatz: wähle φ n Rangϕ n + α n wähle α n so, das ϕ n möglichst wenig geändert wird tanα n M m M m sin ϕ cos ϕ n n Rang ϕ Rang ϕ n n iφ i 2 Ersetzung minimal im least-squares Sinne: ϕk ϕm M m e e 2! min

13 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Iterationsverhalten: MIAAFT ür gekoelte harmonische Oszillatoren CML Dilomarbeit J. Schumacher, 2002

14 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Iterationsverhalten: MIAAFT ür Gaußverteiltes isosektrales Rauschen Surrogate von gekoelten harmonischen Oszillatoren CML Dilomarbeit J. Schumacher, 2002

15 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Iterationsverhalten: MIAAFT ür gekoelte Rössler-Ssteme CML Dilomarbeit J. Schumacher, 2002

16 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Phasenkohärenz R und Anallsvorhersage Dilomarbeit J. Schumacher, 2002

17 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bivariate Surrogate ür kohärente Daten Dolan & Neimann, PRE 65, DOI 02608, 2002 coherent digitall iltered Surrogate CDF Problem: Arteakte in bivariaten Surrogaten bei ast-kohärenten Daten Forderung: erhalte Sektrum, Kreuzsektrum und Kohärenzunktion Hothese: Eigenschaten der Kohärenzunktion durch Nichtlinearität gegeben Ansatz: erzeuge Vergleichs-Kohärenzunktion aus zwei statistisch unabhängigen linearen stochastischen Prozessen vt und wt t t av t + a v t a w t + aw t a 0,5 vollständige Kohärenz; a 0 keine Kohärenz

18 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität coherent digitall iltered Surrogate CDF bestimme requenzabhängige Kohärenzunktion ür t und t: Invertierung ergibt Filterunktion a Multilikation der jeweiligen Fouriersektren mit Filterunktion a erhält Kohärenzunktion der Surrogate bzgl. Kohärenzunktion der Originale [ ] [ ] a a a a C + [ ] C C a +

Korrelationsdimension und 1/f -Rauschen

Korrelationsdimension und 1/f -Rauschen α Korrelationsdimension und 1/f -Rauschen D 2 10 9 8 7 6 5 4 3 2 1 0 0 1 2 3 4 5 6 aus: Osborne & Provenzale (Physica D 35, pp 357, 1989): "Finite correlation dimension for stochastic systems with power-law

Mehr

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2.

Zeitreihenanalyse. Seminar Finanzmathematik. Andreas Dienst SS Einleitung - Begrüßung - Motivation - Inhaltsangabe. 2. Seminar Finanzmathematik - Begrüßung - Motivation - Inhaltsangabe 3. Zusammen - fassung Zeitreihenanalyse Andreas Dienst SS 2006 Zeitreihen: Definition und Motivation - Begrüßung - Motivation - Inhaltsangabe

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67

Kapitel 2.1: Die stochastische Sicht auf Signale Georg Dorffner 67 Kapitel 2.1: Die stochastische Sicht auf Signale 215 Georg Dorffner 67 Stochastische Prozesse Stochastische Prozesse sind von Zufall geprägte Zeitreihen x n f x, n 1 xn2,... n vorhersagbarer Teil, Signal

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Prozeßbezogene Signalverarbeitung in der LDA- und PDA-Meßtechnik

Prozeßbezogene Signalverarbeitung in der LDA- und PDA-Meßtechnik Slide 1 Prozeßbezogene Signalverarbeitung in der LDA- und PDA-Meßtechnik Postdoktorandenprogramm der DFG Zusammenarbeit mit Dantec MT Betreuung durch Universität Rostock Slide Postdoktorandenprogramm Ziel

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

Technische Mathematik und Datenanalyse - Bakkalaureatsstudium

Technische Mathematik und Datenanalyse - Bakkalaureatsstudium Technische Mathematik und Datenanalyse - Bakkalaureatsstudium Analysis Analysis II 310.105 Nowak C. Analysis II 4.00 VO Mo 8.00-10.00 HS 2 Di 8.00-10.00 HS 2 Do 8.00-10.00 HS 2 310.106 Nowak C. Übungen

Mehr

Kurtosis - der fehlende Knopf bei der Schwingprüfung oder Sigma Dehnung mit B&K Regelsystem 1059

Kurtosis - der fehlende Knopf bei der Schwingprüfung oder Sigma Dehnung mit B&K Regelsystem 1059 Kurtosis - der fehlende Knopf bei der Schwingprüfung oder Sigma Dehnung mit B&K Regelsystem 1059 Wer sich mit der Schwingprüfung in der Umweltsimulation befasst, verwendet dabei oft weißes, also normal-

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation In den reellen Zahlen haben nicht alle Polynome Nullstellen. Der einfachste Fall einer solchen Nullstellen-Gleichung ist x 2 + 1 = 0. Die komplexen Zahlen ("C") sind

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Forelsalung Inhaltsverzeichnis: hea Unterpunkt Seite Modulation allgeein Deinition 7- Frequenzultiplex 7- Zeitultiplex 7- Übersicht Modulationsverahren Aplitudenodulation (AM) 7-3 Winkelodulation (WM)

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Erzwungene & gekoppelte Schwingungen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 10. Jan. 016 Gedämpfte Schwingungen m d x dt +

Mehr

ARCH- und GARCH-Modelle

ARCH- und GARCH-Modelle ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme 04.11.2009 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle 04.11.2009 1 / 27 Ausgangssituation

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Numerische Methoden und Algorithmen in der Physik

Numerische Methoden und Algorithmen in der Physik Numerische Methoden und Algorithmen in der Physik Hartmut Stadie, Christian Autermann 15.01.2009 Numerische Methoden und Algorithmen in der Physik Christian Autermann 1/ 47 Methode der kleinsten Quadrate

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Kybernetik Systemidentifikation

Kybernetik Systemidentifikation Kberneti Sstemidentifiation Mohamed Oubbati Institut für euroinformati Tel.: +49 73 / 50 2453 mohamed.oubbati@uni-ulm.de 2. 06. 202 Was ist Sstemidentifiation? Der Begriff Sstemidentifiation beschreibt

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Statistische Methoden in der Wirtschaftsund Sozialgeographie

Statistische Methoden in der Wirtschaftsund Sozialgeographie Statistische Methoden in der Wirtschaftsund Sozialgeographie Ort: Zeit: Multimediapool Rechenzentrum Mittwoch 10.15-11-45 Uhr Material: http://www.geomodellierung.de Thema: Beschreibung und Analyse Wirtschafts-

Mehr

erfanden zu den reellen Zahlen eine neue Zahl

erfanden zu den reellen Zahlen eine neue Zahl Vorlesung 9 Komplexe Zahlen Die Gleichung x 2 = 1 ist in R nicht lösbar, weil es keine Zahl gibt, deren Quadrat eine negative Zahl ist. Die Mathematiker erfanden zu den reellen Zahlen eine neue Zahl i,

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

Frailty Models in Survival Analysis

Frailty Models in Survival Analysis Aus dem Institut für Medizinische Epidemiologie, Biometrie und Informatik (Direktor: Prof. Dr. Johannes Haerting) Frailty Models in Survival Analysis Habilitation zur Erlangung des akademischen Grades

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

3. Leistungsdichtespektren

3. Leistungsdichtespektren Stochastische Prozesse: 3. Leistungsdichtespektren Wird das gleiche Geräusch mehrmals gemessen, so ergeben sich in der Regel unterschiedliche zeitliche Verläufe des Schalldrucks. Bei Geräuschen handelt

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Überblick und Ausblick

Überblick und Ausblick Letzte Vorlesung Statistik Vorlesung Datenanalyse und Statistik Gliederung 1 Sortiert nach dem Inhalt der Vorlesung Sortiert nach Daten 2 Kovarianzmatrizen Klusteranalyse Hauptkomponentenanalyse Faktorenanalyse

Mehr

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1

2 x x 2 y 2 vol(a) = d(x, y, z) = 4 3 x3 dx = [ 1 UNIVERSITÄT ARLSRUHE Institut für Analsis HDoz Dr P C unstmann Dipl-Math M Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Phsik und Geodäsie inklusive omplexe Analsis

Mehr

2 Störeinflüsse und Schutzmaßnahmen

2 Störeinflüsse und Schutzmaßnahmen 2 Störeinflüsse und Schutzmaßnahmen 2.1 Modulation und Demodulation 2.2 Störeinflüsse 2.2.1 Netzstörungen 2.2.2 Schaltstörungen 2.2.3 Hochfrequenzstörungen 2.2.4 Rauschen 2.3 Schutzmaßnahmen 2.3.1 Schutzerde

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Untersuchungen zum Thema Tracking Error

Untersuchungen zum Thema Tracking Error Untersuchungen zum Thema Tracking Error J. Fulmek 24. August 2003 1 Einleitung Im Folgenden werden folgende Punkte untersucht: 1. verschiedene in der Literatur übliche Definitionen des Tracking Errors

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 =

10 Komplexe Zahlen. 2. Februar Komplexe Multiplikation: Für zwei Vektoren. z 1 = 2. Februar 2009 66 0 Komplexe Zahlen 0. Komplexe Multiplikation: Für zwei Vektoren [ [ a a2 z =, z 2 = in R 2 wird neben der üblichen Addition die komplexe Multiplikation [ a a z z 2 := 2 b b 2 a b 2 +

Mehr

Stochastic Sampling als Messprinzip

Stochastic Sampling als Messprinzip Stochastic Sampling als Messprinzip Ehrenkolloquium Frau Prof. Dr.-Ing. habil. Erika Müller 21.09.2012, Universität Rostock Holger Nobach Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren

Inhalt. Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren 1 Inhalt Nichtlineare Systeme Voltera Reihenexpansion Statische quasi-nichtlineare Systeme Dynamikprozessoren Kontrollparameter Anwendungen Frequenzabhängige nichtlineare Systeme Signalverfremdung Messparameter

Mehr

Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren

Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren Thorsten Dickhaus Universität des Saarlandes, 06. Juli 2009 Übersicht Einführung: Multiples Testen

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Überblick über multivariate Verfahren in der Statistik/Datenanalyse

Überblick über multivariate Verfahren in der Statistik/Datenanalyse Überblick über multivariate Verfahren in der Statistik/Datenanalyse Die Klassifikation multivariater Verfahren ist nach verschiedenen Gesichtspunkten möglich: Klassifikation nach der Zahl der Art (Skalenniveau)

Mehr

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck Statistik am PC Lösungen mit Excel Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck 5., aktualisierte und erweiterte Auflage 2008. Buch. XVI, 528 S. Hardcover ISBN 978 3 446 41555 3 Format

Mehr

Hauptseminar zum Thema:

Hauptseminar zum Thema: Fakultät Informatik Institut für angewandte Informatik Professur Technische Informationssysteme Hauptseminar zum Thema: Vergleich ARCH- und GARCH- Modelle bei der Analyse von Zeitreihen mit veränderlichen

Mehr

Mittelwert und Standardabweichung

Mittelwert und Standardabweichung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mittelwert und Standardabweichung Überblick Mittelwert Standardabweichung Weitere Maße

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

y 1,2 = - 1 α 2β ± 1 α

y 1,2 = - 1 α 2β ± 1 α Beispiel 9 (Einige einfache nichtlineare Differenzengleichungen; Formulierung als Aufgabe) Beispiel 9.1 (Einzelne Aufgaben) Aufgabe 1 Es gebe folgende Gleichung, die diskrete sog. logistische Gleichung:

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

3. Stochastische Prozesse (Version 1.6.06)

3. Stochastische Prozesse (Version 1.6.06) Statistische Physik, G Schön, Universität Karlsruhe 33 3 Stochastische Prozesse (Version 606) 3 Begriffe, elementare Eigenschaften Definition: Wir betrachten eine kontinuierliche [oder diskrete] stochastische

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Empfängeruhrmodellierung in GNSS: Auswirkungen und Realisierbarkeit

Empfängeruhrmodellierung in GNSS: Auswirkungen und Realisierbarkeit Empfängeruhrmodellierung in GNSS: Auswirkungen und Realisierbarkeit i it Ulrich Weinbach, ib Steffen Schön Institut für Erdmessung Motivation GNSS sind Einweg-Messverfahren. Problem der Zeitsynchronisation

Mehr

Stochastische Prozesse und Zeitreihenmodelle

Stochastische Prozesse und Zeitreihenmodelle Kapitel 12 Stochastische Prozesse und reihenmodelle [ Stochastische Prozesse und reihenmodelle ] Einleitung:.com-Blase an der NASDAQ Department of Statistics and Mathematics WU Wien c 2008 Statistik 12

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen

Tabelle 6a: Deskriptive Statistiken der metrischen Variablen Ergebnisse 77 5 Ergebnisse Das folgende Kapitel widmet sich der statistischen Auswertung der Daten zur Ü- berprüfung der Hypothesen. Die hier verwendeten Daten wurden mit den in 4.3 beschriebenen Instrumenten

Mehr

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft

90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft Prof. Dr. Helmut Küchenhoff SS08 90-minütige Klausur Statistik für Studierende der Kommunikationswissenschaft am 22.7.2008 Anmerkungen Überprüfen Sie bitte sofort, ob Ihre Angabe vollständig ist. Sie sollte

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer

Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer Delta-Gamma-Verfahren als Standard- Risikomodell für Lebensversicherer 1 Einleitung Im Rahmen des SST wird teilweise vereinfachend angenommen, dass der Zusammenhang zwischen der Veränderung des risikotragenden

Mehr

Schulinternes Curriculum. Mathematik

Schulinternes Curriculum. Mathematik Gymnasium Zitadelle Schulinternes Curriculum (G 8) Stand: Schuljahr 2012/13 Gymnasium Zitadelle Schulinternes Curriculum Seite 1 EF Eingeführtes Lehrbuch: Lambacher Schweizer 10 Einführungsphase Funktionen

Mehr

4 Schaltvorgänge R, L, C R, L, C

4 Schaltvorgänge R, L, C R, L, C 4 Schaltvorgänge In diesem Kapitel beschäftigen wir uns mit R, L, C Netzwerken, in welchen durch sprunghafte Änderungen Ausgleichsvorgänge ausgelöst werden. Zur Berechnung dieser Transienten müssen gewöhnliche

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Analyse extremer Ereignisse unter dem Einfluss von Langzeitkorrelationen

Analyse extremer Ereignisse unter dem Einfluss von Langzeitkorrelationen Das BMBF-Vorhaben Skalenanalyse hydrologischer und hydrometeorologischer Zeitreihen Analyse extremer Ereignisse unter dem Einfluss von Langzeitkorrelationen Jan F. Eichner Armin Bunde, Jan W. Kantelhardt

Mehr

Die Fourier-Transformation

Die Fourier-Transformation 1/20 Die Fourier-Transformation 2/20 Die FT ermittelt aus dem Signal von überlagerten Schwingungen welche Frequenzen enthalten sind FT 3/20 Von der folgenden Schwingung soll die Frequenz ermittelt werden

Mehr

9. Schätzen und Testen bei unbekannter Varianz

9. Schätzen und Testen bei unbekannter Varianz 9. Schätzen und Testen bei unbekannter Varianz Dr. Antje Kiesel Institut für Angewandte Mathematik WS 2011/2012 Schätzen und Testen bei unbekannter Varianz Wenn wir die Standardabweichung σ nicht kennen,

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg. PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg PROGNOSE II - Vertiefung Aufgaben und Lösungen Sommersemester 2004 Aufgabe 1 U t bedeute weißes Rauschen und B den Backshift

Mehr

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27

Statistik II. II. Univariates lineares Regressionsmodell. Martin Huber 1 / 27 Statistik II II. Univariates lineares Regressionsmodell Martin Huber 1 / 27 Übersicht Definitionen (Wooldridge 2.1) Schätzmethode - Kleinste Quadrate Schätzer / Ordinary Least Squares (Wooldridge 2.2)

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

4 Das Overlap-Konzept

4 Das Overlap-Konzept 4 Das Overlap-Konzept Das Overlap-Konzept wurde in [31] ausführlich beschrieben. Im folgenden werden wir die Aspekte darlegen, die nötig sind, um das Konzept zu implementieren, und werden uns dabei eng

Mehr

Lokale Frequenzanalyse

Lokale Frequenzanalyse Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

6. Statistische Schätzung von ARIMA Modellen

6. Statistische Schätzung von ARIMA Modellen 6. Statistische Schätzung von ARIMA Modellen Vorschau: ARIMA Modelle Modellidentifikation verschiedene Schätzverfahren Modelldiagnostik Fallstudien Zeitreihenanalyse 1 6.1 ARIMA Modelle Bisher: ARMA(p,q)-Modelle:

Mehr