Bivariate Zeitreihenanalyseverfahren Tests auf Nichtlinearität

Größe: px
Ab Seite anzeigen:

Download "Bivariate Zeitreihenanalyseverfahren Tests auf Nichtlinearität"

Transkript

1 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Skewness, Kurtosis ür zirkuläre Maße z.b. Phasenkohärenz R Problem: nur statische Nichtlinearitäten Statistik Ansatz: transormiere Phasen Phasendierenzen au Einheitskreis N N C cosϕ i; S sinϕi N N m m a m C a N R i + is allgemeiner + ib N i e im cos R e ϕ i Ansatz i 0 ; b i S 0 arctan C Momente - ter Ordnung N N i sin ϕ i Mardia, 972

2 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität mit olgt m ür R e im : a C ; b S ; R R ; m 0 arctan De.: zirkuläre Skewness S C Statistik Skew circ 3/ 2 m 2 / S S R2 sin 2 0 R Skew circ 0 ür unimodale smmetrische Verteilungen De.: zirkuläre Kurtosis Kurt circ [ 4 ] 2 R cos m 2 S S / Kurt circ > < latkurtisch unimodal letokurtisch

3 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Fourierraum Sektren höherer Ordnung C.L. Niklas & A.P. Petroulu: Higher-order sectral analsis: a nonlinear signal rocessing ramework. Prentice Hall, New Jerse, 993 T. Subba Rao & M.M. Gabr: An introduction to bisectral analsis and bilinear time series models. Lecture Notes in Statistics, vol. 24, Sringer, Berlin, 984 Polsektren/Kumulanten/Statistische Momente: Leistungssektrum Kumulant 2. Ordnung Moment 2.Ordnung P-DFTAKF 2 AKF 2 τ t τ Varianz Bisektrum Kumulant 3. Ordnung Moment 3.Ordnung B2-DFTAKF 3 AKF 3 τ t τ 2τ Skewness Trisektrum Kumulant 4. Ordnung Moment 4.Ordnung T3-DFTAKF 4 AKF 4 τ t τ 2τ 3τ Kurtosis

4 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Fourierraum Sektren höherer Ordnung Erweiterung ür bivariaten Fall seziell: 2. Ordnung gegeben zwei stochastische Prozesse t, t De.: Kreuz-Bisektren,,,, X X Y B X Y Y B Y Y X B Y X X B X FT t Y FT t

5 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Sektren höherer Ordnung Erweiterung ür bivariaten Fall seziell: 2. Ordnung gegeben zwei stochastische Prozesse t, t Fourierraum De.: Bikohärenz Kohärenz 3. Ordnung - normalisiertes Bisektrum Normierungsaktoren: Leistungssektren, Kreuzsektrum - Deinitionsbereich: [0,] - erlaubt Detektion von quadratischen Phasenkolungen eaks der Bikohärenz bei bestimmten Frequenz-Paaren - Probleme: Rechenauwand, Rauschen, Statistik erordert lange Zeitreihen

6 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Fourierraum Bikohärenz Beisiel: 3-Wellensstem mit quadratischer Phasenkolung 3 Moden: k cos 2π k + ϕ + cos 2π k + ϕ + cos π + k + ϕ + ϕ [ ] [ ] [ { } ] BetragBikohärenz PhaseBikohärenz Dilomarbeit K. Ulbrich, 2000

7 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Surrogat - "Ersatzsto" - versucht Eigenschaten des Originals zu reroduzieren Überrüung einer seziellen Eigenschat z.b. Nichtlinearität - zu untersuchende Eigenschat dar im Surrogat nicht enthalten sein - alle anderen Eigenschaten müssen vom Surrogat reroduziert werden - Nullhothesen-Test: z.b. H 0 Die Daten wurden von stationären, Gaußschen, linearen stochastischen Prozeß generiert - arametrisch / nicht-arametrische Statistik

8 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Wiederholung: Erstellung von univariaten Surrogaten bedingte Realisationen: bootstraing, keine Modellanassung notwendig! - "random shuling" - Phasenrandomisierung unter Erhaltung des Amlitudensektrums FT - amlitudenangeaßte hasenrandomisierte Surrogate AAFT - iterativ amlitudenangeaßte hasenrandomisierte Surrogate IAAFT

9 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Prichard & Theiler, PRL 73, 95, 994 multivariate hasenrandomisierte Surrogate MFT Basis: hasenrandomisierte univariate Surrogate FT Forderung: MFT-Surrogat soll lineare Korrelationen innerhalb der einzelnen Zeitreihen reroduzieren und lineare Korrelationen zwischen ihnen gegeben: M simultan gemessene Observablen t, 2 t,..., M t mit Mittelwert 0 und Varianz ; X, X 2,..., X M seien die jeweiligen Fouriertransormierten Kreuzsektrum: X * j Nichtlinearität in Phasendierenz! X k A j A k i e ϕ ϕ k j

10 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Prichard & Theiler, PRL 73, 95, 994 Nullhothese: Daten wurden von stationären, linear korrelierten Gaußschen stochastischen Prozessen generiert Methode: erhalte lineare Eigenschaten: Kreuzsektrum Wiener-Khinchin: Kreuzkorrelationsunktion randomisiere nichtlineare Eigenschaten: ersetze Phasendierenzen δϕ ϕ k - ϕ j durch φ [0,2π] Rücktransormation ergibt MFT: ~ j j i F φ X e j

11 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Schreiber & Schmitz, Phsica D 42, 346, 2000 multivariate iterativ amlitudenangeasste hasenrandomisierte Surrogate MIAAFT Basis: univariate IAAFT-Surrogate Forderung wie MFT: Surrogat soll lineare Korrelationen innerhalb der einzelnen Zeitreihen reroduzieren und lineare Korrelationen zwischen ihnen zusätzlich zu MFT: iterative Erhaltung der jeweiligen möglicherweise nicht-gaußschen Amlitudenverteilungen

12 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bi-/multivariate Surrogate Schreiber & Schmitz, Phsica D 42, 346, 2000 Methode: ersetze Phasendierenzen δϕ ϕ k - ϕ j durch φ [0,2π] mit den Eigenschaten: Erhaltung der Original-Phasendierenzeigenschaten: Ansatz: wähle φ n Rangϕ n + α n wähle α n so, das ϕ n möglichst wenig geändert wird tanα n M m M m sin ϕ cos ϕ n n Rang ϕ Rang ϕ n n iφ i 2 Ersetzung minimal im least-squares Sinne: ϕk ϕm M m e e 2! min

13 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Iterationsverhalten: MIAAFT ür gekoelte harmonische Oszillatoren CML Dilomarbeit J. Schumacher, 2002

14 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Iterationsverhalten: MIAAFT ür Gaußverteiltes isosektrales Rauschen Surrogate von gekoelten harmonischen Oszillatoren CML Dilomarbeit J. Schumacher, 2002

15 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Iterationsverhalten: MIAAFT ür gekoelte Rössler-Ssteme CML Dilomarbeit J. Schumacher, 2002

16 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität Phasenkohärenz R und Anallsvorhersage Dilomarbeit J. Schumacher, 2002

17 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität bivariate Surrogate ür kohärente Daten Dolan & Neimann, PRE 65, DOI 02608, 2002 coherent digitall iltered Surrogate CDF Problem: Arteakte in bivariaten Surrogaten bei ast-kohärenten Daten Forderung: erhalte Sektrum, Kreuzsektrum und Kohärenzunktion Hothese: Eigenschaten der Kohärenzunktion durch Nichtlinearität gegeben Ansatz: erzeuge Vergleichs-Kohärenzunktion aus zwei statistisch unabhängigen linearen stochastischen Prozessen vt und wt t t av t + a v t a w t + aw t a 0,5 vollständige Kohärenz; a 0 keine Kohärenz

18 Bivariate Zeitreihenanalseverahren Tests au Nichtlinearität coherent digitall iltered Surrogate CDF bestimme requenzabhängige Kohärenzunktion ür t und t: Invertierung ergibt Filterunktion a Multilikation der jeweiligen Fouriersektren mit Filterunktion a erhält Kohärenzunktion der Surrogate bzgl. Kohärenzunktion der Originale [ ] [ ] a a a a C + [ ] C C a +

Eine computergestützte Einführung mit

Eine computergestützte Einführung mit Thomas Cleff Deskriptive Statistik und Explorative Datenanalyse Eine computergestützte Einführung mit Excel, SPSS und STATA 3., überarbeitete und erweiterte Auflage ^ Springer Inhaltsverzeichnis 1 Statistik

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein

Versuch 35: Speckle. F-Praktikum Versuch 35: Speckle N. Lindlein Versuch 35: Speckle Norbert Lindlein nstitut für Optik, nformation und Photonik (Max-Planck-Forschungsgruppe) Universität Erlangen-Nürnberg Staudtstr. 7/B, D-958 Erlangen E-mail: norbert.lindlein@optik.uni-erlangen.de

Mehr

Technische Mathematik und Datenanalyse - Bakkalaureatsstudium

Technische Mathematik und Datenanalyse - Bakkalaureatsstudium Technische Mathematik und Datenanalyse - Bakkalaureatsstudium Analysis Analysis II 310.105 Nowak C. Analysis II 4.00 VO Mo 8.00-10.00 HS 2 Di 8.00-10.00 HS 2 Do 8.00-10.00 HS 2 310.106 Nowak C. Übungen

Mehr

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3

Inhaltsverzeichnis. I Einführung in STATISTICA 1. 1 Erste Schritte in STATISTICA 3 I Einführung in STATISTICA 1 1 Erste Schritte in STATISTICA 3 2 Datenhaltung in STATISTICA 11 2.1 Die unterschiedlichen Dateitypen in STATISTICA....... 11 2.2 Import von Daten......... 12 2.3 Export von

Mehr

Kurtosis - der fehlende Knopf bei der Schwingprüfung oder Sigma Dehnung mit B&K Regelsystem 1059

Kurtosis - der fehlende Knopf bei der Schwingprüfung oder Sigma Dehnung mit B&K Regelsystem 1059 Kurtosis - der fehlende Knopf bei der Schwingprüfung oder Sigma Dehnung mit B&K Regelsystem 1059 Wer sich mit der Schwingprüfung in der Umweltsimulation befasst, verwendet dabei oft weißes, also normal-

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik Forelsalung Inhaltsverzeichnis: hea Unterpunkt Seite Modulation allgeein Deinition 7- Frequenzultiplex 7- Zeitultiplex 7- Übersicht Modulationsverahren Aplitudenodulation (AM) 7-3 Winkelodulation (WM)

Mehr

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell:

Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen. Das folgende Modell ist ein GARCH(1,1)-Modell: Angewandte Ökonometrie, WS 2012/13, 1. Teilprüfung am 6.12.2012 - Lösungen LV-Leiterin: Univ.Prof.Dr. Sylvia Frühwirth-Schnatter 1 Wahr oder falsch? 1. Das folgende Modell ist ein GARCH(1,1)-Modell: Y

Mehr

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse

Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Analyse von Zeitreihen in der Umweltphysik und Geophysik Stochastische Prozesse Yannik Behr Gliederung 1 Stochastische Prozesse Stochastische Prozesse Ein stochastischer Prozess ist ein Phänomen, dessen

Mehr

Prozeßbezogene Signalverarbeitung in der LDA- und PDA-Meßtechnik

Prozeßbezogene Signalverarbeitung in der LDA- und PDA-Meßtechnik Slide 1 Prozeßbezogene Signalverarbeitung in der LDA- und PDA-Meßtechnik Postdoktorandenprogramm der DFG Zusammenarbeit mit Dantec MT Betreuung durch Universität Rostock Slide Postdoktorandenprogramm Ziel

Mehr

Übungsserie Nr. 10 mit Lösungen

Übungsserie Nr. 10 mit Lösungen Übungsserie Nr. 10 mit Lösungen 1 Ein Untersuchungsdesign sieht einen multivariaten Vergleich einer Stichprobe von Frauen mit einer Stichprobe von Männern hinsichtlich der Merkmale X1, X2 und X3 vor (Codierung:

Mehr

ARCH- und GARCH-Modelle

ARCH- und GARCH-Modelle ARCH- und GARCH-Modelle Thomas Simon Analyse und Modellierung komplexer Systeme 04.11.2009 homas Simon (Analyse und Modellierung komplexerarch- Systeme) und GARCH-Modelle 04.11.2009 1 / 27 Ausgangssituation

Mehr

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko

Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Vergleich von KreditRisk+ und KreditMetrics II Seminar Portfoliokreditrisiko Jan Jescow Stoehr Gliederung 1. Einführung / Grundlagen 1.1 Ziel 1.2 CreditRisk+ und CreditMetrics 2. Kreditportfolio 2.1 Konstruktion

Mehr

2. Eigenschaften digitaler Nachrichtensignale

2. Eigenschaften digitaler Nachrichtensignale FH OOW / Fachb. Technik / Studiengang Elektrotechnik u. Automatisierungstechnik Seite 2-2. Eigenschaften digitaler Nachrichtensignale 2. Abgrenzung zu analogen Signalen Bild 2.- Einteilung der Signale

Mehr

Kybernetik Systemidentifikation

Kybernetik Systemidentifikation Kberneti Sstemidentifiation Mohamed Oubbati Institut für euroinformati Tel.: +49 73 / 50 2453 mohamed.oubbati@uni-ulm.de 2. 06. 202 Was ist Sstemidentifiation? Der Begriff Sstemidentifiation beschreibt

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

H2 1862 mm. H1 1861 mm

H2 1862 mm. H1 1861 mm 1747 mm 4157 mm H2 1862 mm H1 1861 mm L1 4418 mm L2 4818 mm H2 2280-2389 mm H1 1922-2020 mm L1 4972 mm L2 5339 mm H3 2670-2789 mm H2 2477-2550 mm L2 5531 mm L3 5981 mm L4 6704 mm H1 2176-2219 mm L1 5205

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Teil I Beschreibende Statistik 29

Teil I Beschreibende Statistik 29 Vorwort zur 2. Auflage 15 Vorwort 15 Kapitel 0 Einführung 19 0.1 Methoden und Aufgaben der Statistik............................. 20 0.2 Ablauf statistischer Untersuchungen..............................

Mehr

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen

Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Umgang mit und Ersetzen von fehlenden Werten bei multivariaten Analysen Warum überhaupt Gedanken machen? Was fehlt, ist doch weg, oder? Allgegenwärtiges Problem in psychologischer Forschung Bringt Fehlerquellen

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Statistik im Bachelor-Studium der BWL und VWL Methoden, Anwendung, Interpretation Mit herausnehmbarer Formelsammlung ein Imprint von Pearson Education München Boston San Francisco Harlow,

Mehr

Vorlesung. Komplexe Zahlen

Vorlesung. Komplexe Zahlen Vorlesung Komplexe Zahlen Motivation Am Anfang der Entwicklung der komplexen Zahlen stand ein algebraisches Problem: die Bestimmung der Lösung der Gleichung x 2 + 1 = 0. 1 Mit der Lösung dieses Problems

Mehr

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff

Adaptive Systeme. Sommersemester Prof. Dr. -Ing. Heinz-Georg Fehn. Prof. Dr. rer. nat. Nikolaus Wulff Adaptive Systeme Sommersemester 2015 Prof. Dr. -Ing. Heinz-Georg Fehn Prof. Dr. rer. nat. Nikolaus Wulff Prof. Dr. H.-G. Fehn und Prof. Dr. N. Wulff 1 Adaptive Systeme Adaptives System: ein System, das

Mehr

Frailty Models in Survival Analysis

Frailty Models in Survival Analysis Aus dem Institut für Medizinische Epidemiologie, Biometrie und Informatik (Direktor: Prof. Dr. Johannes Haerting) Frailty Models in Survival Analysis Habilitation zur Erlangung des akademischen Grades

Mehr

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II

Kategoriale abhängige Variablen: Logit- und Probit -Modelle. Statistik II Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Wiederholung Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell

Mehr

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge)

PRAKTIKUM Experimentelle Prozeßanalyse 2. VERSUCH AS-PA-2 Methoden der Modellbildung statischer Systeme Teil 2 (für ausgewählte Masterstudiengänge) FACHGEBIET Systemanalyse PRAKTIKUM Experimentelle Prozeßanalyse 2 VERSUCH AS-PA-2 "Methoden der Modellbildung statischer Systeme" Teil 2 (für ausgewählte Masterstudiengänge) Verantw. Hochschullehrer: Prof.

Mehr

Statistische Verfahren für das Data Mining in einem Industrieprojekt

Statistische Verfahren für das Data Mining in einem Industrieprojekt Statistische Verfahren für das Data Mining in einem Industrieprojekt Thorsten Dickhaus Forschungszentrum Jülich GmbH Zentralinstitut für Angewandte Mathematik Telefon: 02461/61-4193 E-Mail: th.dickhaus@fz-juelich.de

Mehr

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher

Planen mit mathematischen Modellen 00844: Computergestützte Optimierung. Autor: Dr. Heinz Peter Reidmacher Planen mit mathematischen Modellen 00844: Computergestützte Optimierung Leseprobe Autor: Dr. Heinz Peter Reidmacher 11 - Portefeuilleanalyse 61 11 Portefeuilleanalyse 11.1 Das Markowitz Modell Die Portefeuilleanalyse

Mehr

Quantitative Risk Management

Quantitative Risk Management Quantitative Risk Management Copulas und Abhängigkeit Johannes Paschetag Mathematisches Institut der Universität zu Köln Wintersemester 2009/10 Betreuung: Prof. Schmidli, J. Eisenberg i Inhaltsverzeichnis

Mehr

Überblick und Ausblick

Überblick und Ausblick Letzte Vorlesung Statistik Vorlesung Datenanalyse und Statistik Gliederung 1 Sortiert nach dem Inhalt der Vorlesung Sortiert nach Daten 2 Kovarianzmatrizen Klusteranalyse Hauptkomponentenanalyse Faktorenanalyse

Mehr

Eine zweidimensionale Stichprobe

Eine zweidimensionale Stichprobe Eine zweidimensionale Stichprobe liegt vor, wenn zwei qualitative Merkmale gleichzeitig betrachtet werden. Eine Urliste besteht dann aus Wertepaaren (x i, y i ) R 2 und hat die Form (x 1, y 1 ), (x 2,

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

2 Störeinflüsse und Schutzmaßnahmen

2 Störeinflüsse und Schutzmaßnahmen 2 Störeinflüsse und Schutzmaßnahmen 2.1 Modulation und Demodulation 2.2 Störeinflüsse 2.2.1 Netzstörungen 2.2.2 Schaltstörungen 2.2.3 Hochfrequenzstörungen 2.2.4 Rauschen 2.3 Schutzmaßnahmen 2.3.1 Schutzerde

Mehr

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014

Prüfungstutorat: Angewandte Methoden der Politikwissenschaft. Polito Seminar Carl Schweinitz 10.12.2014 Prüfungstutorat: Angewandte Methoden der Politikwissenschaft Polito Seminar Carl Schweinitz 10.12.2014 Übersicht 1. Einheiten und Variablen 2. Skalen und ihre Transformation 3. Deskriptive Statistik 4.

Mehr

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min

Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Klausur, Multivariate Verfahren, SS 2006, 6 Kreditpunkte, 90 min 1 Prof. Dr. Fred Böker 08.08.2006 Klausur zur Vorlesung Multivariate Verfahren, SS 2006 6 Kreditpunkte, 90 min Gesamtpunkte: 39 Aufgabe

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Einführung in die statistische Datenanalyse I

Einführung in die statistische Datenanalyse I Einführung in die statistische Datenanalyse I Inhaltsverzeichnis 1. EINFÜHRUNG IN THEORIEGELEITETES WISSENSCHAFTLICHES ARBEITEN 2 2. KRITIERIEN ZUR AUSWAHL STATISTISCH METHODISCHER VERFAHREN 2 3. UNIVARIATE

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada

Stochastische Analysis. Zufallsmatrizen. Roland Speicher Queen s University Kingston, Kanada Stochastische Analysis für Zufallsmatrizen Roland Speicher Queen s University Kingston, Kanada Was ist eine Zufallsmatrix? Zufallsmatrix = Matrix mit zufälligen Einträgen A : Ω M N (C) Was ist eine Zufallsmatrix?

Mehr

Digitale Signalbearbeitung und statistische Datenanalyse

Digitale Signalbearbeitung und statistische Datenanalyse Digitale Signalbearbeitung und statistische Datenanalyse Teil 5 8 Aus ontinuierlichem Signal werden in onstanten Zeitintervallen Daten entnommen ontinuierliches Signal x(t) Einheitsimpulsfuntion Gewichtete

Mehr

Stochastic Sampling als Messprinzip

Stochastic Sampling als Messprinzip Stochastic Sampling als Messprinzip Ehrenkolloquium Frau Prof. Dr.-Ing. habil. Erika Müller 21.09.2012, Universität Rostock Holger Nobach Max-Planck-Institut für Dynamik und Selbstorganisation Göttingen

Mehr

3. Stochastische Prozesse (Version 1.6.06)

3. Stochastische Prozesse (Version 1.6.06) Statistische Physik, G Schön, Universität Karlsruhe 33 3 Stochastische Prozesse (Version 606) 3 Begriffe, elementare Eigenschaften Definition: Wir betrachten eine kontinuierliche [oder diskrete] stochastische

Mehr

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck

Statistik am PC. Lösungen mit Excel. Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck Statistik am PC Lösungen mit Excel Bearbeitet von Michael Monka, Werner Voß, Nadine M. Schöneck 5., aktualisierte und erweiterte Auflage 2008. Buch. XVI, 528 S. Hardcover ISBN 978 3 446 41555 3 Format

Mehr

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen

Veranstaltungsort Bildungsherberge der Studierendenschaft der FernUniversität Hagen Bildungsurlaub-Seminare: Lerninhalte und Programm Seminartitel SPSS für Psychologen/innen (BH15113) Termin Mo, den 18.05.bis Fr, den 22.05.2015 (40 UStd.) Veranstaltungsort Bildungsherberge der Studierendenschaft

Mehr

Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren

Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren Wahrscheinlichkeitstheoretische Grundlagen für False Discovery Rate-kontrollierende multiple Testprozeduren Thorsten Dickhaus Universität des Saarlandes, 06. Juli 2009 Übersicht Einführung: Multiples Testen

Mehr

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8

Profil A 49,3 48,2 50,7 50,9 49,8 48,7 49,6 50,1 Profil B 51,8 49,6 53,2 51,1 51,1 53,4 50,7 50 51,5 51,7 48,8 1. Aufgabe: Eine Reifenfirma hat für Winterreifen unterschiedliche Profile entwickelt. Bei jeweils gleicher Geschwindigkeit und auch sonst gleichen Bedingungen wurden die Bremswirkungen gemessen. Die gemessenen

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Korrelation - Regression. Berghold, IMI

Korrelation - Regression. Berghold, IMI Korrelation - Regression Zusammenhang zwischen Variablen Bivariate Datenanalyse - Zusammenhang zwischen 2 stetigen Variablen Korrelation Einfaches lineares Regressionsmodell 1. Schritt: Erstellung eines

Mehr

3.2 Bivariate Verteilungen

3.2 Bivariate Verteilungen 3.2 Bivariate Verteilungen zwei Variablen X, Y werden gemeinsam betrachtet (an jedem Objekt i, i = 1,..., n, werden gleichzeitig zwei Merkmale beobachtet) Beobachtungswerte sind Paare/Kombinationen von

Mehr

Stochastische Prozesse und Zeitreihenmodelle

Stochastische Prozesse und Zeitreihenmodelle Kapitel 12 Stochastische Prozesse und reihenmodelle [ Stochastische Prozesse und reihenmodelle ] Einleitung:.com-Blase an der NASDAQ Department of Statistics and Mathematics WU Wien c 2008 Statistik 12

Mehr

Einfache Statistiken in Excel

Einfache Statistiken in Excel Einfache Statistiken in Excel Dipl.-Volkswirtin Anna Miller Bergische Universität Wuppertal Schumpeter School of Business and Economics Lehrstuhl für Internationale Wirtschaft und Regionalökonomik Raum

Mehr

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert.

In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Konstante Modelle: In konstanten Modellen wird davon ausgegangen, dass die zu prognostizierende Größe sich über die Zeit hinweg nicht verändert. Der prognostizierte Wert für die Periode T+i entspricht

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Analyse extremer Ereignisse unter dem Einfluss von Langzeitkorrelationen

Analyse extremer Ereignisse unter dem Einfluss von Langzeitkorrelationen Das BMBF-Vorhaben Skalenanalyse hydrologischer und hydrometeorologischer Zeitreihen Analyse extremer Ereignisse unter dem Einfluss von Langzeitkorrelationen Jan F. Eichner Armin Bunde, Jan W. Kantelhardt

Mehr

2. Der Phasenregelkreis (PLL = Phase Locked Loop)

2. Der Phasenregelkreis (PLL = Phase Locked Loop) . Der Phasenregelkreis (PLL = Phase Locked Loop). PLL-Grundlagen. Stationäres Verhalten.3 Nachführverhalten hrverhalten.4 Rauschverhalten.5 Phasendetektoren: Realisierungsaspekte W. Koch: Synchronisationsverfahren,,

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Datenanalyse mit Python. Dr. Wolfram Schroers

Datenanalyse mit Python. Dr. Wolfram Schroers <Wolfram.Schroers - at - Field-theory.org> Datenanalyse mit Python Dr. Wolfram Schroers Problem Beobachtungen Modell (Annahmen, Vereinfachungen) Vorhersagen Vergleich Python: Stärken und Schwächen Anwendung:

Mehr

AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM

AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM AUSWERTUNG: LASER B TOBIAS FREY, FREYA GNAM 6. FOURIER-TRANSFORMATION In diesem Versuch ging es darum, mittels Fouriertransformation aus dem Beugungsbild eines Einfachspaltes auf dessen Breite zu schließen.

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Multivariate Statistik

Multivariate Statistik Hermann Singer Multivariate Statistik 1 Auflage 15 Oktober 2012 Seite: 12 KAPITEL 1 FALLSTUDIEN Abbildung 12: Logistische Regression: Geschätzte Wahrscheinlichkeit für schlechte und gute Kredite (rot/blau)

Mehr

Auswertung mit dem Statistikprogramm SPSS: 30.11.05

Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Auswertung mit dem Statistikprogramm SPSS: 30.11.05 Seite 1 Einführung SPSS Was ist eine Fragestellung? Beispiel Welche statistische Prozedur gehört zu welcher Hypothese? Statistische Berechnungen mit

Mehr

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit

Motivation. Jede Messung ist mit einem sogenannten Fehler behaftet, d.h. einer Messungenauigkeit Fehlerrechnung Inhalt: 1. Motivation 2. Was sind Messfehler, statistische und systematische 3. Verteilung statistischer Fehler 4. Fehlerfortpflanzung 5. Graphische Auswertung und lineare Regression 6.

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Mathematischer Vorkurs für Physiker WS 2009/10

Mathematischer Vorkurs für Physiker WS 2009/10 TU München Prof. Dr. P. Vogl, Dr. S. Schlicht Mathematischer Vorkurs für Physiker WS 2009/10 Vorlesung 1, Montag vormittag Vektoralgebra Ein Vektor lässt sich geometrisch als eine gerichtete Strecke darstellen,

Mehr

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression

Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Weitere Fragestellungen im Zusammenhang mit einer linearen Einfachregression Speziell im Zusammenhang mit der Ablehnung der Globalhypothese werden bei einer linearen Einfachregression weitere Fragestellungen

Mehr

Ilmenauer Beiträge zur Wirtschaftsinformatik. Herausgegeben von U. Bankhofer, V. Nissen D. Stelzer und S. Straßburger

Ilmenauer Beiträge zur Wirtschaftsinformatik. Herausgegeben von U. Bankhofer, V. Nissen D. Stelzer und S. Straßburger Ilmenauer Beiträge zur Wirtschaftsinformatik Herausgegeben von U. Bankhofer, V. Nissen D. Stelzer und S. Straßburger Zur Güte von Signifikanztests auf mehrdimensionale Normalverteiltheit Arbeitsbericht

Mehr

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen

2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen 4. Datenanalyse und Modellbildung Deskriptive Statistik 2-1 2. Deskriptive Statistik 2.1. Häufigkeitstabellen, Histogramme, empirische Verteilungsfunktionen Für die Auswertung einer Messreihe, die in Form

Mehr

Kategoriale abhängige Variablen:

Kategoriale abhängige Variablen: Kategoriale abhängige Variablen: Logit- und Probit -Modelle Statistik II Literatur Annahmen und Annahmeverletzungen Funktionen Exponenten, Wurzeln usw. Das Problem Das binäre Logit-Modell Statistik II

Mehr

Einführung in die empirische Wirtschaftsforschung. Wintersemester 2015/2016 Syllabus

Einführung in die empirische Wirtschaftsforschung. Wintersemester 2015/2016 Syllabus Einführung in die empirische Wirtschaftsforschung Wintersemester 2015/2016 Syllabus Prof. Dr. Almut Balleer Lehr- und Forschungsgebiet Empirische Wirtschaftsforschung RWTH Aachen Kursbeschreibung Dieser

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Einführung in die Statistik mit EXCEL und SPSS

Einführung in die Statistik mit EXCEL und SPSS Christine Duller Einführung in die Statistik mit EXCEL und SPSS Ein anwendungsorientiertes Lehr- und Arbeitsbuch Zweite, überarbeitete Auflage Mit 71 Abbildungen und 26 Tabellen Physica-Verlag Ein Unternehmen

Mehr

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes

Messung von Veränderungen. Dr. Julia Kneer Universität des Saarlandes von Veränderungen Dr. Julia Kneer Universität des Saarlandes Veränderungsmessung Veränderungsmessung kennzeichnet ein Teilgebiet der Methodenlehre, das direkt mit grundlegenden Fragestellungen der Psychologie

Mehr

Zusammenhänge zwischen metrischen Merkmalen

Zusammenhänge zwischen metrischen Merkmalen Zusammenhänge zwischen metrischen Merkmalen Darstellung des Zusammenhangs, Korrelation und Regression Daten liegen zu zwei metrischen Merkmalen vor: Datenpaare (x i, y i ), i = 1,..., n Beispiel: x: Anzahl

Mehr

Titel anhand der der Präsentation. nicht fett geschrieben

Titel anhand der der Präsentation. nicht fett geschrieben Schätzung von Vollzeitäquivalenten Titel anhand der der Präsentation AHV-Lohndaten wenn nötig Jann Potteratmit und Monique Untertitel Graf Bundesamt für Statistik, Statistische Methoden METH nicht fett

Mehr

Einführung in die Statistik mir R

Einführung in die Statistik mir R Einführung in die Statistik mir R ww w. syn t egris.de Überblick GESCHÄFTSFÜHRUNG Andreas Baumgart, Business Processes and Service Gunar Hofmann, IT Solutions Sven-Uwe Weller, Design und Development Jens

Mehr

Lokale Frequenzanalyse

Lokale Frequenzanalyse Lokale Frequenzanalyse Fourieranalyse bzw. Powerspektrum liefern globale Maße für einen Datensatz (mittleres Verhalten über die gesamte Länge des Datensatzes) Wiederkehrdiagramme zeigten, dass Periodizitäten

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

2. Korrelation, lineare Regression und multiple Regression

2. Korrelation, lineare Regression und multiple Regression multiple 2.2 Lineare 2.2 Lineare 1 / 130 2.2 Lineare 2 / 130 2.1 Beispiel: Arbeitsmotivation Untersuchung zur Motivation am Arbeitsplatz in einem Chemie-Konzern 25 Personen werden durch Arbeitsplatz zufällig

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen. Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Mehr

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15

Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Inhaltsverzeichnis Vorwort 13 Themenaspekte 13 Digitale Kommunikationstechniken 13 Übersicht über den Lehrstoff 14 Beispiele und Übungsaufgaben 15 Kursoptionen 15 Kapitel 1 Einleitung 17 1.1 Historischer

Mehr

Kann ein flächendeckender Ausbau der Windkraft zur Glättung der Einspeisung führen?

Kann ein flächendeckender Ausbau der Windkraft zur Glättung der Einspeisung führen? Kann ein flächendeckender Ausbau der Windkraft zur Glättung der Einspeisung führen? Dr. - Ing. Detlef Ahlborn 22. Februar 2015 Zusammenfassung In zahllosen Studien wird behauptet, ein flächendeckender

Mehr

Methoden Quantitative Datenanalyse

Methoden Quantitative Datenanalyse Leitfaden Universität Zürich ISEK - Andreasstrasse 15 CH-8050 Zürich Telefon +41 44 635 22 11 Telefax +41 44 635 22 19 www.isek.uzh.ch 11. September 2014 Methoden Quantitative Datenanalyse Vorbereitung

Mehr

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen.

5.2 Optionen Auswahl der Statistiken, die bei der jeweiligen Prozedur zur Verfügung stehen. 5 Statistik mit SPSS Die Durchführung statistischer Auswertungen erfolgt bei SPSS in 2 Schritten, der Auswahl der geeigneten Methode, bestehend aus Prozedur Variable Optionen und der Ausführung. 5.1 Variablen

Mehr

Portfoliorisiko und Minimum Varianz Hedge

Portfoliorisiko und Minimum Varianz Hedge ortfoliorisiko und Minimum Varianz Hedge Vertiefungsstudium Finanzwirtschaft rof. Dr. Mark Wahrenburg Überblick Messung von Risiko ortfoliodiversifikation Minimum Varianz ortfolios ortfolioanalyse und

Mehr

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25

Einleitung 19. Teil I Datenanalyse und Modellbildung Grundlagen 25 Inhaltsverzeichnis Einleitung 19 Zu diesem Buch 19 Konventionen in diesem Buch 20 Was Sie nicht lesen müssen 21 Falsche Voraussetzungen 21 Wie dieses Buch aufgebaut ist 21 Teil I: Datenanalyse und Grundlagen

Mehr

Ferien-Intensivkurse

Ferien-Intensivkurse Ferien-Intensivkurse Gymnasium/ Berufliches Gymnasium Programm Winterferien / Osterferien für das Schuljahr 2013/2014 Akademie für Innovative Bildung und Geschäftsführerin Vorsitzender des Bankverbindung

Mehr

Running R. Windows Aus Menü. Lese R Code ein führt den Code auch gleich aus, eventuell muss vorher das Verzeichnis gewechselt werden.

Running R. Windows Aus Menü. Lese R Code ein führt den Code auch gleich aus, eventuell muss vorher das Verzeichnis gewechselt werden. Einführung 1 / 1 Einführung 2/1 Running R Windows Aus Menü Linux Lese R Code ein führt den Code auch gleich aus, eventuell muss vorher das Verzeichnis gewechselt werden. Auf der Konsole/Eingabeaufforderung:

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten. Frank Konietschke

Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten. Frank Konietschke Nichtparametrische Analyse longitudinaler Daten in faktoriellen Experimenten Frank Konietschke Abteilung für Medizinische Statistik Universität Göttingen 1 Übersicht Beispiele CGI (repeated measures) γ-gt

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

MATHEMATISCHE ANALYSE VON ALGORITHMEN

MATHEMATISCHE ANALYSE VON ALGORITHMEN MATHEMATISCHE ANALYSE VON ALGORITHMEN Michael Drmota Institut für Diskrete Mathematik und Geometrie, TU Wien michael.drmota@tuwien.ac.at www.dmg.tuwien.ac.at/drmota/ Ringvorlesung SS 2008, TU Wien Algorithmus

Mehr

Wirtschaftsmathematik Wirtschaftsstatistik

Wirtschaftsmathematik Wirtschaftsstatistik Wirtschaftsmathematik Wirtschaftsstatistik Ökonometrie ARMA-Prozesse Prof. Dr. Franz Seitz, Weiden / Dr. Benjamin R. Auer, Leipzig Neben den formalen Grundlagen von ARMA-Prozessen (Autoregressive Moving

Mehr

Multivariate Analysemethoden

Multivariate Analysemethoden Multivariate Analysemethoden 30.04.2014 Günter Meinhardt Johannes Gutenberg Universität Mainz Einführung Was sind multivariate Analysemethoden? Vorlesung Übung/Tut Prüfung Verfahrensdarstellung in Überblick

Mehr

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14

Inhalt 1 Einführung... 1 2 Ausgewählte Begriffe... 10 3 Vorgehensweise im Überblick... 14 VII 1 Einführung... 1 1.1 Warum Versuche?... 1 1.2 Warum Statistik?... 1 1.3 Warum Versuchsplanung?... 4 1.4 Welche Art von Ergebnissen kann man erwarten?... 6 1.5 Versuche oder systematische Beobachtung?...

Mehr