Technische Informatik 2 Maschinenprogrammierungskonzepte

Größe: px
Ab Seite anzeigen:

Download "Technische Informatik 2 Maschinenprogrammierungskonzepte"

Transkript

1 Technische Informatik 2 Maschinenprogrammierungskonzepte Prof Dr Miroslaw Malek Sommersemester 2005 wwwinformatikhu-berlinde/rok/ca

2 Thema heute Ausführung von Befehlen Ein-/Ausgabeprogrammierung Architekturen Stackspeichermaschinen Allzweck-Register Unterprogrammaufrufe TI2 P - 2 Copyright 2004 M Malek

3 Wahl der Sprache ML Machine Language Maschinensprache (Benutzung von 0 und 1 oder Hexadezimalzahlen, unhandlich und fehleranfällig) AL Assembly Language Assembler (maschinenabhängig, aber effizient) HLL High-Level Language Hochsprache (handlich und universell) Compiler/Assembler und Betriebssystem in Kombination mit der Rechnerarchitektur -Befehlssatz und E/A Fähigkeiten- sind entscheidende Faktoren bezüglich der Architektursperformance TI2 P - 3 Copyright 2004 M Malek

4 Warum eigentlich Assembler? Die wichtigsten Vorteile der Kenntnis von Assembler: Verständnis, wie ein Rechner arbeitet Ermöglicht die Programmierung von eingebetteten Systeme mit beschränkten Ressourcen Debugging: Wie werden Programme entwanzt? Wie werden Fehler gesucht? Ermöglicht hardwarenahe Performanceoptimierung TI2 P - 4 Copyright 2004 M Malek

5 Beispiel einer Befehlsausführung 4-Bit Befehlsfeld 6-Bit Quelladressfeld 6-Bit Zieladressfeld Op-Code Source Destination ADD #R7, R3 Allgemeines Format R 3 32 R 3 49 PC = R 7 i PC = R 7 i + 4 Autoincrement mode 010 (2 10 ): EA=[PC]=[R 7 ] und increment PC=R 7 i add 2 R 7 0 R 3 i add 2 R 7 0 R 3 i i i + 4 i + 4 TI2 P - 5 Bevor Befehlsausführung Nach Befehlsausführung Copyright 2004 M Malek

6 Hauptspeicheradresse 16-Bit Wortinhalte Beispiel einer Befehlsausführung (2) A = 1150 B = ) R 0 = 317 2) R 0 = MOV ADD MOV 6 R R 0 6 R 7 0 R R 0 6 R EA = X + PC = = 1150 MOV A, R0 ADD B, R0 MOV R0, C HALT 1212 HALT Assemblerversion des Programms Modus 6 - Relative Indexadressierung C = EA=X + [PC]=X + [R 7 ] TI2 P - 6 Copyright 2004 M Malek

7 Beispiel der Ausführung des PowerPC Befehls StoreWord OpCode (36) QuelleReg(S) ZielReg(A) Offset (d) Autoincrement Modus stw: stw rs, d(ra), wobei rs (Quelle)und ra (Ziel) Register sind und d ein Offset ist Der Inhalt von rs wird in die Speicherzelle geschrieben, die durch EA bestimmt ist Dabei gilt: EA=(rA)+d Binäre Darstellung des Mnemonics stw: Dezimale Darstellung des Mnemonics stw: 36 TI2 P - 7 Copyright 2004 M Malek

8 Ein-/Ausgabeprogrammierung E/A-Bus TTYIN TTYOUT CIN, COUT CIN = 1 COUT= 1 MOVB TTYIN, R1 MOVB R1, TTYOUT TI2 P - 8 CPU Terminal TTYIN CIN TTYOUT COUT 8-Bit-Pufferregister der Tastatur zugeordnet 8-Bit-Pufferregister dem Bildschirm zugeordnet Steuer-Flags informiert CPU, dass ein gültiges Zeichen in TTYIN ist informiert CPU, ein gültiges Zeichen nach TTYOUT zu schicken Eingabeoperation Aufzeichnung Copyright 2004 M Malek

9 Ein-/Ausgabeprogrammierung (2) MOV #LOC,R0 Initialisiere das Zeigerregister R0 mit der ersten Position des Hauptspeicherbereichs, in den die Zeichen geladen werden sollen READ: TSTB KBSTATUS Warte auf das Zeichen, das in das BPL READ Tastaturpufferregister TTYIN eingegeben wird MOVB Übertrage das Zeichen aus dem TTYIN in den Hauptspeicher (CIN wird auf 0 gesetzt) TI2 P - 9 Copyright 2004 M Malek

10 Ein-/Ausgabeprogrammierung (3) ECHO- BACK: TSTB PRSTATUS Warte bis der Bildschirm bereit ist BPL ECHOBACK Verschiebe das gerade gelesene Zeichen als Ausgabe in das Bildschirmpufferregister TTYOUT (COUT wird auf 0 gesetzt) CMPB (R0)+,#CR Überprüfe, ob das gerade BNE READ eingelesene Zeichen CR HALT (Wagenrücklauf) ist Falls nicht, springe zurück und lese das nächste Zeichen; anderenfalls halte an Das Zeigeregister wird inkrementiert, wenn ein weiteres Zeichen gelesen wurde TI2 P - 10 Copyright 2004 M Malek

11 Architekturtypen Stack- Architekturen Register-Register Architekturen Register-Speicher Architekturen Speicher - Speicher Architekturen Markierte Architekturen (tagged architectures) Tradeoffs Leistung Effizienz Design Komplexität Einfachheit von Programmierung Einfachheit der Parameterübergabe und der Unterprogrammaufrufe Rekursion TI2 P - 11 Copyright 2004 M Malek

12 Ein Stack im Hauptspeicher Stackzeigerregister R i Stack Oberstes Element 43 Unterstes Element M 1 TI2 P - 12 Copyright 2004 M Malek

13 Beispiele für Stackoperationen MOV NEWITEM,- (R1) (push) MOV (R1)+,TOPITEM (pop) (Bemerkung (a) => (b), (a) => (c), (a) => (d)) R1-28 R1 19 R1 17 R Stack Newitem Topitem 19 Newitem Topitem 19 Newitem Topitem Newitem Topitem 19 (a)initiale Inhalte des Stacks (b) Nach Push von NEWITEM c) Nach Pop zum TOPITEM d) Nach Ausführung ADD TI2 P - 13 Copyright 2004 M Malek

14 (Stack-)Stapelspeichermaschinen Die meisten Befehle beziehen sich auf die oberen Einträge (meistens die oberen 2) eines Stapelspeichers Um Daten zwischen dem Speicher und dem Top of Stack zu verschieben werden zusätzliche Befehle bereitgestellt Die oberen Einträge des Stapelspeichers (2 bis 8 oder mehr) werden in der CPU festgehalten Befehle beziehen sich implizit auf den Top of Stack Ideal um Ausdrücke zu berechnen (Stapelspeicher hält dazwischenliegende Resultate) Werden als gute Architektur in Zusammenhang mit höheren Programmiersprachen angesehen TI2 P - 14 Copyright 2004 M Malek

15 Stapelspeichermaschinen (2) Nachteile: werden sehr langsam, wenn der Stapelspeicher größer als der lokale Speicher der CPU wird kein einfacher Zugriff auf Daten in der Mitte des Stapelspeichers Binärarithmetische und logische Operationen: Operanden: obere 2 auf dem Stapelspeicher Operanden werden aus dem Stapelspeicher entfernt das Ergebnis wird auf dem Top of Stack platziert TI2 P - 15 Copyright 2004 M Malek

16 Stapelspeichermaschinen (3) Unärarithmetische und logische Operationen: Operand auf dem Top of Stack Operand wird durch das Ergebnis der Operation ersetzt Datenverschiebeoperationen: push: platzieren eines Speicherinhalts auf dem Top of Stack pop: verschieben von Top of Stack in den Speicher TI2 P - 16 Copyright 2004 M Malek

17 Stapelspeichermaschinen: Programmbeispiele Wir wählen unseren bevorzugten Ausdruck (y ax 2 + bx+c) aus; wir benutzen eine hypothetische Assemblersprache (tos = Top of Stack): push a tos: a push x tos: a x dup tos: a x x mult tos: a x 2 mult tos: a x 2 push b tos: a x 2 b push x tos: a x 2 b x mult tos: a x 2 bx push c tos: a x 2 bx c add tos: a x 2 bx+c add tos: a x 2 +bx+c pop y y a x 2 +bx+c TI2 P - 17 Copyright 2004 M Malek

18 General Purpose Register Maschinen (GPRM) Bei Stapelspeichermaschinen sind nur die obersten zwei Elemente des Stapels direkt für Befehle verfügbar In General Purpose Register Maschinen ist der CPU-Speicher als ein Satz von Registern organisiert, die für die Befehle gleichermaßen verfügbar sind Wiederholt benutzte Operanden werden in Register plaziert (unter Aufsicht des Programms) dies reduziert die Befehlsgröße ebenso werden Speicherzugriffe reduziert TI2 P - 18 Copyright 2004 M Malek

19 GPR-Maschinen: Programmbeispiel Wieder werten wir (y ax 2 + bx+c) auf einer hypothetischen Maschine mit 16 Registern R0 bis R15 und 2 Operanden-Registern aus load x, R1 R1 x load a, R2 R2 a load b, R3 R3 b load c, R4 R4 c mult R1, R2 R2 ax mult R1, R2 R2 ax 2 mult R1, R3 R3 bx add R2, R3 R3 ax 2 + bx add R3, R4 R4 ax 2 + bx + c store R4, y y ax 2 + bx + c TI2 P - 19 Copyright 2004 M Malek

20 PDP-11, LSI-11, VAX GPR-Maschinen: Beispiele IBM 360, IBM 370, PC-RT, RISC 6000 Motorola, all series CDC 6600, 7600, CYBER SPARC, MIPS, x86, PowerPC, Pentium, Itanium TI2 P - 20 Copyright 2004 M Malek

21 Programmsegment Programm- und Datensegmentorganisation: Beispiel MC68000 Datensegment Programmanfang (PB) Programmzähler (PC) Programmlimit (PL) Aufsteigende Speicheradressen Datenlimit (DL) Datenanfang (DS) Stackmarke Stackzeiger (SP) Stacklimit (SL) Datenbereich Stack: vorherige Funktionen Stack: jetzige Funktionen Stack: freier Bereich TI2 P - 21 Copyright 2004 M Malek

22 Programmaufruf mit Hilfe von Stack: 1 dedizierte Adresse Speicheradresse Rufendes Programm Unterroutine Ruf_Unterroutine SUB nächster Befehl Der Befehl Ruf_Unterroutine schreibt die Adresse 201 in die Speicheradresse LINK SUB erster Befehl Verzweigung (LINK) TI2 P - 22 Copyright 2004 M Malek

23 Programmaufruf mit Hilfe von Stack: 2 Benutzung von Stack Speicheradresse Rufendes Programm Unterroutine Ruf_Unterroutine SUB nächster Befehl Der Befehl Ruf_Unterroutine legt die Adresse 201 auf den Stack SUB erster Befehl Return Der Rückkehrbefehl lädt den obersten Stackeintrag in den PC TI2 P - 23 Copyright 2004 M Malek

24 Aufruf eingebetteter Unterprogramme auf dem Stack R 5 alter Wert von R 5 R [R 6 ] Top-Value [R 6 ] alter Wert von R 5 (=1050) = 1048 Top-Value Prozessorstack a Initial: R 5 ist ein linkage register (speichert den Wert des PC) R 6 ist ein Zeiger zum Prozessorstack b Nach Ausführung von JSR R5, SUB1 TI2 P - 24 Copyright 2004 M Malek

25 Aufruf eingebetteter Unterprogramme auf dem Stack (2) R R [R 6 ] = (next in S1) [R 1 ] main [R 0 ] main [R 6 ] = 1040 [R 0 ] sub [R 1 ] main alter Wert von R 5 [R 0 ] main Top-Value alter Wert von R 5 Top-Value c Nach Ausführung von JSR R7, SUB2 d Nach Ausführung von MOV R0, -(R6) in SUB 2 TI2 P - 25 Copyright 2004 M Malek

26 Aufruf eingebetteter Unterprogramme auf dem Stack (3) R R 5 alter Wert von R 5 [R 6 ] [R 1 ] main [R 6 ] Top-Value = 1044 [R 0 ] main = 1044 alter Wert von R 5 Top-Value e Nach Ausführung von RTS R7 f Nach Ausführung von RTS R5 TI2 P - 26 Copyright 2004 M Malek

27 Beispielprogramm für die Berechnung der Fakultät im PowerPC lbz r1, 15 (r o ) li r2, #1 fac: cmpwi LT, r1, #2 blt end mullw r2, r2, r1 addi r1, r1, #-1 b fac end: blr Hole n von MEM[15+ r 0 ] Speichert 1 in das Register R 2 Vergleiche r1 mit der Zahl 2; LT ist das Bit für kleiner als im Conditionregister(CR) LT wird gesetzt wenn r1 < 2 Bedingter Sprung zum Label FINISHED, wenn das LT Bit in CR gesetzt ist Multipliziere r 2, mit r 1, das Ergebnis wird in r 2 gespeichert Dekrementiere r 1 um 1 Springe zum Label FAC Verzweige zum Link- Register, dort hat der Aufrufer eine Rücksprungadresse hinterlassen TI2 P - 27 Copyright 2004 M Malek

Technische Informatik 2 Adressierungsarten

Technische Informatik 2 Adressierungsarten Technische Informatik 2 Adressierungsarten Prof. Dr. Miroslaw Malek Sommersemester 2009 www.informatik.hu-berlin.de/rok/ca Thema heute X-Adressmaschine 0-Adressmaschine 1-Adressmaschine 2-Adressmaschine

Mehr

DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE

DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE D - CA - IV - AA - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 4 DATEN UND BEFEHLSFORMATE, ADDRESSIERUNGSARTEN UND MASCHINEN- PROGRAMMIERUNGSKONZEPTE Sommersemester 2003 Leitung:

Mehr

10. Die Adressierungsarten des MSP 430

10. Die Adressierungsarten des MSP 430 10. Die Adressierungsarten 10.1 Übersicht über die Adressierungsarten 10.2 -Operanden 10.3 Indexregister mit Distanz 10.4 Symbolische (relativ zum ) 10.5 Absolute 10.6 Indirekte 10.7 Indirekte Adressierung

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Die Branch Instruktion beq Grundlagen der Rechnerarchitektur Prozessor 13 Betrachten nun Branch Instruktion beq Erinnerung, Branch Instruktionen beq ist vom I Typ Format:

Mehr

5.BMaschinensprache und Assembler

5.BMaschinensprache und Assembler Die Maschinenprogrammebene eines Rechners Jörg Roth 268 5.BMaschinensprache und Assembler Die vom Prozessor ausführbaren Befehle liegen im Binärformat vor. Nur solche Befehle sind direkt ausführbar. So

Mehr

INFORMATIK Oberstufe. Funktionsweise eines Rechners

INFORMATIK Oberstufe. Funktionsweise eines Rechners INFORMATIK Oberstufe Funktionsweise eines Rechners Lehrplan Inf 12.3 (ca. 17 Std.): Grundlegende Kenntnisse über den Aufbau eines Rechners und seiner prinzipiellen Funktionsweise helfen den Schülern, den

Mehr

Datenpfad einer einfachen MIPS CPU

Datenpfad einer einfachen MIPS CPU Datenpfad einer einfachen MIPS CPU Zugriff auf den Datenspeicher Grundlagen der Rechnerarchitektur Prozessor 19 Betrachten nun Load und Store Word Erinnerung, Instruktionen lw und sw sind vom I Typ Format:

Mehr

Der Toy Rechner Ein einfacher Mikrorechner

Der Toy Rechner Ein einfacher Mikrorechner Der Toy Rechner Ein einfacher Mikrorechner Dr. Gerald Heim Haid-und-Neu-Str. 10-14 76131 Karlsruhe 16. Mai 1995 Allgemeine Informationen 2 Quelle: Phil Kopmann, Microcoded versus Hard-Wired Logic, Byte

Mehr

Die Mikroprogrammebene eines Rechners

Die Mikroprogrammebene eines Rechners Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl holen Befehl dekodieren Operanden holen etc.

Mehr

L3. Datenmanipulation

L3. Datenmanipulation L Datenmanipulation Aufbau eines Computers Prozessor, Arbeitsspeicher und system Maschinensprachen und Maschinenbefehle Beispiel einer vereinfachten Maschinensprache Ausführung des Programms und Befehlszyklus

Mehr

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013

x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 x86 Assembler Praktische Einführung Sebastian Lackner Michael Müller 3. Juni 2013 1 / 53 Inhaltsverzeichnis 1 Einführung 2 Assembler Syntax, Register und Flags 3 Hauptspeicher 4 Stack 5 Assemblerbefehle

Mehr

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015

Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Technische Informatik 1 Übung 2 Assembler (Rechenübung) Georgia Giannopoulou (ggeorgia@tik.ee.ethz.ch) 22./23. Oktober 2015 Ziele der Übung Aufgabe 1 Aufbau und Aufruf von Funktionen in Assembler Codeanalyse

Mehr

Instruktionssatz-Architektur

Instruktionssatz-Architektur Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2005/2006 Übersicht 1 Einleitung 2 Bestandteile der ISA 3 CISC / RISC Übersicht 1 Einleitung 2 Bestandteile

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Kapitel 22: Mima-X Thomas Worsch KIT, Institut für Theoretische Informatik Wintersemester 2015/2016 GBI Grundbegriffe der Informatik KIT, Institut für Theoretische Informatik

Mehr

Technische Informatik 1

Technische Informatik 1 Technische Informatik 1 2 Instruktionssatz Lothar Thiele Computer Engineering and Networks Laboratory Instruktionsverarbeitung 2 2 Übersetzung Das Kapitel 2 der Vorlesung setzt sich mit der Maschinensprache

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Prozessor Übersicht Datenpfad Control Pipelining Data Hazards Control Hazards Multiple Issue Grundlagen der Rechnerarchitektur Prozessor 2 Datenpfad einer einfachen MIPS

Mehr

Kap 4. 4 Die Mikroprogrammebene eines Rechners

Kap 4. 4 Die Mikroprogrammebene eines Rechners 4 Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten (Befehl holen, Befehl dekodieren, Operanden holen etc.).

Mehr

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 14. Okt. 2015 Computeraufbau: nur ein Überblick Genauer: Modul Digitale Systeme (2. Semester) Jetzt: Grundverständnis

Mehr

Computer-Architektur Ein Überblick

Computer-Architektur Ein Überblick Computer-Architektur Ein Überblick Johann Blieberger Institut für Rechnergestützte Automation Computer-Architektur Ein Überblick p.1/27 Computer-Aufbau: Motherboard Computer-Architektur Ein Überblick p.2/27

Mehr

Unterprogramme. Unterprogramme

Unterprogramme. Unterprogramme Unterprogramme Unterprogramme wichtiges Hilfsmittel für mehrfach benötigte Programmabschnitte spielen in höheren Programmiersprachen eine wesentliche Rolle in Assembler sind bestimmte Konventionen nötig

Mehr

Assembler - Adressierungsarten

Assembler - Adressierungsarten Assembler - Adressierungsarten Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Adressierungsarten 1/31 2008-04-01

Mehr

TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Die Mikroprogrammebene eines Rechners Das Abarbeiten eines Arbeitszyklus eines einzelnen Befehls besteht selbst wieder aus verschiedenen Schritten, z.b. Befehl

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur ARM, x86 und ISA Prinzipien Übersicht Rudimente des ARM Assemblers Rudimente des Intel Assemblers ISA Prinzipien Grundlagen der Rechnerarchitektur Assembler 2 Rudimente

Mehr

1. Übung - Einführung/Rechnerarchitektur

1. Übung - Einführung/Rechnerarchitektur 1. Übung - Einführung/Rechnerarchitektur Informatik I für Verkehrsingenieure Aufgaben inkl. Beispiellösungen 1. Aufgabe: Was ist Hard- bzw. Software? a Computermaus b Betriebssystem c Drucker d Internetbrowser

Mehr

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache

Assembler Programmierung Motivation. Informatik II SS 2004 Teil 4: Assembler Programmierung. Assembler vs. Maschinensprache Assembler Programmierung Motivation Informatik II SS 2004 Teil 4: Assembler Programmierung Was ist ein Programm? Eine Reihe von Befehlen, die der Ausführung einer Aufgabe dient Dazu wird das Programm sequentiell

Mehr

Assembler DOS (Beta 1) Copyright 2000 Thomas Peschko. Assembler II - DOS. ASSEMBLER Arbeiten mit Dateien und Daten.

Assembler DOS (Beta 1) Copyright 2000 Thomas Peschko. Assembler II - DOS. ASSEMBLER Arbeiten mit Dateien und Daten. Assembler II - DOS ASSEMBLER Arbeiten mit Dateien und Daten peschko@aol.com 1 Wer nun den Eindruck hat, dass unsere Programme hauptsächlich nur Unterprogramme vor ihren Karren spannen und sich darauf beschränken

Mehr

3.0 8051 Assembler und Hochsprachen

3.0 8051 Assembler und Hochsprachen 3.0 8051 Assembler und Hochsprachen Eine kurze Übersicht zum Ablauf einer Programmierung eines 8051 Mikrocontrollers. 3.1 Der 8051 Maschinencode Grundsätzlich akzeptiert ein 8051 Mikrocontroller als Befehle

Mehr

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009

Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Fachgebiet Rechnerarchitektur Fachbereich Informatik Lösungsvorschlag 9. Übung Technische Grundlagen der Informatik II Sommersemester 2009 Aufgabe 9.1: Dinatos-Algorithmus-Analyse Die folgenden Verilog-Zeilen

Mehr

B1 Stapelspeicher (stack)

B1 Stapelspeicher (stack) B1 Stapelspeicher (stack) Arbeitsweise des LIFO-Stapelspeichers Im Kapitel "Unterprogramme" wurde schon erwähnt, dass Unterprogramme einen so genannten Stapelspeicher (Kellerspeicher, Stapel, stack) benötigen

Mehr

1.7 Assembler Programmierung

1.7 Assembler Programmierung 1.7 Assembler Programmierung Die nach außen sichtbare Programmierschnittstelle eines Prozessors ist der Befehlscode. Dies ist eine binäre Dateninformation, die vom Prozessor Byte für Byte abgearbeitet

Mehr

Assembler - Variablen

Assembler - Variablen Assembler - Variablen Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Variablen 1/30 2008-04-21 Variablen Variablen

Mehr

Technische Informatik 2 Software

Technische Informatik 2 Software Technische Informatik 2 Software Prof. Dr. Miroslaw Malek Sommersemester 2005 www.informatik.hu-berlin.de/rok/ca Thema heute Evolution der Software Schichten Lader (Manuell, Bootstrap, Programm im ROM)

Mehr

Mikrocomputertechnik. Einadressmaschine

Mikrocomputertechnik. Einadressmaschine technik Einadressmaschine Vorlesung 2. Mikroprozessoren Einführung Entwicklungsgeschichte Mikroprozessor als universeller Baustein Struktur Architektur mit Akku ( Nerdi) FH Augsburg, Fakultät für Elektrotechnik

Mehr

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme

Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester Lorenz Schauer Mobile & Verteilte Systeme Grundlagen zur Assemblerprogrammierung unter SPIM im Sommersemester 2016 Lorenz Schauer Mobile & Verteilte Systeme 12. Juli 2016 Agenda heute Grundlagen: Unterprogramme I Call-by-Value (CBV) vs. Call-by-Reference

Mehr

Grundlagen der Rechnerarchitektur

Grundlagen der Rechnerarchitektur Grundlagen der Rechnerarchitektur Einführung Unsere erste Amtshandlung: Wir schrauben einen Rechner auf Grundlagen der Rechnerarchitektur Einführung 2 Vorlesungsinhalte Binäre Arithmetik MIPS Assembler

Mehr

Assembler-Programme. Systemprogrammierung (37-023) Elementare Komponenten eines Assembler-Programmes

Assembler-Programme. Systemprogrammierung (37-023) Elementare Komponenten eines Assembler-Programmes Systemprogrammierung (37-023) Assemblerprogrammierung Betriebssystemgrundlagen Maschinenmodelle Dozent: Prof. Thomas Stricker krankheitshalber vertreten durch: Felix Rauch WebSite: http://www.cs.inf.ethz.ch/37-023/

Mehr

Im Original veränderbare Word-Dateien

Im Original veränderbare Word-Dateien Das Von-Neumann-Prinzip Prinzipien der Datenverarbeitung Fast alle modernen Computer funktionieren nach dem Von- Neumann-Prinzip. Der Erfinder dieses Konzeptes John von Neumann (1903-1957) war ein in den

Mehr

Einführung. Saalübung Informatik II SS Einführung. Einführung

Einführung. Saalübung Informatik II SS Einführung. Einführung Saalübung Informatik II SS 2006 SPIM-Assembler Teil 1 Einführung Übung zur SPIM-Assemblerprogrammierung Assembler ist die elementare Sprache eines Prozessors Assemblerbefehle repräsentieren die Basisoperationen

Mehr

2.2 Rechnerorganisation: Aufbau und Funktionsweise

2.2 Rechnerorganisation: Aufbau und Funktionsweise 2.2 Rechnerorganisation: Aufbau und Funktionsweise é Hardware, Software und Firmware é grober Aufbau eines von-neumann-rechners é Arbeitsspeicher, Speicherzelle, Bit, Byte é Prozessor é grobe Arbeitsweise

Mehr

3. Grundlagen der Rechnerarchitektur

3. Grundlagen der Rechnerarchitektur 3. Grundlagen der Rechnerarchitektur 3.1 Architektur des von-neumann-rechners 3.2 Maschinentypen: Einadressmaschine, Zweiadressmaschine 3.3 Befehlsformate und Adressierungstechniken 3.4 Beispiel: der Prozessor

Mehr

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44

Virtueller Speicher. SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Virtueller Speicher SS 2012 Grundlagen der Rechnerarchitektur Speicher 44 Die Idee Virtuelle Adressen Prozess 1 Speicherblock 0 Speicherblock 1 Speicherblock 2 Speicherblock 3 Speicherblock 4 Speicherblock

Mehr

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion)

Auch hier wieder. Control. RegDst Branch MemRead MemtoReg ALUOp MemWrite ALUSrc RegWrite. Instruction[31 26] (also: das Opcode Field der Instruktion) Auch hier wieder Aus voriger Wahrheitstabelle lässt sich mechanisch eine kombinatorische Schaltung generieren, die wir im Folgenden mit dem Control Symbol abstrakt darstellen. Instruction[31 26] (also:

Mehr

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04.

Institut für Informatik Prof. Dr. D. Hogrefe Dipl.-Inf. R. Soltwisch, Dipl.-Inform. M. Ebner, Prof. Dr. D. Hogrefe Informatik II - SS 04. Kontrollstrukturen Informatik II SS 2004 Teil 4: Assembler Programmierung Sprünge (bedingte und unbedingte) If-then-else, Case Loop (n Durchläufe) While (Abbruchbedingung) Institut für Informatik Prof.

Mehr

1 Einleitung zum RISC Prozessor

1 Einleitung zum RISC Prozessor 1 Einleitung zum RISC Prozessor Wesentliche Entwicklungsschritte der Computer-Architekturen [2, 3]: Familienkonzept von IBM mit System/360 (1964) und DEC mit PDP-8 (1965) eingeführt: Gleiche Hardware-Architekturen

Mehr

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7

Rechnerarchitektur Atmega 32. 1 Vortrag Atmega 32. Von Urs Müller und Marion Knoth. Urs Müller Seite 1 von 7 1 Vortrag Atmega 32 Von Urs Müller und Marion Knoth Urs Müller Seite 1 von 7 Inhaltsverzeichnis 1 Vortrag Atmega 32 1 1.1 Einleitung 3 1.1.1 Hersteller ATMEL 3 1.1.2 AVR - Mikrocontroller Familie 3 2 Übersicht

Mehr

2. Rechnerarchitektur 2.1 einfache Computer

2. Rechnerarchitektur 2.1 einfache Computer Fakultät Informatik Institut Systemarchitektur Professur Rechnernetze WS 2012 LV Informatik-I für Verkehrsingenieure 2. Rechnerarchitektur 2.1 einfache Computer Dr. rer.nat. D. Gütter Mail: WWW: Dietbert.Guetter@tu-dresden.de

Mehr

Teil 2: Rechnerorganisation

Teil 2: Rechnerorganisation Teil 2: Rechnerorganisation Inhalt: Zahlendarstellungen Rechnerarithmetik schrittweiser Entwurf eines hypothetischen Prozessors mit Daten-, Adreß- und Kontrollpfad Speicherorganisation Mikroprogrammierung

Mehr

Mikroprozessor als universeller digitaler Baustein

Mikroprozessor als universeller digitaler Baustein 2. Mikroprozessor 2.1 Allgemeines Mikroprozessor als universeller digitaler Baustein Die zunehmende Integrationsdichte von elektronischen Schaltkreisen führt zwangsläufige zur Entwicklung eines universellen

Mehr

Das Prinzip an einem alltäglichen Beispiel

Das Prinzip an einem alltäglichen Beispiel 3.2 Pipelining Ziel: Performanzsteigerung é Prinzip der Fließbandverarbeitung é Probleme bei Fließbandverarbeitung BB TI I 3.2/1 Das Prinzip an einem alltäglichen Beispiel é Sie kommen aus dem Urlaub und

Mehr

Assembler Unterprogramme

Assembler Unterprogramme Assembler Unterprogramme Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler Unterprogramme 1/43 2008-06-03 Unterprogramme

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung

Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Systeme I: Betriebssysteme Kapitel 8 Speicherverwaltung Version 21.12.2016 1 Inhalt Vorlesung Aufbau einfacher Rechner Überblick: Aufgabe, Historische Entwicklung, unterschiedliche Arten von Betriebssystemen

Mehr

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren.

68000 Assembler. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. WAS ist ein Assembler? Ein System, das den Programmierer hilft, eine maschinennahe Programmierung zu realisieren. Ein Programm liegt der CPU in binärer Form vor und wird durch den Assembler in einer primitiven

Mehr

Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen

Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen Kode-Erzeugung, Abstrakte Maschinen, Rechnerarchitekturen Kode-Erzeugung: Syntaxbaum Ausgabeprogramm Starte mit Syntaxbaum: Darstellung des eingegebenen Programms Wähle Zielarchitektur Wähle abstrakte

Mehr

Wie groß ist die Page Table?

Wie groß ist die Page Table? Wie groß ist die Page Table? Im vorigen (typischen) Beispiel verwenden wir 20 Bits zum indizieren der Page Table. Typischerweise spendiert man 32 Bits pro Tabellen Zeile (im Vorigen Beispiel brauchten

Mehr

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes

Grundlagen der Informatik III Wintersemester 2010/ Vorlesung Dr.-Ing. Wolfgang Heenes Grundlagen der Informatik III Wintersemester 2010/2011 4. Vorlesung Dr.-Ing. Wolfgang Heenes int main() { printf("hello, world!"); return 0; } msg: main:.data.asciiz "Hello, world!".text.globl main la

Mehr

Was ist die Performance Ratio?

Was ist die Performance Ratio? Was ist die Performance Ratio? Wie eben gezeigt wäre für k Pipeline Stufen und eine große Zahl an ausgeführten Instruktionen die Performance Ratio gleich k, wenn jede Pipeline Stufe dieselbe Zeit beanspruchen

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Mikrocomputertechnik

Mikrocomputertechnik Mikrocomputertechnik Bernd-Dieter Schaaf Mit Mikrocontrollern der Familie 8051 ISBN 3-446-40017-6 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/3-446-40017-6 sowie im Buchhandel

Mehr

Einführung in AVR Assembler

Einführung in AVR Assembler Einführung in AVR Assembler Dennis Fassbender Institut für Technik Autonomer Systeme (LRT8) Universität der Bundeswehr München 09042014 Was ist Assembler? Low-level-Programmiersprache Erlaubt direkten

Mehr

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen:

Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: 1 ADRESSIERUNG IN MMIX Beim Programmieren mit MMIX habt ihr vielleicht schon öfter eine der folgenden Fehlermeldungen von MMIXAL bekommen: no base address is close enough to the address A! relative address

Mehr

Programmiersprachen Einführung in C

Programmiersprachen Einführung in C Programmiersprachen Einführung in C Teil 1: Von der Maschinensprache zu C Prof. Dr. Maschinensprache: MIPS R2000 Was bewirkt folgendes Programm: 00100111101111011111111111100000 10101111101111110000000000010100

Mehr

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner

C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Von-Neumann-Rechner (John von Neumann : 1903-1957) C. BABBAGE (1792 1871): Programmgesteuerter (mechanischer) Rechner Quelle: http://www.cs.uakron.edu/~margush/465/01_intro.html Analytical Engine - Calculate

Mehr

Assembler-Programmierung

Assembler-Programmierung Assembler-Programmierung Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Assembler-Programmierung 1/48 2012-02-29 Assembler-Programmierung

Mehr

FAKULTÄT FÜR INFORMATIK

FAKULTÄT FÜR INFORMATIK FAKULTÄT FÜR INFORMATIK TECHNISCHE UNIVERSITÄT MÜNCHEN Lehrstuhl für Rechnertechnik und Rechnerorganisation Prof. Dr. Arndt Bode Einführung in die Rechnerarchitektur Wintersemester 2016/2017 Tutorübung

Mehr

J.5 Die Java Virtual Machine

J.5 Die Java Virtual Machine Java Virtual Machine Die Java Virtual Machine 22 Prof. Dr. Rainer Manthey Informatik II Java-Compiler und Java Virtual Machine Quellcode-Datei class C... javac D.java Java-Compiler - Dateien class class

Mehr

Heute nur MIPS-Praxis (4 Aufgaben)

Heute nur MIPS-Praxis (4 Aufgaben) Themen heute Heute nur MIPS-Praxis (4 Aufgaben) Hinweis: Diese Aufgaben findet ihr auf den Übungsblättern zu den Tutorien (bei Aufgabe 4 wurde eine Teilaufgabe und im Tutorium #6 bereits geklärte Wissensfragen

Mehr

Aufgabe 1 Entwicklung einer Virtuellen Maschine

Aufgabe 1 Entwicklung einer Virtuellen Maschine Aufgabe 1 Entwicklung einer Virtuellen Maschine Rainer Müller Department Informatik 4 Verteilte Systeme und Betriebssysteme Friedrich-Alexander-Universität Erlangen-Nürnberg WS 2014/2015 R. Müller Entwicklung

Mehr

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden.

Name: Vorname: Matr.-Nr.: 4. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen stets ein mikroprogrammierbares Steuerwerk verwenden. Name: Vorname: Matr.-Nr.: 4 Aufgabe 1 (8 Punkte) Entscheiden Sie, welche der folgenden Aussagen zum Thema CISC/RISC-Prinzipien korrekt sind. a) RISC-Architekturen müssen zur Decodierung von Maschinenbefehlen

Mehr

4.2 Universalrechner: Schaltung unabhängig vom Problem 185

4.2 Universalrechner: Schaltung unabhängig vom Problem 185 4.2 Universalrechner: Schaltung unabhängig vom Problem 85 a) Geben Sie binär die Befehlsworte an, mit denen Sie die Eingänge a, b und c in die Register R, R2 und R übernehmen. K D M4 M M2 M Kommentar XXXXXXXXXXX

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013. Vorlesung 9, Dienstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013. Vorlesung 9, Dienstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2012 / 2013 Vorlesung 9, Dienstag 18. Dezember 2012 (Performance Tuning, Profiling, Maschinencode) Prof. Dr.

Mehr

Kapitel 1: Einführung

Kapitel 1: Einführung 10 Kapitel 1: Einführung 1.1 Was ist eine Programmiersprache? 1.2 Details zu C++ 1.3 Phasen der Programmierung 1.4 Ein erstes Programm: Hello World! 1.5 Addition zweier Zahlen 1.6 Entscheidungen 1.1 Was

Mehr

Rechnerarchitektur. M. Jakob. 1. Februar 2015. Gymnasium Pegnitz

Rechnerarchitektur. M. Jakob. 1. Februar 2015. Gymnasium Pegnitz Rechnerarchitektur M. Jakob Gymnasium Pegnitz 1. Februar 2015 Inhaltsverzeichnis 1 Aufbau eines Computersystems Praktische Grundlagen Von-Neumann-Rechner 2 Darstellung und Speicherung von Zahlen 3 Registermaschinen

Mehr

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

CPU. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 CPU 1/62 2012-02-29 CPU Übersicht: Pipeline-Aufbau Pipeline- Hazards CPU

Mehr

Programmierung 2. Übersetzer: Code-Erzeugung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland.

Programmierung 2. Übersetzer: Code-Erzeugung. Sebastian Hack. Klaas Boesche. Sommersemester 2012. hack@cs.uni-saarland.de. boesche@cs.uni-saarland. 1 Programmierung 2 Übersetzer: Code-Erzeugung Sebastian Hack hack@cs.uni-saarland.de Klaas Boesche boesche@cs.uni-saarland.de Sommersemester 2012 Bytecodes Der Java Übersetzer erzeugt keine Maschinensprache

Mehr

Lektion 3: Was ist und was kann ein Computer?

Lektion 3: Was ist und was kann ein Computer? Lektion 3: Was ist und was kann ein Computer? Helmar Burkhart Informatik burkhart@ifi.unibas.ch EINFÜHRUNG IN DIE INFORMATIK I 3-0 Übersicht Lektion 3 Hardware Software Aufbau eines Computers Rechnerkern

Mehr

Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online

Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online Themen heute Besprechung des 3. Übungsblattes MIMA-Interpreter MIMA-Aufgabe: Primzahltest Weitere MIMA-Aufgaben online Besprechung des 3. Übungsblattes Aufgabe 3 Speicherplätze für Mikrocode-Anweisungen

Mehr

Vorlesung Rechnerarchitektur. Einführung

Vorlesung Rechnerarchitektur. Einführung Vorlesung Rechnerarchitektur Einführung Themen der Vorlesung Die Vorlesung entwickelt an Hand von zwei Beispielen wichtige Prinzipien der Prozessorarchitektur und der Speicherarchitektur: MU0 Arm Speicher

Mehr

Daniel Betz Wintersemester 2011/12

Daniel Betz Wintersemester 2011/12 Daniel Betz Wintersemester 2011/12 Digitally signed by daniel.betz@daniel-betz.com Date: 2011.12.04 17:24:40 +01'00' Insgesamt 16 Register von je 16 Bit (=WORD) Breite Untere 8 Register auch als 2 Register

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler

Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler Rechnerarchitektur und Betriebssysteme (CS201): AVR-CPU und -Assembler 1. Oktober 2013 Prof. Dr. Christian Tschudin Departement Mathematik und Informatik, Universität Basel Wiederholung / Diskussion 1.

Mehr

Mikrocomputertechnik - Programmierung

Mikrocomputertechnik - Programmierung 3 Programmierung Assembler Aufgaben: Übersetzt mnemotechnische Abkürzungen (z.b. move, add...) in die Maschinenbefehle des Prozessors Ermöglicht die Vergabe von Namen für Speicheradressen (Label) Berechnet

Mehr

Lösungsvorschlag zur 3. Übung

Lösungsvorschlag zur 3. Übung Prof Frederik Armknecht Sascha Müller Daniel Mäurer Grundlagen der Informatik Wintersemester 09/10 1 Präsenzübungen 11 Schnelltest Lösungsvorschlag zur Übung a) Welche der folgenden Aussagen entsprechen

Mehr

Mikrocontroller-Programmierung

Mikrocontroller-Programmierung Mikrocontroller-Programmierung Anhand des HC12 Fabian Wiesel Überblick Überblick Mikrocontroller Überblick HC12 CPU Peripherie des DG128 Assemblerprogrammierung Mikrocontroller Leistungsfähigkeit: zwischen

Mehr

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note:

Name: ES2 Klausur Thema: ARM 25.6.07. Name: Punkte: Note: Name: Punkte: Note: Hinweise für das Lösen der Aufgaben: Zeit: 95 min. Name nicht vergessen! Geben Sie alle Blätter ab. Die Reihenfolge der Aufgaben ist unabhängig vom Schwierigkeitsgrad. Erlaubte Hilfsmittel

Mehr

Betriebssysteme Teil 6: Hardware-Schicht II

Betriebssysteme Teil 6: Hardware-Schicht II Betriebssysteme Teil 6: Hardware-Schicht II 13.11.15 1 Literatur [6-1] Engelmann, Lutz (Hrsg.): Abitur Informatik Basiswissen Schule. Duden-Verlag, 2003, S.43-53, 214-224, 239-242, S. 267-299,304-313 [6-2]

Mehr

0 C (Carry) Überlauf des 8ten Bits. 1 DC (Digit Carry) Überlauf des 4ten Bits. Mnemonic Parameter Beschreibung Status-Flags.

0 C (Carry) Überlauf des 8ten Bits. 1 DC (Digit Carry) Überlauf des 4ten Bits. Mnemonic Parameter Beschreibung Status-Flags. 3. Assembler-Programmierung Der PIC 16F84A Microcontroller kennt 35 verschiedene Befehle. Für eine ausführliche Beschreibung aller Befehle siehe PIC16F84A-Datenblatt Kapitel 7.1. 3.1 Wichtige Flaggen im

Mehr

F Ein einfacher Modellprozessor

F Ein einfacher Modellprozessor F ein einfacher Modellprozessor F Ein einfacher Modellprozessor Einordnung in das Schichtenmodell:. Prozessor 2. Aufbau des Modellprozessors 3. Organisation eines SRAM 4. Beschreibung in RTL 5. Adresspfad

Mehr

Microcomputertechnik

Microcomputertechnik Microcomputertechnik mit Mikrocontrollern der Familie 8051 Bearbeitet von Bernd-Dieter Schaaf 2. Auflage 2002. Buch. 230 S. Hardcover ISBN 978 3 446 22089 8 Format (B x L): 16 x 22,7 cm Gewicht: 407 g

Mehr

Mikrocomputertechnik. Adressierungsarten

Mikrocomputertechnik. Adressierungsarten Adressierungsarten Ein Mikroprozessor bietet meist eine Reihe von Möglichkeiten, die Operanden für eine Rechenoperation zu bestimmen. Diese Möglichkeiten bezeichnet man als Adressierungsarten. unmittelbare

Mehr

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9

Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Übungen zu Grundlagen der Rechnerarchitektur und -organisation: Bonusaufgaben Übung 8 und Präsenzaufgaben Übung 9 Dominik Schoenwetter Erlangen, 30. Juni 2014 Lehrstuhl für Informatik 3 (Rechnerarchitektur)

Mehr

Vorlesung 3: Verschiedenes

Vorlesung 3: Verschiedenes Universität Bielefeld Technische Fakultät AG Rechnernetze und verteilte Systeme Vorlesung 3: Verschiedenes Peter B. Ladkin Vorlesung 3 - Inhalt Busarchitektur Virtuelle Maschine 2 Busarchitektur - das

Mehr

Teil 1: Prozessorstrukturen

Teil 1: Prozessorstrukturen Teil 1: Prozessorstrukturen Inhalt: Mikroprogrammierung Assemblerprogrammierung Motorola 6809: ein einfacher 8-Bit Mikroprozessor Mikrocontroller Koprozessoren CISC- und RISC-Prozessoren Intel Pentium

Mehr

Zusammenfassung der Assemblerbefehle des 8051

Zusammenfassung der Assemblerbefehle des 8051 Zusammenfassung der Assemblerbefehle des 8051 Seite 1 von 5 Befehl Bezeichnung Syntax Wirkung / Beispiel Befehle zum Datentransfer MOV Move MOV [Ziel],[Quelle] MOV P1,P3 Kopiert den Inhalt von P3 nach

Mehr

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors

Digitaltechnik und Rechnerstrukturen. 2. Entwurf eines einfachen Prozessors Digitaltechnik und Rechnerstrukturen 2. Entwurf eines einfachen Prozessors 1 Rechnerorganisation Prozessor Speicher Eingabe Steuereinheit Instruktionen Cachespeicher Datenpfad Daten Hauptspeicher Ausgabe

Mehr

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit)

Mikroprozessor bzw. CPU (Central Processing. - Steuerwerk (Control Unit) - Rechenwerk bzw. ALU (Arithmetic Logic Unit) Der Demo-Computer besitzt einen 4Bit-Mikroprozessor. Er kann entsprechend Wörter mit einer Breite von 4 Bits in einem Schritt verarbeiten. Die einzelnen Schritte der Abarbeitung werden durch Lampen visualisiert.

Mehr

Von-Neumann-Architektur

Von-Neumann-Architektur Von-Neumann-Architektur Bisher wichtig: Konstruktionsprinzip des Rechenwerkes und Leitwerkes. Neu: Größerer Arbeitsspeicher Ein- und Ausgabewerk (Peripherie) Rechenwerk (ALU) Steuerwerk (CU) Speicher...ppppp...dddddd..

Mehr

Assembler - Einleitung

Assembler - Einleitung Assembler - Einleitung Dr.-Ing. Volkmar Sieh Department Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2008 Assembler - Einleitung 1/19 2008-04-01 Teil 1: Hochsprache

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44

Stephan Brumme, SST, 2.FS, Matrikelnr. 70 25 44 Aufgabe 33 a) Der Pseudobefehl move $rd,$rs wird als addu $rd,$0,$rs übersetzt. Dabei macht sich SPIM zunutze, dass das Register $0 immer Null ist. Somit wird das Register $rd ersetzt durch $rd=0+$rs=$rs,

Mehr