aufeinander folgenden 1kHz-Pulse in gleichen Zeitabständen an die Eingänge des JK-FF gelangen.

Größe: px
Ab Seite anzeigen:

Download "aufeinander folgenden 1kHz-Pulse in gleichen Zeitabständen an die Eingänge des JK-FF gelangen."

Transkript

1 1. Vorbereitung: 1.1 Zählerbaustein Bei den in der Schaltung verwendeten Zählerbausteinen handelt es sich um synchron programmierbare 4-bit-Binärzähler mit synchronem Clear. Die Zähler sind programmierbar, d.h. die Ausgänge können auf ein bestimmtes 4-bit-Wort voreingestellt werden (Preset- Funktion). Das Voreinstellen der Ausgänge geschieht mit einem L-Signal am Load-Eingang. Dieses Signal setzt die eigentliche Zählerfunktion außer Betrieb. Mit dem nun folgenden Taktimpuls werden die Informationen an den Eingängen A, B, C und D von den Ausgängen QA, QB, QC und QD übernommen. Der Zustand der Enable-Eingänge ist bei diesem Vorgang nicht von Bedeutung. Ein Low-Pegel am Clear-Eingang setzt alle Ausgänge auf logisch 0, unabhängig vom Zustand der Clock-, Load- und Enable-Eingänge. Durch die synchrone Clear-Funktion ist es möglich, die Zähldauer zu begrenzen. Wenn der Zählerstand erreicht ist, kann über eine externe NAND-Verknüpfung der Zählervorgang gestoppt werden. Der Ausgang dieser Verknüpfung ist mit dem Clear- Eingang verbunden und setzt den Zähler beim Erreichen des dekodierten Zählerstandes auf 0000 zurück. Die Carry-Funktion (Übertrag) gestattet es, eine Zählkette für n-bits aufzubauen. Dazu notwendig sind die Anschlüsse Enable und ripple carry output.beide Enable-Eingänge (P und T) müssen beim Zählvorgang High sein. Der Übertragsausgang ist dann logisch 1, wenn die Kapazität des Zählers überschritten wird. Das Ausgangssignal hat etwa die gleiche Impulslänge wie der Ausgangsimpuls von QA. Der Übergangsimpuls triggert in Zählketten den folgenden höherwertigen Zähler. 1.2 Frequenzteiler Das vorgegebene Design stellt einen synchronen Frequenzteiler dar, der die Eingangsfrequenz von 1 MHz auf 500 Hz mit 50% Duty Cycle, sowie auf 1 khz Pulse mit einer Pulsbreite von einer μs, teilt. Die Zählfunktion übernehmen dabei die Zählerbausteine Diese sind mit dem Wert C19hex an den Zählereingängen vorgespannt, um ein Teilungsverhältnis von 1000dec zu erhalten. Dies errechnet sich nach folgendem Schema: FFFhex C19hex + 2hex = 3E8hex = 1000dec. Der Wert FFFhex rührt dabei von den verwendeten drei Zählern her, würde man vier Counter hintereinander schalten, müßte man entsprechend mit FFFFhex rechnen. Die in obiger Gleichung hinzu addierten 2hex sind notwendig, weil die verwendete Zählerarchitektur einen Takt für das Synchronisationsflipflop und einen Takt für den synchronen Load benötigt. Mit der Einstellung C19hex wird also die Eingangsfrequenz von 1 MHz um 1000dec geteilt, was die 1 khz Pulse an Pin 37 erklärt. Die Pulsbreite errechnet sich zu: t = f 1 Eingang 1 = 1MHz = 1μs. Diese 1 khz Pulse liegen außerdem an beiden Eingängen eines JK-Flipflops an. Das JK- Flipflop hat dabei die Eigenschaft, dass sich der Ausgangszustand bei jedem anliegenden Puls ändert, sprich das Flipflop kippt mit jedem (gleichzeitig) ankommenden Takt an den Eingängen J und K. Dies führt dazu, dass sich die Frequenz nochmals um den Faktor zwei erniedrigt, da ja zwei Impulse an den Eingängen nötig sind, um eine vollständige Periode am Ausgang zu erhalten. Außerdem erklärt sich so der Duty Cycle von 50%, weil die

2 aufeinander folgenden 1kHz-Pulse in gleichen Zeitabständen an die Eingänge des JK-FF gelangen. In der gegebenen Schaltung sind die Enable-Eingänge des oberen Counters ständig auf Versorgungsspannungspotential ( logisch 1), d.h. dieser Zähler ist zuerst aktiv und beginnt bei angelegtem Takt mit dem Zählvorgang. Hat er seine Kapazität erreicht, startet sein ripple carry output den nächsten Zählerbaustein, durch Setzen der Enable-Eingänge von Low auf High, usw. Das verwendete D-FF1 dient zur Synchronisation der Schaltung, da es das Eingangssignal so lange verzögert, bis das Taktsignal kommt, erst dann wird das Eingangssignal an den Ausgang weitergegeben. Das D-FF verfügt weiterhin über eine Taktflankensteuerung, wodurch das synchrone Schalten weiter begünstigt wird. Ein zurückgeführter Taktimpuls auf die Load-Eingänge lässt die Bausteine erneut hochzählen. Die Einstellung von C19hex erfolgt in der Schaltung durch die Eingänge A, B, C und D. Dabei entspricht A der Wertigkeit eins, B hat zwei, C hat vier und D hat acht. Gesetzt werden die Eingänge durch entsprechendes anschließen an Masse ( logisch 0) bzw. an Vcc ( logisch 1). Ein Beispiel: Der unterste Counter ist gemäß dem vorzuspannenden Wert von C19hex auf C also 12dec = 1100dual einzustellen, daher liegen A und B auf Massepotential und C und D sind mit Vcc verbunden. 1.3 Vorspannwert (200/50Hz) Das Teilerverhältnis ergibt sich nach der Formel: T = Eingangsfrequenz Ausgangsfrequenz Da das Impuls/Pausenverhältnis 50% betragen soll, muss die Ausgangsfrequenz im Nenner mit dem Faktor 2 multipliziert werden. Das am Ausgang generierte 100Hz Impulssignal wird anschließend noch durch ein J/K Flip-Flop geleitet (Funktion als Teiler durch 2). Das Teilerverhältnis beträgt also: Hz T = 2* 200Hz = Anschließend muss der so erhaltene Teiler in Hexadezimale Form umgewandelt werden. 2500dec= 9C4hex Der nun einzustellende Wert ergibt sich aus: Ausgabe 200Hz: Ausgabe 50Hz: Xhex= FFFF hex 9C4hex + 2hex = F63Dhex Xhex= FFFF hex 2710hex + 2hex = D8F1hex

3 1.4 Automaten Zustandsdiagramm

4 2. Versuch 2.1 Simulieren der vorgegebenen Frequenzteilerschaltung am PC Die Frequenzteilerschaltung, welche 500Hz ausgibt, wird im Programm Maxplus kompiliert, und dann Simuliert. Das Simulationsfenster zeigte uns die folgenden Ein - und Ausgangssignale an Man kann das 1Mhz Eingangssignal erkennen. Es lässt sich auch herauslesen, dass die Länge des 1kHzPulse 1 μ s beträgt. Dieser Betrag kommt von dem 1MHz Taktsignal welches eine Periodendauer von 1 μ s hat. Außerdem sehen wir, dass das 500 Hz Taktsignal um 4,0956 ms vom Startpunkt des Taktes verschoben ist, dies lässt sich durch die Gatterlaufzeit der drei Zähler erklären. Hier kann man den 500 Hz Takt herauslesen. 2.2 Testen der vorgegebenen Frequenzteilerschaltung auf dem EPM 7064 Mit der Software Maxplus wurde der Baustein EPM 7064 programmiert. Mit dem Oszilloskop wurde der 1MHz Takt von Pin43 abgegriffen. Dieser Stimmte mit dem Wert der Simulation überein. Als nächstes stellten wir den 1kHzPulse am Ausgang PIN 37 dar. Wegen der geringen Pulsbreite, konnte man auf dem Oszilloskop nur die Spitze des Impulses als schwachen Punkt erkennen. Nun wurden die 500Hz am Ausgang am PIN 39 gemessen. Und auch hier stimmten das Messergebnis am Oszilloskop mit dem Ergebnis der Simulation überein. 2.3 Abändern der Frequenzteilerschaltung Die Schaltung soll nun auf ein Ausgangssignal von 100Hz abgeändert werden. Dazu errechnen wir den neuen Teiler: Teiler = 1Mhz / 200 Hz = 5000 Da der neue Teiler größer als 4095 ist, was im Hexadezimalsystem FFF entspricht, müssen wir nun vier Zähler statt der bisherigen drei verwenden. 5000dez = 1388hex Zählvorspannweite = FFFFhex hex + 2hex = EC79hex

5 Zu der vorhandenen Schaltung wird jetzt ein zusätzlicher Zähler eingefügt und dann werden die 4 Zähler von unten nach oben mit EC79 beschaltet. Wir simulierten die Schaltung und stellten fest, dass am Ausgang keine 100Hz zu sehen sind. Als wir die Schaltung aber in den EPM 7064 programmierten, konnten wir die 100Hz auf dem Oszilloskop erkennen. Wir konnten die 100Hz in der Simulation nicht erkennen, weil die Zähler länger als 20ms brauchen, nämlich 65ms, um bis FFFF zu zählen, unsere Simulationsweite beträgt aber nur 20ms.

6 Um etwas in der Simulation zu erkennen, wollen wir nun, dass der 100Hz Takt mit dem 1MHz Takt beginnt. Dazu müssen wir vor der Zählerschaltung sofort zu Beginn einen einmaligen LOW Impuls mit 1 μ s auf alle LOAD Eingänge der vier Zähler geben. Das wird mit einem Monoflop realisiert. Bei der erneuten Simulation beginnt nun der 100Hz Takt mit dem ersten 200Hz Impuls. Die Simulationsergebnisse wurden mit dem Oszilloskop am Versuchaufbau überprüft, und alle Ergebnisse bestätigt.

7 2.4 Entfernen der Spannungsquelle Jetzt entfernen wir die Spannungsquelle vom EPM 7064 und stellen am Oszilloskop fest, dass die Ein- und Ausgangssignale verschwinden. Wir schließen den EPM 7064 wieder an die Spannungsquelle an und stellen fest, dass die Signale wieder da sind. Die Programmierung wurde also gespeichert. Hätten wir diesen Versuch beim EP1K50 gemacht, würde die Programmierung verloren gehen. Das liegt daran, dass der EPM 7064 auf EEPROM Speicher setzt, die bei Spannungsverlust trotzdem die Information speichern, während der EP1K50 SRAM Speicher besitzt, der die Informationen bei Spannungsverlust verliert. 2.5 Generieren des 200Hz Pulses, der um eine halbe Taktperiode verschoben ist In der Schaltung sollen wir nun einen neuen Ausgang am freien PIN 36 definieren, bei dem der 200Hz Nadelpuls um eine halbe Taktperiode verschoben ist. Dazu greifen wir bei unserem vorhandenen Zähler, den Zustand ab, an dem er bei der Hälfte der Zählweite ist. Dieser Wert lässt sich berechnen durch: FFFFhex EC79hex EC79 hex + = F63Chex 2 Dieser Wert wird nun mithilfe eines kombinatorischen Netzwerks an den Zähler Ausgängen QA bis QC abgegriffen und mit einem D-Flip Flop als 200Hz Nadelpuls dargestellt.

8 In der Simulation erhält man nun folgende Ausgabe: 3. Versuch Automat 3.1 Zustandsdiagramm der neuen Bitfolge Für den Automatenentwurf bekamen wir eine Bitfolge zugewiesen, die lautet: Bitfolge:

9 3.2 Eingeben der Bitfolge in den Texteditor von Maxplus Das Zustandsdiagramm wird nun im Maxplus Texteditor als AHDL (= Altera High Description Language = Programmiersprache von Altera) eingegeben. Dazu ändern wir ein bereits fertiges Textfile eines anderen Automaten nach folgendem Muster ab:

10 3.3 Simulieren des Bitfolgeautomaten Nun kompilieren und simulieren wir den Automaten. Im Simulationsfenster können wir selbst die Eingangssignale bestimmen. Im Bereich 0us 2us funktioniert Automat ohne Probleme und gibt im Zustand s10 (= Im Bild) am Ausgang eine 1 aus, dafür dass die Bitfolge richtig eingegeben wurde. Im Bereich ab 2us sehen wir eine Bitfolge mit einem Fehler in Zustand s7. Der Automat reagiert richtig auf diesen Fehler und springt zurück in den Zustand s2. Fehler 4. Nachbereitung 4.1 Wie viel Flip-Flops benötigt Ihr Automat für die Bitfolgeerkennung? Der Automat benötigt 4 Flip Flops, da er 11 Zustände besitzt. 4.2 Ermitteln Sie die Eingangsgleichungen für die D-Flip-Flops der Bitfolgeerkennung. Siehe Beiblatt. 4.3 Welchem Automatentyp gehört die Schaltung in Abbildung 4 an? Begründen Sie Ihre Antwort! Bei der Schaltung aus Bild 4 handelt es sich um einen Mealy Automaten, da der Ausgang von dem derzeitigen Zustand UND dem Eingang abhängig ist.

Versuch 3: Sequenzielle Logik

Versuch 3: Sequenzielle Logik Versuch 3: Sequenzielle Logik Versuchsvorbereitung 1. (2 Punkte) Unterschied zwischen Flipflop und Latch: Ein Latch ist transparent für einen bestimmten Zustand des Taktsignals: Jeder Datensignalwechsel

Mehr

Übung 1 RS-FFs mit NOR- oder NAND-Gattern

Übung 1 RS-FFs mit NOR- oder NAND-Gattern Übung 1 RS-FFs mit NOR- oder NAND-Gattern Übungsziel: Aufbau eines RS-Flipflops mit NOR- oder NAND-Gattern Wahrheitstabelle: S (Setzen) R (Rücksetzen) Q m (Aktueller Zustand) Q m+1 (Nächster Zustand) 0

Mehr

Speicherung digitaler Signale

Speicherung digitaler Signale Speicherung digitaler Signale von Fabian K. Grundlagen Flipflops Bisher: Schaltungen ohne Speichermöglichkeit Jetzt: Speichermöglichkeit durch Flipflops Flipflops Grundlagen Flipflops Was sind Flipflops?

Mehr

Speicherung von Signalen - Flipflops, Zähler, Schieberegister

Speicherung von Signalen - Flipflops, Zähler, Schieberegister Lehrbehelf für Prozessregelung und echnerverbund, 3. Klasse HTL Speicherung von Signalen - Flipflops, Zähler, Schieberegister S - Flipflop Sequentielle Schaltungen unterscheiden sich gegenüber den kombinatorischen

Mehr

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen Elektronik Praktikum / Digitaler Teil Name: Jens Wiechula, Philipp Fischer Leitung: Prof. Dr. U. Lynen Protokoll: Philipp Fischer Versuch: 3 Datum: 24.06.01 RS-Flip Flop, D-Flip Flop, J-K-Flip Flop, Zählschaltungen

Mehr

Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L

<ruske.s@web.de> Oliver Liebold. NAND (negierte Undverknüpfung) L L H L H H H L H H H L Elektronische Grundlagen Versuch E7, Grundelemente der Digitaltechnik Praktikumsgruppe IngIF, 04. Juni 2003 Stefan Schumacher Sandra Ruske Oliver Liebold

Mehr

Tietze, Schenk: Halbleiterschaltungstechnik (Kap. 10) Keller / Paul: Hardwaredesign (Kap. 5) L. Borucki: Digitaltechnik (Kap.

Tietze, Schenk: Halbleiterschaltungstechnik (Kap. 10) Keller / Paul: Hardwaredesign (Kap. 5) L. Borucki: Digitaltechnik (Kap. 6 Versuch Nr. 5 6.1 Anmerkungen zum Versuch Nr. 5 In den bisherigen Versuchen haben Sie sich mit kombinatorischen Schaltkreisen beschäftigt, in denen die Ausgänge bisher nicht auf die Eingänge zurückgeführt

Mehr

Protokoll zu Grundelemente der Digitaltechnik

Protokoll zu Grundelemente der Digitaltechnik Protokoll zu Grundelemente der Digitaltechnik Ronn Harbich 22. uli 2005 Ronn Harbich Protokoll zu Grundelemente der Digitaltechnik 2 Vorwort Das hier vorliegende Protokoll wurde natürlich mit größter Sorgfalt

Mehr

Versuch V10: Flip-Flops

Versuch V10: Flip-Flops Versuch V: Flip-Flops Henri Menke und an rautwein Gruppe Platz k (Betreuer: Boris Bonev) (Datum: 3. anuar 24) In diesem Versuch werden die Funktionen verschiedenenr digitaler Schaltungen auf Basis von

Mehr

Flip Flops allgemein - Digitale Signalspeicher

Flip Flops allgemein - Digitale Signalspeicher INFORMATION: Flip Flops allgemein - Digitale Signalspeicher Jede elektronische Schaltung, die zwei stabile elektrische Zustände hat und durch entsprechende Eingangssignale von einem Zustand in einen anderen

Mehr

Das große All-in-All CPLD/FPGA Tutorial

Das große All-in-All CPLD/FPGA Tutorial Das große All-in-All CPLD/FPGA Tutorial Mit diesem Tutorial sollen die ersten Schritte in die Welt der programmierbaren Logik vereinfacht werden. Es werden sowohl die Grundlagen der Logik, die benötigte

Mehr

Wintersemester 2001/2002. Hardwarepraktikum. Versuch 4: Sequentielle Systeme 1. - Toralf Zemlin - Swen Steinmann - Sebastian Neubert

Wintersemester 2001/2002. Hardwarepraktikum. Versuch 4: Sequentielle Systeme 1. - Toralf Zemlin - Swen Steinmann - Sebastian Neubert Hardwarepraktikum Wintersemester 2001/2002 Versuch 4: Sequentielle Systeme 1 - Toralf Zemlin - Swen Steinmann - Sebastian Neubert Aufgabenstellung: 2.1. Untersuchen Sie theoretisch und praktisch die Wirkungsweise

Mehr

Grundtypen Flip-Flops

Grundtypen Flip-Flops FLIP-FLOPs, sequentielle Logik Bei den bislang behandelten Logikschaltungen (Schaltnetzen) waren die Ausgangsgrößen X, Y... zu jeder Zeit in eindeutiger Weise durch die Kombination der Eingangsvariablen

Mehr

9 Flipflops (FF) Basis-FF. (Auffang-FF, Latch) praxis verstehen chancen erkennen zukunft gestalten 9-1

9 Flipflops (FF) Basis-FF. (Auffang-FF, Latch) praxis verstehen chancen erkennen zukunft gestalten 9-1 9 Flipflops (FF) Digitale chaltungen Unterteilung der Flipflops: Es gibt bistabile, monostabile und astabile Kippstufen. Bistabile FF s werden als Flipflops bezeichnet. FF s weisen zwei stabile Zustände

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik dig Datum : 1.06.2009 A) Vorbereitungsaufgaben 1) Was unterscheidet sequentielle und kombinatorische Schaltungen? Kombinatorische ~ Sequentielle ~ Ausgänge sind nur vom Zustand der Eingangsgrößen abhängig

Mehr

Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-413 (Anfängerpraktikum) 1. Stock, Raum 430

Elektronikpraktikum - SS 2014 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 02-413 (Anfängerpraktikum) 1. Stock, Raum 430 Elektronikpraktikum - SS 24 H. Merkel, D. Becker, S. Bleser, M. Steinen Gebäude 2-43 (Anfängerpraktikum). Stock, Raum 43 Serie 7: Digitale Schaltungen./.7.24 I. Ziel der Versuche Verständnis für Entwurf

Mehr

Protokoll zum Versuch Flip-Flop

Protokoll zum Versuch Flip-Flop Naturwissenschaft Torben Pfaff Protokoll zum Versuch Flip-Flop Praktikumsbericht / -arbeit Praktikum zu Elektronische Bauelemente und Schaltungstechnik Protokoll zum Versuch Flip-Flop Versuch Flip-Flop

Mehr

Wie in der Skizze zu sehen ist, bleibt die Periodendauer / Frequenz konstant und nur die Pulsweite ändert sich.

Wie in der Skizze zu sehen ist, bleibt die Periodendauer / Frequenz konstant und nur die Pulsweite ändert sich. Kapitel 2 Pulsweitenmodulation Die sogenannte Pulsweitenmodulation (kurz PWM) ist ein Rechtecksignal mit konstanter Periodendauer, das zwischen zwei verschiedenen Spannungspegeln oszilliert. Prinzipiell

Mehr

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik

Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Versuchsvorbereitung P1-63: Digitale Elektronik, Schaltlogik Michael Walz Gruppe 10 28. Oktober 2007 INHALTSVERZEICHNIS Inhaltsverzeichnis 0 Vorwort 3 1 Gatter aus diskreten Bauelementen 3 1.1 AND-Gatter.....................................

Mehr

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 1/8 Versuch: 4 PRAKTIKUM MESSTECHNIK VERSUCH 5 Operationsverstärker Versuchsdatum: 22.11.2005 Teilnehmer: 1. Vorbereitung 1.1. Geräte zum Versuchsaufbau 1.1.1 Lawinendiode 1.1.2 Photomultiplier

Mehr

Versuch 3: Zustandsautomat - Periodenmessung

Versuch 3: Zustandsautomat - Periodenmessung Hochschule Bochum FB E Elektrotechnik u. Informatik Praktikum EDI - Digitaltechnik Betreuung: P. Hunstig AE-Labor Automobilelektronik Raum C6-09 Versuch 3: Zustandsautomat - Periodenmessung Hinweis: Bitte

Mehr

Kennenlernen der Laborgeräte und des Experimentier-Boards

Kennenlernen der Laborgeräte und des Experimentier-Boards Kennenlernen der Laborgeräte und des Experimentier-Boards 1 Zielstellung des Versuches In diesem Praktikumsversuch werden Sie mit den eingesetzten Laborgeräten vertraut gemacht. Es werden verschiedene

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen CMT-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung Wechselstromwiderstände (Lit.: GERTHSEN) Schwingkreise (Lit.: GERTHSEN) Erzwungene Schwingungen (Lit.: HAMMER) Hochpass, Tiefpass,

Mehr

a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF

a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF ITS Teil 2: Rechnerarchitektur 1. Grundschaltungen der Digitaltechnik a. Flipflop (taktflankengesteuert) Wdh. Signalverläufe beim D-FF b. Zähler (Bsp. 4-Bit Zähler) - Eingang count wird zum Aktivieren

Mehr

Grundtypen Flip-Flops

Grundtypen Flip-Flops FLIP-FLOPs, sequentielle Logik Bei den bislang behandelten Logikschaltungen (chaltnetzen) waren die Ausgangsgrößen X, Y... zu jeder Zeit in eindeutiger Weise durch die Kombination der Eingangsvariablen

Mehr

Allgemeines zu den Versuchen zur Digitaltechnik

Allgemeines zu den Versuchen zur Digitaltechnik ETE, Praktikum, Versuch 4 Allgemeines zu den Versuchen zur Digitaltechnik 1/8 Ausrüstung Für digitaltechnische Versuche steht an jedem Messplatz ein PHYWE Digitaltrainer zur Verfügung. Dieser ist mit TTL-Bausteinen

Mehr

Versuch P1-63 Schaltlogik Vorbereitung

Versuch P1-63 Schaltlogik Vorbereitung Versuch P1-63 Schaltlogik Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 16. Januar 2012 1 Inhaltsverzeichnis Einführung 3 1 Grundschaltungen 3 1.1 AND.......................................

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

Teil 1: Digitale Logik

Teil 1: Digitale Logik Teil 1: Digitale Logik Inhalt: Boolesche Algebra kombinatorische Logik sequentielle Logik kurzer Exkurs technologische Grundlagen programmierbare logische Bausteine 1 Tri-State Ausgangslogik Ausgang eines

Mehr

Versuch: D1 Gatter und Flipflops

Versuch: D1 Gatter und Flipflops Versuch: D1 Gatter und Flipflops Vorbemerkung Es ist nicht beabsichtigt, daß Sie einfach eine vorgegebene Versuchsanordnung abarbeiten. Sie sollen die hier angewendeten Zusammenhänge erkennen und verstehen.

Mehr

Praktikum Grundlagen der Elektronik

Praktikum Grundlagen der Elektronik Praktikum Grundlagen der Elektronik Versuch EP 7 Digitale Grundschaltungen Institut für Festkörperelektronik Kirchhoff - Bau K1084 Die Versuchsanleitung umfasst 7 Seiten Stand 2006 Versuchsziele: Festigung

Mehr

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M

COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M COMPUTERGESTÜTZTES EXPERIMENTIEREN I P R A K T I K U M 1 Übersicht Im Praktikum zur Vorlesung Computergestütztes Experimentieren I wird der Vorlesungsstoff geübt und vertieft. Ausserdem werden die speziellen

Mehr

Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz

Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz 3. Versuch Durchführung Seite G - 6 Invertierender (nichtinvertierender) Schmitt-Trigger und Speicheroszilloskop Prof. Dr. R. Schulz Vorbemerkung: Betreibt man einen Operationsverstärker ohne Gegenkopplung,

Mehr

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Sequentielle Logik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Sequentielle Logik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Schaltwerke Flip-Flops Entwurf eines Schaltwerks Zähler Realisierung Sequentielle

Mehr

Angewandte Physik II: Elektronik

Angewandte Physik II: Elektronik Elektronik für Physiker Prof. Brunner SS 26 Angewandte Physik II: Elektronik 9. Schaltwerke. Monostabile Kippschaltung: Univibrator 2. Astabile Kippschaltung: Multivibrator 3. Bistabile Kippschaltung:

Mehr

Computergestützter Schaltungs- und Leiterplattenentwurf Protokoll. Jan Nabbefeld erstellt: 5. Juli 2002

Computergestützter Schaltungs- und Leiterplattenentwurf Protokoll. Jan Nabbefeld erstellt: 5. Juli 2002 Computergestützter Schaltungs- und Leiterplattenentwurf Protokoll André Grüneberg Jan Nabbefeld erstellt: 5. Juli 2002 1 Schaltplaneingabe und Schaltungsimulation 1.1 NAND-Gatter Aufgabe war es, NAND-Gatter

Mehr

KLAUSUR DIGITALTECHNIK SS 00

KLAUSUR DIGITALTECHNIK SS 00 Aufgabe 1 (20P) KLAUSUR DIGITALTECHNIK SS 00 Entwerfen Sie ein Flipflop unter ausschließlicher Verwendung eines Dreifach-UND und dreier Zweifach-ODER. Beschreiben Sie das Verhalten ( Zustandsdiagramm,

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine

Grundlagen der Informatik 2. Grundlagen der Digitaltechnik. 5. Digitale Speicherbausteine Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 5. Digitale Speicherbausteine Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch Schaltlogik Armin Burgmeier (1347488) Gruppe 15 6. Januar 2008 1 Gatter aus diskreten Bauelementen Es sollen logische Bausteine (Gatter) aus bekannten, elektrischen Bauteilen aufgebaut

Mehr

2.5.1 Das Basis-Flipflop

2.5.1 Das Basis-Flipflop 2.5 Die Flipflops 137 2.5.1 Das Basis-Flipflop Basis-Flipflops sind nicht taktgesteuerte FF. ie sollen die Funktionen etzen, Löschen und peichern aufweisen. 1 - etzeing. (et) - Löscheing. (eset) 2 etzen:

Mehr

7.0 Endliche Zustandsautomaten und Steuerwerke

7.0 Endliche Zustandsautomaten und Steuerwerke 7.0 Endliche Zustandsautomaten und Steuerwerke Die Ziele dieses Kapitels sind: Aufbau und Funktionsweise von Schaltwerken zu verstehen Verschiedene Realisierungsmöglichkeiten von Schaltwerken mittels Zustandsautomaten

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

Martin V. Künzli Marcel Meli. Vom Gatter zu VHDL. Eine Einführung in die Digitaltechnik. : iasms!wil5i-8sb*l!f. 3. Auflage. zh aw

Martin V. Künzli Marcel Meli. Vom Gatter zu VHDL. Eine Einführung in die Digitaltechnik. : iasms!wil5i-8sb*l!f. 3. Auflage. zh aw Martin V. Künzli Marcel Meli Vom Gatter zu VHDL Eine Einführung in die Digitaltechnik : iasms!wil5i-8sb*l!f 3. Auflage zh aw Inhaltsverzeichnis 1. Begriffe und Definitionen 1 1.1 Logische Zustände 1 1.2

Mehr

Rechnenund. Systemtechnik

Rechnenund. Systemtechnik Rechnen- und Systemtechnik 1 / 29 Rechnenund Systemtechnik Skript und Unterrichtsmitschrift April 22 Rechnen- und Systemtechnik 2 / 29 nhaltsverzeichnis 1. Grundbausteine der Digitaltechnik... 4 1.1. UND-Verknüpfungen

Mehr

EB100 Spannungsgesteuerter Oszillator SN74S124

EB100 Spannungsgesteuerter Oszillator SN74S124 EB100 Spannungsgesteuerter Oszillator SN74S124 Verfasser: Eilhard Haseloff Datum: 19. Januar 1987 Rev.: A Überarbeitet: 14.11.1995 1 Applikationslabor Dieser Bericht beschreibt die Funktion und Anwendung

Mehr

Aktiver Bandpass. Inhalt: Einleitung

Aktiver Bandpass. Inhalt: Einleitung Aktiver Bandpass Inhalt: Einleitung Aufgabenstellung Aufbau der Schaltung Aktiver Bandpass Aufnahme des Frequenzgangs von 00 Hz bis 00 KHz Aufnahme deer max. Verstärkung Darstellung der gemessenen Werte

Mehr

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3

Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + Aufgabe 2. Aufgabe 3 Logischer Entwurf Digitaler Systeme Seite: 1 Übungsblatt zur Wiederholung und Auffrischung Aufgabe 1 Minimieren Sie mit den Gesetzen der Booleschen Algebra 1.1 f a ab ab 1 = + + 1.2 f ( ) ( ) ( ) 2 = c

Mehr

Eigenschaften von Zählerschaltungen (1) 1 1. Richtung

Eigenschaften von Zählerschaltungen (1) 1 1. Richtung Eigenschaften von Zählerschaltungen (1) 1 1. Richtung Vorwärts Vorwärtszählen entspricht einer fortlaufenden 1-Addition Rückwärts Rückwärtszählen entspricht einer fortlaufenden 1-Subtraktion 2. Verwendeter

Mehr

10. Elektrische Logiksysteme mit

10. Elektrische Logiksysteme mit Fortgeschrittenenpraktikum I Universität Rostock - Physikalisches Institut 10. Elektrische Logiksysteme mit Rückführung Name: Daniel Schick Betreuer: Dipl. Ing. D. Bojarski Versuch ausgeführt: 22. Juni

Mehr

V10: Flip-Flops und Zähler

V10: Flip-Flops und Zähler Elektronikpraktikum im WS 2010/11 Universität Stuttgart Protokoll zum Versuch Stephan Ludwig, Nicolai Lang 13. Januar 2011 Zusammenfassung Die folgenden Versuche befassen sich mit der Funktion unterschiedlicher

Mehr

Rechnerarchitektur. Zustand Anzeige Untergeschoss U Erdgeschoss E 1. Stock 1

Rechnerarchitektur. Zustand Anzeige Untergeschoss U Erdgeschoss E 1. Stock 1 Prof. Dr. K. Wüst WS 2006/2007 FH Gießen Friedberg, FB MNI Studiengang Informatik Rechnerarchitektur 1. Hausübung, WS 2006/2007 Aufg.1: Entwurf einer Zustandsanzeige für einen Aufzug An der Einstiegsstelle

Mehr

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren?

Aufgabensammlung. a) Berechnen Sie den Basis- und Kollektorstrom des Transistors T 4. b) Welche Transistoren leiten, welche sperren? Aufgabensammlung Digitale Grundschaltungen 1. Aufgabe DG Gegeben sei folgende Schaltung. Am Eingang sei eine Spannung von 1,5V als High Pegel und eine Spannung von 2V als Low Pegel definiert. R C = 300Ω;

Mehr

Füllstandsregelung. Technische Informatik - Digitaltechnik II

Füllstandsregelung. Technische Informatik - Digitaltechnik II Füllstandsregelung Kursleiter : W. Zimmer 1/18 Zwei Feuchtigkeitsfühler (trocken F=0; feucht F=1) sollen zusammen mit einer geeigneten Elektronik dafür sorgen, dass das Wasser im Vorratsbehälter niemals

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Logik mit Gedächtnis : Sequentielle Logik

Logik mit Gedächtnis : Sequentielle Logik Logik mit Gedächtnis : Sequentielle Logik Schaltwerke Grundkomponenten zur Informationspeicherung: Flip-Flops Typische Schaltwerke Entwurf eines Schaltwerks Wintersemester 12/13 1 asynchrone und synchrone

Mehr

1 Anmerkungen zur Entwicklung von GALs mit LOG/iC

1 Anmerkungen zur Entwicklung von GALs mit LOG/iC 1 Anmerkungen zur Entwicklung von GALs mit LOG/iC 1.1 Generic Array Logic (GAL) - Prinzip Ein GAL (Generic Array Logic) stellt ein (wieder)programmierbares UND- Array mit einem festen ODER Array dar. Zusätzlich

Mehr

Digitaltechnik II SS 2007

Digitaltechnik II SS 2007 Digitaltechnik II SS 27 2. Vorlesung Klaus Kasper Inhalt Schaltnetz vs. Schaltwerk NAND SR-Flip-Flop NOR SR-Flip-Flop Master-Slave Flip-Flop Zustandsdiagramm Flip-Flop Zoo Schaltnetze vs. Schaltwerke Schaltnetz:

Mehr

Getaktete Schaltungen

Getaktete Schaltungen Getaktete Schaltung DST SS23 - Flipflops und getaktete Schaltung P. Fischer, TI, Uni Mannheim, Seite Sequtielle Logik Zum Speichern des Zustands eines Systems sind Speicherelemte notwdig Abhängig vom Zustand

Mehr

AVR-Mikrocontroller in BASCOM programmieren, Teil 3

AVR-Mikrocontroller in BASCOM programmieren, Teil 3 jean-claude.feltes@education.lu 1/8 AVR-Mikrocontroller in BASCOM programmieren, Teil 3 Alle Beispiele in diesem Kapitel beziehen sich auf den Mega8. Andere Controller können unterschiedliche Timer haben.

Mehr

Laborübung: Oszilloskop

Laborübung: Oszilloskop Laborübung: Oszilloskop Die folgenden Laborübungen sind für Studenten gedacht, welche wenig Erfahrung im Umgang mit dem Oszilloskop haben. Für diese Laborübung wurde eine Schaltung entwickelt, die verschiedene

Mehr

Elektronik Praktikum Operationsverstärker 2 (OV2)

Elektronik Praktikum Operationsverstärker 2 (OV2) Elektronik Praktikum Operationsverstärker 2 (OV2) Datum: -.-.2008 Betreuer: P. Eckstein Gruppe: Praktikanten: Versuchsziele Aufgabe 1: Aufgabe 2: Aufgabe 3: Aufgabe 4: Schaltung eines OPV als invertierenden

Mehr

Lerntext zum Kapitel Digitaltechnik

Lerntext zum Kapitel Digitaltechnik Elektronik/Mikroprozessoren Digitaltechnik 1 zum Kapitel Digitaltechnik Hallo Studierende, der folgende dient dazu, sich das Kapitel Flip-Flops im Selbststudium aneignen zu können. Offene Fragen klären

Mehr

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007

Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 Protokoll zum Versuch Transistorschaltungen Kirstin Hübner Armin Burgmeier Gruppe 15 10. Dezember 2007 1 Transistor-Kennlinien 1.1 Eingangskennlinie Nachdem wir die Schaltung wie in Bild 13 aufgebaut hatten,

Mehr

Tutorial zur MAX+PLUS II Baseline Software von Altera

Tutorial zur MAX+PLUS II Baseline Software von Altera Tutorial zur MAX+PLUS II Baseline Software von Altera Im vorliegenden Tutorial werden Sie anhand des Entwurfes eines Halbaddierers die wichtigsten Funktionen und Befehle der MAX+PLUS II Baseline Software,

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Auswertung Matthias Ernst Matthias Faulhaber Karlsruhe, den 16.12.2009 Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker

Mehr

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 15. Digitalelektronik

Dennis S. Weiß & Christian Niederhöfer. Versuchsprotokoll. (Fortgeschrittenen-Praktikum) zu Versuch 15. Digitalelektronik Montag, 31.5.1999 Dennis S. Weiß & Christian Niederhöfer Versuchsprotokoll (Fortgeschrittenen-Praktikum) zu Versuch 15 Digitalelektronik 1 Inhaltsverzeichnis 1 Problemstellung 3 2 nwendungen des de Morgan

Mehr

Computertechnik 1. 4.3 Schaltwerke, Sequentielle Schaltungen. Flip-Flops (FF) 4.3.1 Flip-Flops (FF) Dr. Wolfgang Koch

Computertechnik 1. 4.3 Schaltwerke, Sequentielle Schaltungen. Flip-Flops (FF) 4.3.1 Flip-Flops (FF) Dr. Wolfgang Koch omputertechnik r. Wolfgang Koch 4.3 chwerke, equentielle chungen peicher, egister... : Frühere Eingaben (innere Zustände) spielen eine olle (werden gespeichert) Friedrich chiller University ena epartment

Mehr

Statische Timing-Analyse

Statische Timing-Analyse Navigation Statische Timing-Analyse Delay Elmore-Delay Wire-Load-Modell Pfad-Problem Pfade/Cones Kritischer Pfad... Breitensuche Setup- und Hold-Zeit Ein- und Ausgänge Sensibilisierbarkeit Slack-Histogramm

Mehr

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929)

Schaltlogik. Versuch: P1-64. - Vorbereitung - Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert (1229929) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-64 Schaltlogik - Vorbereitung - Vorbemerkung In diesem Versuch geht es darum, die Grundlagen

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 28. November 2012 Rechnertechnologie III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

BA-Mannheim, 2. Semester IT Digitaltechnik (Hr. Schillack)

BA-Mannheim, 2. Semester IT Digitaltechnik (Hr. Schillack) Dies ist nun also die freundlicherweise von mir mitgetippte Fassung der Vorlesung Digitaltechnik (2. Semester) bei Hr. Schillack an der BA-Mannheim. Ich hoffe ihr könnt damit was anfangen. Fehler, Kritik,

Mehr

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing.

Das Oszilloskop. TFH Berlin Messtechnik Labor Seite 1 von 5. Datum: 05.01.04. von 8.00h bis 11.30 Uhr. Prof. Dr.-Ing. TFH Berlin Messtechnik Labor Seite 1 von 5 Das Oszilloskop Ort: TFH Berlin Datum: 05.01.04 Uhrzeit: Dozent: Arbeitsgruppe: von 8.00h bis 11.30 Uhr Prof. Dr.-Ing. Klaus Metzger Mirko Grimberg, Udo Frethke,

Mehr

FPGA: Pseudo Random Generator (PRNG) von Prof. Dr.-Ing. Dirk Rabe

FPGA: Pseudo Random Generator (PRNG) von Prof. Dr.-Ing. Dirk Rabe Praktikum Digitaltechnik FPGA: Pseudo Random Generator (PRNG) von Prof. Dr.-Ing. Dirk Rabe Gruppe: Teilnehmer: Vortestat: Testat: Benutzte Geräte: 1 1 Einleitung und Überblick 1 Einleitung und Überblick

Mehr

Hardwarepraktikum WS 1997/98. Versuch 4. Sequentielle Systeme I

Hardwarepraktikum WS 1997/98. Versuch 4. Sequentielle Systeme I Hardwarepraktikum W 997/98 hemnitz, 8.03.09 Hardwarepraktikum W 997/98 Versuch 4 equentielle ysteme I Jan Horbach, 758 hris Hübsch, 7543 Lars Jordan, 7560 eite Hardwarepraktikum W 997/98 hemnitz, 8.03.09

Mehr

Protokoll zum Versuch OV II im Elektronikpraktikum

Protokoll zum Versuch OV II im Elektronikpraktikum Protokoll zum Versuch OV II im Elektronikpraktikum Datum, Ort: Freitag, ---; PHY/D2 Praktikanten: --- Gruppe: --- Betreuer: Hr. Dr. Eckstein Aufgabenstellung. Schaltung des OPV als invertierender Addierverstärker

Mehr

Synthesis for Low Power Design

Synthesis for Low Power Design Synthesis for Low Power Design Prof. Thomas Troxler Hochschule Rapperswil Abstract Power optimization at high levels of abstraction has a significant impact on reduction of power in the final gate-level

Mehr

Versuch P1-63, 64, 65. Schaltlogik VORBEREITUNG. Stefanie Falk

Versuch P1-63, 64, 65. Schaltlogik VORBEREITUNG. Stefanie Falk Versuch P1-63, 64, 65 Schaltlogik VORBEREITUNG Stefanie Falk 25.11.2006 - 1 - SCHALTLOGIK Die Schaltlogik, die Grundlage der modernen Datenverarbeitung ist, soll an Hand dieses Versuchs kennen gelernt

Mehr

Grundlagen der Technischen Informatik. Sequenzielle Netzwerke. Institut für Kommunikationsnetze und Rechnersysteme. Paul J. Kühn, Matthias Meyer

Grundlagen der Technischen Informatik. Sequenzielle Netzwerke. Institut für Kommunikationsnetze und Rechnersysteme. Paul J. Kühn, Matthias Meyer Institut für Kommunikationsnetze und Rechnersysteme Grundlagen der Technischen Informatik Paul J. Kühn, Matthias Meyer Übung 2 Sequenzielle Netzwerke Inhaltsübersicht Aufgabe 2.1 Aufgabe 2.2 Prioritäts-Multiplexer

Mehr

Monostabile Kippstufe (Monoflop)

Monostabile Kippstufe (Monoflop) zum Thema Monostabile Kippstufe (Monoflop) 1 R1 470Ω R4 33kΩ R2 470Ω XSC1 Ext Trig + 3 C1 100nF R3 33kΩ 2 + A _ + V1 5 V U1 5 4 U2 C237P C237P 0 R5 33kΩ 6 J1 7 Taste = Leerzeichen 0 V2 5 V Datum: 03.04.2012

Mehr

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754.

Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. Aufgabe 1) Die folgenden Umwandlungen/Berechnungen beziehen sich auf das 32-Bit Single-Precision Format nach IEEE-754. a) Stellen Sie die Zahl 7,625 in folgender Tabelle dar! b) Wie werden denormalisierte

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Asynchrone Schaltungen

Asynchrone Schaltungen Asynchrone Schaltungen Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2013 Asynchrone Schaltungen 1/25 2013/07/18 Asynchrone Schaltungen

Mehr

} DigiTech@esleuchtetblau.de

} DigiTech@esleuchtetblau.de Projekt Stückzahlüberwachung Studenten Fach Professor : Martin Amelsberg Daniel Finger Thorsten Maruhn : Digitaltechnik : Dr. Ralf Wenzel } DigiTech@esleuchtetblau.de Datum : 20. Juli 2003 Inhaltsverzeichnis

Mehr

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht:

Cls. Der Aufbau der Schaltung geschieht mit dem HWPRAK-Altera-Board, das in diesem Versuch nun aus den folgenden Komponenten besteht: 9 Versuch Nr. 7 9.1 Anmerkungen zum Versuch Nr. 7 In den letzten drei Versuchen haben Sie die wichtigsten Bestandteile eines Rechners kennen gelernt, in der Software MAX+PlusII eingegeben und in den Baustein

Mehr

Digitale Steuerungstechnik (in TGJ1, 1. und 2. Halbjahr)

Digitale Steuerungstechnik (in TGJ1, 1. und 2. Halbjahr) DIGITALTECHNIK Carl-Engler-chule Datum: Geiger Karlsruhe eite: 1 / 24 Digitale teuerungstechnik (in TGJ1, 1. und 2. Halbjahr) 1. Kippschaltungen (Flip-Flops) Das statische -Flip-Flop Das taktgesteuerte

Mehr

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit

IU3. Modul Universalkonstanten. Lichtgeschwindigkeit IU3 Modul Universalkonstanten Lichtgeschwindigkeit Die Vakuumlichtgeschwindigkeit beträgt etwa c 3.0 10 8 m/s. Sie ist eine Naturkonstante und soll in diesem Versuch bestimmt werden. Weiterhin wollen wir

Mehr

Leistungsbauelemente sind zur besseren Wärmeabfuhr in halbgeöffnete Leichtmetallgehäuse eingebaut.

Leistungsbauelemente sind zur besseren Wärmeabfuhr in halbgeöffnete Leichtmetallgehäuse eingebaut. EloTrain - Stecksystem Stecksysteme sind robuste, modulare Elektrotechnik-Baukastensysteme. Steckbausteine mit elektronischen Bauelementen werden auf Basisplatten zu Schaltungen zusammengesetzt und ermöglichen

Mehr

Sequenzielle Schaltungen (1)

Sequenzielle Schaltungen (1) Sequenzielle Schaltungen () Sequenzielle Schaltung: Schaltung, deren Ausgänge sowohl von den momentan anliegenden als auch von früheren Eingangsbelegungen abhängen. Wesentliche Elemente einer CPU wie Register,

Mehr

Technische Informatik Basispraktikum Sommersemester 2001

Technische Informatik Basispraktikum Sommersemester 2001 Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator

Mehr

1. Speicherbausteine. 1.1. JK-RS-Master-Slave-Flip-Flop

1. Speicherbausteine. 1.1. JK-RS-Master-Slave-Flip-Flop 1. Speicherbausteine 1.1. JK-RS-Master-Slave-Flip-Flop Dieser Speicherbaustein (Kurz JK-RS) hat 5 Eingänge (J,K,R,S und Clk) und zwei Ausgänge ( und ). Funktion Werden die Eingänge J,K und Clock auf 0

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil III Boolesche Algebra, Signalarten, Elektronische Bauteile Seite 1 Boolesche Algebra George Boole => englischer Mathematiker Mitte 19. Jahrhundert Formale Sicht digitaler

Mehr

Sequenzielle Schaltwerke

Sequenzielle Schaltwerke Informationstechnisches Gymnasium Leutkirch Sequenzielle Schaltwerke Informationstechnik (IT) Gemäß Bildungsplan für das berufliche Gymnasium der dreijährigen Aufbauform an der Geschwister-Scholl-Schule

Mehr

Tab. 1: Ausgangszustände Q und Q in Abhängigkeit von den Eingangszuständen S 1 und S 2 für die verschiedenen logischen Gatter

Tab. 1: Ausgangszustände Q und Q in Abhängigkeit von den Eingangszuständen S 1 und S 2 für die verschiedenen logischen Gatter - C5. - - C5.2 - Versuch C 5: Digitale Schaltungen. Literatur: Walcher, Praktikum der Physik, Jean Pütz, Digitaltechnik Stichworte: Binärzahlen, logische Verknüpfungen, Wahrheitstabelle, Kippschaltungen

Mehr

4 Kondensatoren und Widerstände

4 Kondensatoren und Widerstände 4 Kondensatoren und Widerstände 4. Ziel des Versuchs In diesem Praktikumsteil sollen die Wirkungsweise und die Frequenzabhängigkeit von Kondensatoren im Wechselstromkreis untersucht und verstanden werden.

Mehr

D.2 Versuchsreihe 2: Spice

D.2 Versuchsreihe 2: Spice .2: Versuchsreihe 2: Spice.2 Versuchsreihe 2: Spice Name: Gruppe: Theorie: Versuch: (vom Tutor abzuzeichnen) (vom Tutor abzuzeichnen) In dieser Versuchsreihe soll das Frequenzverhalten von RC-Gliedern

Mehr

Automaten. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011

Automaten. Dr.-Ing. Volkmar Sieh. Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Automaten Dr.-Ing. Volkmar Sieh Institut für Informatik 3: Rechnerarchitektur Friedrich-Alexander-Universität Erlangen-Nürnberg SS 2011 Automaten 1/28 2012-02-29 Flip-Flops Frage: wie kann man Werte speichern?

Mehr

Praktikum Digitaltechnik

Praktikum Digitaltechnik b J K Q Q Praktikum igitaltechnik Q Q achelor-studium KoSI Praktikumsunterlagen Versuch GT Grundlagen der kombinatorischen Logik.Praxisnahes Kenne nlernen eines Is. Gegeben sind die PIN-elegungen von 4

Mehr

Humboldt-Universität zu Berlin Institut für Physik. 1. Einführung. Seite 1 von 9. Versuch 8 Digitale Logik

Humboldt-Universität zu Berlin Institut für Physik. 1. Einführung. Seite 1 von 9. Versuch 8 Digitale Logik Humboldt-Universität zu Berlin Institut für Physik 1. Einführung Versuch 8 Digitale Logik Im Unterschied zu analogen oder linearen Schaltungen sind logische Schaltungen zur Übertragung zweier bestimmter

Mehr