Oszillierende Reaktionen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Oszillierende Reaktionen"

Transkript

1 1 F 42 Oszllerende Reaktonen Grundlagen Unter ener oszllerenden, chemschen Reakton versteht man en Reaktonssystem, be dem de Konzentraton enger oder aller auftretenden Spezes oszllatorsches Zetverhalten zegen [1-3]. Obwohl es unter den homogenen Reaktonen ncht allzu vele Bespele dafür gbt, bestzen dese Reaktonen große Bedeutung für de Entwcklung und Anwendung von Methoden der nchtlnearen Dynamk m Grenzberech zwschen Theoretscher Physk und Physkalscher Cheme [4]. De durch Cer(IV) katalyserte Oxdaton von Malonsäure durch Bromat n schwefelsaurem Medum (Belousov-Zhabotnsk-Reakton) st dabe der bekannteste und am besten untersuchte Fall. In Anlehnung an [5] wrd m folgenden ene qualtatve Erklärung für das oszllatorsche Verhalten gegeben. Es st der prnzpelle Mechansmus dargestellt. Den konkreten chemschen Reaktonsschrtten snd de entsprechenden Schrtte des verwendeten Modells (M) gegenübergestellt. Dabe gelten folgende Entsprechungen: A = B = BrO 3, X = HBrO 2, Y = Br, Z = Ce(IV) und P = Q = HOBr. Mechansmus Modell TEILPROZESS A Br + BrO H + HBrO 2 + HOBr Y + A X (M1) Br + HBrO 2 + H + 2 HOBr Y + X P (M2) (Br + HOBr + H + Br 2 + H 2 O) 3 (Br 2 + CH 2 (COOH) 2 BrCH(COOH) 2 + Br + H + ) Br + BrO H CH 2 (COOH) 2 3 BrCH(COOH) 2 + 3H 2 O TEILPROZESS B BrO 3 + HBrO 2 + H + 2 BrO 2 + H 2 O (Ce(III) + BrO 2 + H + Ce(IV) + H 2 O + HBrO 2 ) Ce(III) + BrO 3 + HBrO H + 2 Ce(IV) + 2 HBrO H 2 O B + X Z + 2 X (M3) 2 HBrO 2 HOBr + BrO 3 + H + 2 X Q (M4) 4 Ce(IV) + BrCH(COOH) H 2 O 4 Ce(III) + HCOOH + 2 CO H + Br Z Y (M5) Der Modellmechansmus, auch als Oregonator bezechnet (Feld und Noyes waren während der Entwcklung an der Unverstät von Oregon tätg), st prnzpell n der Lage, oszllatorsches Verhalten zu beschreben. Er gestattet ene Modellerung mt realstschen knetschen Parametern. Das Reaktonssystem zerfällt n zwe Telprozesse A und B, von denen A be hoher Br - Konzentraton abläuft und Br verbraucht. Prozess B hngegen domnert be nedrger Br - Konzentraton und erzeugt Bromd. Damt enher geht de Oxdaton von Ce(III) bzw. de Redukton von Ce(IV), wodurch über das Redox-Potental der zetlche Reaktonsverlauf gut

2 2 verfolgt werden kann. Im Versuch st das System Ce(III)/Ce(IV) durch das System Ferrn/Ferron ersetzt, welches enen besseren Farbumschlag hervorruft. Y und B konkurreren um X. De Konzentraton von Y snkt, und zu enem bestmmten Zetpunkt entsprcht der Verbrauch von X n Reakton (M2) der Bldung von X n Reakton (M3). Da [Y] weter snkt, wächst [X] über Reakton (M3) sprungartg an (Autokatalyse) und produzert dabe schnell Z; [Y] st jetzt äußerst klen (da [X] groß). Nun wrd über Reakton (M5) Y nachgebldet, so dass de Reakton (M2) de Bldung von X über Reakton (M3) weder enschränkt. Da [Y] nun weder snkt, begnnt der Prozess von vorn. Reakton (M4) st an der Reaktonskette ncht unmttelbar betelgt, verhndert jedoch das übermäßge Anwachsen von [X]. Nach Mschung der Reaktanten verstrecht n der Regel ene gewsse Zet (Induktonsperode) bs sch passende Konzentratonen engestellt haben und de Schwngungen ensetzen. En adäquates Modell sollte auch das wderspegeln. Der Oregonator st dazu n der Lage. Smulaton mttels numerscher Integraton Das Dfferentalglechungssystem, das sch aus dem Oregonator ergbt, kann numersch ntegrert werden. Das Prnzp der numerschen Integraton soll m folgenden allgemen an enem enfachen Bespel llustrert werden. Chemsch-knetsche Fragestellungen führen m allg. auf Anfangswertprobleme der Art (her Reakton 1. Ordnung): dc dt = kc mt c(t 0 ) = c 0 Im enfachsten Fall führt man de numersche Integraton deser Glechung aus, ndem man den Zuwachs lnear approxmert: dc dc = dt dt und schrebt: c + 1 c = kc h Dabe wrd der Ansteg (dc/dt) = kc an der Stelle zugrunde gelegt (sog. explztes Verfahren) und der endlche Zetschrtt dt = t +1 t = h betrachtet (veranschaulchen Se sch das an ener Skzze). Es folgt: c+ 1 = c kch für = 0, 1, 2, 3,... und der c-t-verlauf kann, ausgehend von c 0, angenähert berechnet werden. Es st klar, dass große Schrttweten h große Abwechungen vom egentlchen Verlauf zur Folge haben können (numersche Instabltät) und dass u. U. selbst negatve Werte für de Konzentraton erhalten werden können. Enfache Abhlfe brngt de Verwendung des Anstegs an der Stelle + 1 (sog. mplztes Verfahren). Es folgt: c + 1 = c kc+ 1h

3 3 und c c+ 1 = für = 0, 1, 2, 3, kh Deses Verfahren st absolut stabl, d. h., es lefert das rchtge Resultat c +1 = 0 für h. Um ene genügend genaue Darstellung der Lösungsfunkton c = c(t) zu erhalten, muss h natürlch möglchst klen gewählt werden, was den Rechenaufwand erhöht. In der Praxs rechnet man oft mt Schrttweten, de ncht konstant, sondern dem jewelgen Funktonsverlauf angepasst snd (Schrttwetensteuerung). De eben angestellten Überlegungen können auf lneare DGL-Systeme verallgemenert werden. Für de Zetabhänggket enes Konzentratonsvektors c (bestehend aus den Konzentratonen der betelgten Stoffe) folgt dann: c = E + Kh) ( c mt der Enhetsmatrx E und der Matrx der Geschwndgketskonstanten K = (k mn ) (Stoff m, Reakton n). Im Falle nchtlnearer DGL-Systeme (Zetgesetze höherer Ordnung) müssen de rechten Seten lnearsert werden (dese Verfahren werden als sem-mplzt bezechnet). En solches sem-mplztes Verfahren kommt be der Auswertung zur Anwendung. Besondere Schwergketen treten auf, wenn sch de charakterstschen Zeten (was st das?) der enzelnen Reaktonsschrtte stark unterscheden (sog. stefes DGL-System [6]). Senstvtätsanalyse Im Rahmen deses Praktkumversuches sollen de Geschwndgketskonstanten k M1 und k M5 des Oregonators so angepasst werden, dass de Länge der Induktonsperode und de Schwngungsdauer annähernd rchtg beschreben werden. We stark muss man aber z. B. aus der Lteratur annähernd bekannte Startwerte für de Geschwndgketskonstanten vareren, um bestmöglche Anpassung zu errechen? Ene Antwort lefert de sog. Senstvtätsanalyse [1]. Dabe stellt man de Frage nach der Empfndlchket, mt der ene betrachtete Systemgröße y (mest de Konzentraton ener Spezes aber auch z. B. de Flammengeschwndgket be Verbrennungsprozessen oder Ozonprofle n der Atmosphäre) auf ene Änderung der Geschwndgketskonstante k j reagert. En möglches Maß dafür snd de Senstvtätskoeffzenten 1. Ordnung: S j y k = (absolut) bzw. j S rel j ln y ln k = (relatv) j de natürlch selbst Funktonen der Parameter von y und k j snd. Große Senstvtätskoeffzenten zegen an, dass y empfndlch auf Änderungen/Unscherheten n k j reagert. Se machen damt u.a. auch deutlch, ob y ene ungeegnete Messgröße zur Bestmmung von k j st. In großen Reaktonssystemen (enge hundert Reaktonen und Spezes) st de Senstvtätsanalyse äußerst nützlch, um de wchtgen Reaktonsschrtte zu dentfzeren, um se z. B. m Labor genauer zu untersuchen.

4 4 Im Praktkumsversuch sollen de absoluten Senstvtätskoeffzenten der Induktonsperode und der Schwngungsdauer bezüglch k M1 und k M5 bestmmt werden. Wr bedenen uns dabe der Näherung: y rel ln( y ) Sj bzw. Sj ln( k ) j In unserem Fall steht y für de Induktonsperode (IP) bzw. de Schwngungsdauer (SD) und j für M1 bzw. M5. De Senstvtätskoeffzenten werden m Versuch bestmmt durch Vergrößerung jewels ener Geschwndgketskonstante um 1/10 hres Lteraturwertes unter Bebehaltung der Werte aller anderen Konstanten. j Versuchsdurchführung Zur Aufnahme snd noch folgende Enstellungen vorzunehmen: 1. Multmeter mt Range auf V enstellen. 2. RS 232 aktveren (Datenübertragung vom Messgerät zum PC) Man startet das Programm DataAcq (s. Anletung) und verschert sch, dass t auf 0,5 s und de Dauer auf 500 s engestellt snd. Es empfehlt sch, de Verbndung zwschen Multmeter und Computer vor dem egentlchen Versuch zu testen. Anschleßend werden n enem Becherglas mt Rührfsch folgende zuvor hergestellte Lösungen vorgelegt: 25 ml 1,5 m Malonsäure 10 ml 0,3 m KBr 90 ml 0,2 m KBrO 3 45 ml 2,5 m H 2 SO 4 Nach Zugabe der Schwefelsäure entsteht kurzetg Brom, was schnell abreagert. Vor jedem Versuch st de Enstabelektrode sorgfältg mt dest. Wasser abzuspülen. (Be der Messung st darauf zu achten, dass der Scheber an der Elektrode nach oben geschoben st. Nach Beenden der Versuche st er weder zu schleßen und de Elektrode zurück n de KCl-Lösung zu stellen.) De Enstabelektrode wrd n de Reaktonslösung getaucht und de Spannung mt dem Multmeter aufgenommen. Schleßlch wrd 1 ml 0,025 m Ferronlösung schnell zugegeben. Nach jeder Messung snd de Daten m Verzechns \Praktkum\Semester\Gruppennummer auf der Festplatte zu spechern. Wetere Versuche: Varaton der KBr Konzentraton: 6ml, 8ml, 12ml De Chemkalen werden n den für den Versuch gekennzechneten Behälter entsorgt. Es steht en USB-Anschluss am Rechner zur Datenübertragung zur Verfügung.

5 5 Programmbeschrebung Das Programm zur numerschen Integraton st auf allen Rechnern m Rechnerpool (Raum 310) nstallert. Es befndet sch m Verzechns: C:\Programme\Oszreaktonen. Das Programm ntegrert, ausgehend von den Startwerten (Konzentratonen, Geschwndgketskonstanten), das Dfferentalglechungssystem. Da deses sehr empfndlch von den Startwerten abhängt, kann es berets be klenen Veränderungen zu großen Abwechungen kommen. Des kann dazu führen, dass das System ncht mehr oszllert, oder das Programm an de Grenzen sener Lestungsfähgket kommt. Nach Starten des Programms müssen folgende Enstellungen vorgenommen werden: Im Feld Start der Messung gbt man den Zetpunkt der Ferron-Zugabe an, es st des weteren das Ende der Integraton anzugeben. Mt dem Button exp. Daten laden, kann man de Daten aus dem Praktkum enladen (Daten mttels Dskette oder USB-Stck vom Praktkumsrechner übertragen). Um de Integraton durchzuführen, müssen de Anfangskonzentratonen an Bromd und Bromat sowe H + engegeben werden. Durch Betätgen des Buttons Lteraturwerte können de Lteraturwerte aus [5] verwendet werden. Durch Ändern der Geschwndgketskonstanten k M1 und k M5 oder der Ausgangskonzentratonen können de Induktonsperode und de Schwngungsdauer beenflusst werden. De berechneten Werte können mt dem Button Daten spechern geschert werden. Auswertung Exporteren Se de expermentellen Daten n Orgn, Excel o.ä. und fertgen Se en Spannungs-Zet-Dagramm an, um sch enen Überblck zu verschaffen. 1. Führen Se mt Hlfe des Programms Oszreaktonen ene Senstvtätsanalyse durch. Es snd folgende Werte für de Messung mt 10 ml KBr zu bestmmen: IP IP, SD SD ln( IP) ln( IP) ln( SD) ln( SD),,,,,, ln( k ) ln( k ) ln( k ) ln( k ) M1 M 5 M1 M 5 M1 M 5 M1 M 5 Stellen Se de Ergebnsse und de zur Berechnung notwendgen Daten n Form ener Tabelle zusammen. 2. Passen Se mt Hlfe des Programms Oszreaktonen de Konstanten k M1 und k M5 ausgehend von den verwendeten Konzentratonen und den Lteraturwerten an. Herfür können de Werte von k M1 und k M5 n enem snnvollen Berech verändert werden. Dabe müssen de genauen Formen der beden Kurven (Experment und Modell) ncht glech sen, jedoch sollen jewels de Längen der Induktonsperode bzw. de Schwngungsdauer möglchst genau überenstmmen. 3. Stellen Se für jede Konzentraton de modellerten und de expermentellen Daten n enem enzgen Dagramm dar und geben den Anfang und das Ende des Smulatonszetraumes sowe de ermttelten Konstanten, engesetzten Konzentratonen und Lteraturwerte an. 4. Dskuteren Se de erhaltenen Ergebnsse und zegen Se möglche Fehlerquellen auf (Fehlerdskusson)

6 6 Lteratur [1] J. I. Stenfeld, J. S. Francsco, W. L. Hase, Chemcal Knetcs and Dynamcs, Prentce Hall, Englewood Clffs, [2] R. S. Berry, S. A. Rce, J. Ross, Physcal Chemstry, 2nd ed., Oxford Unversty Press, New York [3] H. D. Förstlng und H. Kuhn, Praxs der Physkalschen Cheme, VCH Wenhem. [4] sehe z. B. Gerthsen Physk, Abschntt Nchtlneare Dynamk und (für besonders Interesserte) H. Haken, Synergetk, Ene Enführung, Sprnger, Berln [5] R. J. Feld, R. M. Noyes, J. Chem. Phys. 60, 1877 (1974). [6] W. H. Press, S. A. Teukolsky, W. T. Vetterlng, B. P. Flannery, Numercal Recpes, The Art of Scentfc Computng, 2nd ed., Cambrdge Unversty Press, Cambrdge 1992 (Kaptel 16.6; kostenfreer Zugang über

7 Checklste für den Versuch F 42 Messung (DataAcq, Versuchsdurchführung): Kontrolleren der Messzet o COM-Schnttstelle wählen (0) o t = 0,5 s (1) o Dauer = 500 s (2) Enstellen des Voltmeters o Anzege auf V o ggf. Range-Knopf benutzen, um auf V-Empfndlchket enzustellen o ggf. RS232 aktveren, für de Verbndung zum Rechner Elektrode o Scheber öffnen Versuchsdurchführung o Zugabe der Chemkalen o Warten, bs Brom abreagert hat o Elektrode entauchen Aufnahme der Daten o Start Knopf drücken (3) o warten bs de Aufnahme vorbe st o Specherdalog befolgen o warten, bs de Specherung vollständg erfolgt st (4) (0) (6) (3) (5) (1) (2) (7)

8 4: Menuleste, mt der de Messung gestartet und gestoppt sowe Dateen geöffnet und gespechert werden können. 5: Autoskalerung x und y 6: Toolleste, z.b. für Zoom-Funktonen 7: Messung vorzetg beenden Auswertung (OszReaktonen): Das Programm Oszreaktonen kann über den Wndows-Start-Button, Programme, Oszreaktonen gestartet werden. Enlesen der Messdaten, konfgureren des Programms o Daten auf Dskette/USB-Stck spechern und von dort auf den Rechner laden o Startzetpunkt der Messung be Start der Messung engeben o exp. Daten laden Button drücken und de zu ladenden Daten auswählen o de engesetzten Konzentratonen n de entsprechenden Felder c(bromd), c(bromat), c(h + ) entragen Modellerung der Messsgnale o Werte für de Geschwndgketskonstanten ggf. verändern oder Lteraturwerte benutzen o Berechnen drücken, danach warten, bs das Lämpchen aufhört zu blnken. (De zuvor berechnete Kurve wrd ebenfalls engezechnet) o Anpassen der berechneten Kurve an das Messergebns durch obge Punkte o Alle Daten durch Drücken von Daten spechern spechern allgemene Hnwese unter dem Graphen befnden sch Toollesten, mt deren Hlfe man z.b. n den Graphen hnenzoomen kann

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

"Zukunft der Arbeit" Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft

Zukunft der Arbeit Arbeiten bis 70 - Utopie - oder bald Realität? Die Arbeitnehmer der Zukunft "Zukunft der Arbet" Arbeten bs 70 - Utope - oder bald Realtät? De Arbetnehmer der Zukunft Saldo - das Wrtschaftsmagazn Gestaltung: Astrd Petermann Moderaton: Volker Obermayr Sendedatum: 7. Dezember 2012

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008

Netzsicherheit I, WS 2008/2009 Übung 3. Prof. Dr. Jörg Schwenk 27.10.2008 Netzscherhet I, WS 2008/2009 Übung Prof. Dr. Jörg Schwenk 27.10.2008 1 Das GSM Protokoll ufgabe 1 In der Vorlesung haben Se gelernt, we sch de Moble Staton (MS) gegenüber dem Home Envroment (HE) mt Hlfe

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M.

UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habil. H. Müller-Steinhagen P R A K T I K U M. UNIVERSITÄT STUTTGART INSTITUT FÜR THERMODYNAMIK UND WÄRMETECHNIK Professor Dr. Dr.-Ing. habl. H. Müller-Stenhagen P R A K T I K U M Versuch 9 Lestungsmessung an enem Wärmeübertrager m Glech- und Gegenstrombetreb

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

Einführung in Origin 8 Pro

Einführung in Origin 8 Pro Orgn 8 Pro - Enführung 1 Enführung n Orgn 8 Pro Andreas Zwerger Orgn 8 Pro - Enführung 2 Überscht 1) Kurvenft, was st das nochmal? 2) Daten n Orgn mporteren 3) Daten darstellen / plotten 4) Kurven an Daten

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2

Arbeitsgruppe Radiochemie Radiochemisches Praktikum P 06. Einführung in die Statistik. 1. Zählung von radioaktiven Zerfällen und Statistik 2 ETH Arbetsgruppe Radocheme Radochemsches Praktkum P 06 Enführung n de Statstk INHALTSVERZEICHNIS Sete 1. Zählung von radoaktven Zerfällen und Statstk 2 2. Mttelwert und Varanz 2 3. Momente ener Vertelung

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Grundpraktikum Physikalische Chemie V 9. Kalorimetrie: Bestimmung von Verbrennungsenthalpien. Bachelor-Studiengänge:

Grundpraktikum Physikalische Chemie V 9. Kalorimetrie: Bestimmung von Verbrennungsenthalpien. Bachelor-Studiengänge: Grundpraktkum Physkalsche Cheme V 9 Kalormetre: Bestmmung von Verbrennungsenthalpen Bachelor-Studengänge: Bestmmung der Mesomereenerge aromatscher Kohlenwasserstoffe aus der Verbrennungsenthalpe Überarbetetes

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de

ERP Cloud Tutorial. E-Commerce ECM ERP SFA EDI. Backup. Preise erfassen. www.comarch-cloud.de ERP Cloud SFA ECM Backup E-Commerce ERP EDI Prese erfassen www.comarch-cloud.de Inhaltsverzechns 1 Zel des s 3 2 Enführung: Welche Arten von Presen gbt es? 3 3 Beschaffungsprese erfassen 3 3.1 Vordefnerte

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar.

2. Nullstellensuche. Eines der ältesten numerischen Probleme stellt die Bestimmung der Nullstellen einer Funktion f(x) = 0 dar. . Nullstellensuche Enes der ältesten numerschen Probleme stellt de Bestmmung der Nullstellen ener Funkton = dar. =c +c =c +c +c =Σc =c - sn 3 Für ene Gerade st das Problem trval, de Wurzel ener quadratschen

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Transistor als Schalter

Transistor als Schalter Elektrotechnsches Grundlagen-Labor II Transstor als Schalter Versuch Nr. 5 Erforderlche Geräte Anzahl Bezechnung, Daten GL-Nr. 1 Doppelnetzgerät 198 1 Oszllograph 178 1 Impulsgenerator 153 1 NF-Transstor

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

4. Optische Resonatoren

4. Optische Resonatoren 4. Optsche Resonatoren 4.. Modenselekton Bs jetzt haben wr nur den enfachsten Resonatortyp, den Fabry-erot Laser besprochen. In Abb. 4.. snd nochal de wchtsten Eenschaften deses Lasertyps darestellt. a)

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung

Bestimmung des Aktivitätskoeffizienten mittels Dampfdruckerniedrigung Grundraktkum Physkalsche Cheme Versuch 22 Bestmmung des Aktvtätskoeffzenten mttels Damfdruckernedrgung Überarbetetes Versuchsskrt, 27..204 Grundraktkum Physkalsche Cheme, Versuch 22: Aktvtätskoeffzent

Mehr

InfoTerminal Touch Gebrauchsanweisung

InfoTerminal Touch Gebrauchsanweisung Gebrauchsanwesung Bestell-Nr.: 2071 xx 1. Scherhetshnwese Enbau und Montage elektrscher Geräte dürfen nur durch Elektrofachkräfte erfolgen. Dabe snd de geltenden Unfallverhütungsvorschrften zu beachten.

Mehr

-70- Anhang: -Lineare Regression-

-70- Anhang: -Lineare Regression- -70- Anhang: -Lneare Regressn- Für ene Messgröße y f(x) gelte flgender mathematsche Zusammenhang: y a+ b x () In der Regel läßt sch durch enen Satz vn Messwerten (x, y ) aber kene Gerade zechnen, da de

Mehr

Debye-Hückel-Theorie. Version 7.6.06

Debye-Hückel-Theorie. Version 7.6.06 Debye-Hück-Theore erson 7.6.6 Debye-Hück-Theore 1. Enletung Löst man z. B. Chlorwasserstoff HCl n Wasser, dann bestzt de wässrge HCl- Lösung ene ratv hohe ektrsche Letfähgket. Des west berets daraufhn,

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

BA_T3Compact_IPO_v1.0 (Draft_B)_050719

BA_T3Compact_IPO_v1.0 (Draft_B)_050719 BA_T3Compact_IPO_v1.0 (Draft_B)_050719 Inhalt Inhalt...2 Machen Se sch mt Ihrem Telefon vertraut Wchtge Hnwese... 3 Ihr T3 Compact auf enen Blck... 6 T3 IP Telefon n Betreb nehmen (I5)... 7 Grundregeln

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

WÄRMEÜBERTRAGUNG - Doppelrohr

WÄRMEÜBERTRAGUNG - Doppelrohr WÄRMEÜBERTRAGUNG - Doppelrohr Dpl.-Ing. Eva Drenko 1. Voraussetzungen Für de Durchführung deses Übungsbespels snd folgende theoretsche Grundlagen erforderlch: a. Gesetzmäßgketen von Transportprozessen;

Mehr

2 Zufallsvariable und Verteilungen

2 Zufallsvariable und Verteilungen Zufallsvarable und Vertelungen 7 Zufallsvarable und Vertelungen Wr wollen uns jetzt mt Zufallsexpermenten beschäftgen, deren Ausgänge durch (reelle) Zahlen beschreben werden können, oder be denen man jedem

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

BA_T3Classic_IPO_v1.0 (Draft_B)_050719

BA_T3Classic_IPO_v1.0 (Draft_B)_050719 BA_T3Classc_IPO_v1.0 (Draft_B)_050719 Inhalt Inhalt...2 Machen Se sch mt Ihrem Telefon vertraut Wchtge Hnwese... 3 Ihr T3 Classc auf enen Blck... 6 T3 IP Telefon n Betreb nehmen (I5)... 7 Grundregeln für

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

Vorlesung Reaktionstechnik SS 09 Prof. M. Schönhoff/ PD Dr. Cramer

Vorlesung Reaktionstechnik SS 09 Prof. M. Schönhoff/ PD Dr. Cramer Vorlesung Reaktonstehnk SS 9 Prof. M. Shönhoff/ PD Dr. Cramer 2.7.29 Musterlösungen zu Übungsaufgaben 2 vorzurehnen am Mo, 2.7.9 Aufgabe 5.) En Rohrbündelreaktor soll für de Durhführung ener Gasreakton

Mehr

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren!

Einbau-/Betriebsanleitung Stahl-PE-Übergang Typ PESS / Typ PESVS Originalbetriebsanleitung Für künftige Verwendung aufbewahren! Franz Schuck GmbH Enbau-/Betrebsanletung Stahl-PE-Übergang Typ PESS / Typ PESVS Orgnalbetrebsanletung Für künftge Verwendung aufbewahren! Enletung Dese Anletung st für das Beden-, Instandhaltungs- und

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Lösungen. Übungsklausur Wahrscheinlichkeit und Regression Die Lösungen Übungsklausur Wahrschenlchket und Regresson De Lösungen. Welche der folgenden Aussagen treffen auf en Zufallsexperment zu? a) En Zufallsexperment st en emprsches Phänomen, das n stochastschen Modellen

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Leistungsmessung im Drehstromnetz

Leistungsmessung im Drehstromnetz Labovesuch Lestungsmessung Mess- und Sensotechnk HTA Bel Lestungsmessung m Dehstomnetz Nomalewese st es ken allzu gosses Poblem, de Lestung m Glechstomkes zu messen. Im Wechselstomkes und nsbesondee n

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de

DLK Pro Multitalente für den mobilen Datendownload. Maßgeschneidert für unterschiedliche Anforderungen. www.dtco.vdo.de DLK Pro Multtalente für den moblen Datendownload Maßgeschnedert für unterschedlche Anforderungen www.dtco.vdo.de Enfach brllant, brllant enfach DLK Pro heßt de Produktfamle von VDO, de neue Standards n

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler

I)1. Kinematik. EP WS 2009/10 Dünnweber/Faessler I)1. Knematk I) Mechank 1.Knematk (Bewegung) 2. Dynamk on Massenpunkten (Enfluss on Kräften) 3. Starre Körper 4.Deformerbare Meden 5. Schwngungen, Wellen, Akustk I)1. Knematk Bewegungslehre (Zel: Quanttate

Mehr

Messtechnik/Qualitätssicherung

Messtechnik/Qualitätssicherung Name, Vorname Matrkel-Nr. Studenzentrum Studengang Wrtschaftsngeneurwesen Fach Messtechnk/Qualtätsscherung Art der Lestung Prüfungslestung Klausur-Knz. WI-MQS-P 08053 Datum 3.05.008 Hnwes zur Rückgabe

Mehr

11 Chemisches Gleichgewicht

11 Chemisches Gleichgewicht 11 Chemsches Glechgewcht 11.1 Chemsche Reaktonen und Enstellung des Glechgewchts Untersucht man den Mechansmus chemscher Reaktonen, so wrd man dese enersets mt enem mkroskopschen oder knetschen Blck auf

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 5. Potentiometrische Titrationen von Säuren und Basen sowie Redox-Systemen

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 5. Potentiometrische Titrationen von Säuren und Basen sowie Redox-Systemen Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 5 Potentometrsche Ttratonen von Säuren und Basen sowe Redox-Systemen Praktkumsaufgaben 1. Ttreren Se potentometrsch ( ph-lektrode n Form ener nstabmesskette)

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

MRKOMNO. kéì=~äw= pfabufp=ud. aáöáí~äéë=o åíöéå=l=sáçéçjpçñíï~êé=j=sfabufp hìêòäéçáéåìåöë~åäéáíìåö= aéìíëåü

MRKOMNO. kéì=~äw= pfabufp=ud. aáöáí~äéë=o åíöéå=l=sáçéçjpçñíï~êé=j=sfabufp hìêòäéçáéåìåöë~åäéáíìåö= aéìíëåü kéì=~äw= MRKOMNO pfabufp=ud aáöáí~äéë=o åíöéå=l=sáçéçjpçñíï~êé=j=sfabufp hìêòäéçáéåìåöë~åäéáíìåö= aéìíëåü 0123 Deses Produkt trägt das CE-Kennzechen n Überenstmmung mt den Bestmmungen der Rchtlne 93/42EWG

Mehr

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung

Physikalisches Anfängerpraktikum Teil 2 Versuch PII 33: Spezifische Wärmekapazität fester Körper Auswertung Physkalsches Anfängerpraktkum Tel 2 Versuch PII 33: Spezfsche Wärmekapaztät fester Körper Auswertung Gruppe M-4: Marc A. Donges , 060028 Tanja Pfster, 204846 2005 07 spezfsche Wärmekapaztäten.

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz

ω 0 = Protokoll zu Versuch E6: Elektrische Resonanz Protokoll zu Versuch E6: Elektrsche esonanz. Enletung En Schwngkres st ene elektrsche Schaltung, de aus Kapaztät, Induktvtät und ohmschen Wderstand besteht. Stmmt de Frequenz der anregenden Wechselspannung

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)).

Abbildung 3.1: Besetzungszahlen eines Fermigases im Grundzustand (a)) und für eine angeregte Konfiguration (b)). 44 n n F F a) b) Abbldung 3.: Besetzungszahlen enes Fermgases m Grundzustand (a)) und für ene angeregte Konfguraton (b)). 3.3 Ferm Drac Statstk In desem Abschntt wollen wr de thermodynamschen Egenschaften

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung

tutorial N o 1a InDesign CS4 Layoutgestaltung Erste Schritte - Anlegen eines Dokumentes I a (Einfache Nutzung) Kompetenzstufe keine Voraussetzung Software Oberkategore Unterkategore Kompetenzstufe Voraussetzung Kompetenzerwerb / Zele: InDesgn CS4 Layoutgestaltung Erste Schrtte - Anlegen enes Dokumentes I a (Enfache Nutzung) kene N o 1a Umgang mt

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2

Analytische Chemie. LD Handblätter Chemie. Bestimmung der chemischen Zusammensetzung. mittels Röntgenfluoreszenz C3.6.5.2 SW-214-3 Analytsche Cheme Angewandte Analytk Materalanalytk LD andblätter Cheme Bestmmung der chemschen Zusammensetzung ener Messngprobe mttels Röntgenfluoreszenz Versuchszele Mt enem Röntgengerät arbeten.

Mehr

Streuungs-, Schiefe und Wölbungsmaße

Streuungs-, Schiefe und Wölbungsmaße aptel IV Streuungs-, Schefe und Wölbungsmaße B... Lagemaße von äufgketsvertelungen geben allen weng Auskunft über ene äufgketsvertelung. Se beschreben zwar en Zentrum deser Vertelung, geben aber kenen

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung:

wird auch Spannweite bzw. Variationsbreite genannt ist definiert als die Differenz zwischen dem größten und kleinsten Messwert einer Verteilung: Streuungswerte: 1) Range (R) ab metrschem Messnveau ) Quartlabstand (QA) und mttlere Quartlabstand (MQA) ab metrschem Messnveau 3) Durchschnttlche Abwechung (AD) ab metrschem Messnveau 4) Varanz (s ) ab

Mehr