Spiele und Codes. Rafael Mechtel

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Spiele und Codes. Rafael Mechtel"

Transkript

1 Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,, w n) Q n. Wenn Q = {, }, dann sprcht man von enem bnärem Kanal. Be der Übertragung können Fehler auftreten. En gesendetes Symbol q Q wrd dann bem Empfänger als en anderes Symbol q Q empfangen. Das dann empfangene Wort w kann sch also vom gesendeten Wort w unterscheden. Dese Fehler treten mt ener vom Kanal abhänggen Wahrschenlchket p auf. Nun st das Zel de Informatonen so zu übertragen, dass se auch be engen Fehlern noch rchtg nterpretert werden können (Fehlerkorrektur), bzw. wengstens erkannt werden kann, ob en Fehler aufgetreten st (Fehlererkennung). Her werden nur bnäre Codes betrachtet, also über dem Alphabet Q = {, }. Lneare Codes Wenn man als Alphabet Q ene endlchen Körper GF(q) wählt, st Q n en endlcher Vektroraum. Es betet sch an enen Code C Q n als Untervektorraum zu wählen. (Herbe muss q = p r, p Prmzahl sen) DEFINITION : bnärer lnearer Code C GF(q) n, Untervektorraum mt Dmenson k, so heßt C en bnärer lnearer Code oder kurz [n,k]-code. Jeder Vektroraum hat ene Bass: DEFINITION 2: Generator-Matrx Ene Matrx G heßt Generator-Matrx für enen [n,k]-code C, wenn G ene k n Matrx über GF(q) st und de Zelen von G ene Bass von C blden. Informatonen x GF(q) k lassen sch mt G enfach koderen: c = xg Nun beschränkt man sch be der Übertragung auf Codewörter c C. DEFINITION 3: Hammng-Metrk Seen x,y Q n so st d(x,y) = { x y } der Hammng-Abstand zwschen x und y. DEFINITION 4: Gewcht Das Gewcht enes Vektors x GF(q)n st defnert als: w(x) = d(x,) Wrd en Wort c übertragen und das Wort w empfangen, so kann man den Fehler als en Wort e darstellen mt w = e + c. Dekoderen heßt dann en e mt mnmalem Gewcht zu fnden, so dass w e weder m Code legt. MAXIMUM-LIKELYHOOD-DEKODIEREN Wenn w Q n empfangen wrd und w C, dann wähle mmer en c C mt d w, c) = d w, x ( mn{ ( )} x C Für Mehr Detals, we man be lnearen Codes den Fehler e bestmmen kann, sehe [4]. Um festzustellen, we vele Fehler en Code verkraften kann, braucht man: DEFINITION 5: mnmale Dstanz d = d x, heßt mnmale Dstanz enes Codes C. y mn{ ( )} x, y C SATZ Be lnearen Codes st de mnmale Dstanz glech dem mnmalem Gewcht. Sete

2 Wenn zu enem [n,k]-code C de mnmale Dstanz d bekannt st, so heßt C en [n,k,d]-code. Es st klar, dass wenn en Code C mnmale Dstanz d hat, mt der Maxmum-Lkelyhood-Dekoderung bs zu d 2 Fehler behoben werden können. Anstatt zu versuchen enen Code komplett zu Analyseren, also de Wahrschenlchket auszurechnen, mt der en Wort noch rchtg erkannt wrd, beschränkt man sch darauf de mnmale Dstanz von Codes als Maß für de Güte der Fehlerkorrektur zu benutzen. DEFINITION 6: Informatonsrate R = n - log q C heßt (Informatons-)Rate des Codes C Um Fehlerkorrgeren zu können, muss man ene längere Übertragungszet n Kauf nehmen, da man ncht de Menge aller möglchen Wörter Q n ausnutzt. Man st aber an ener möglchst guten Informatonsrate nteressert, weshalb man be enem Code C mt dem man e Fehler korrger en kann auch gerne hätte, dass für alle Wörter w Q n glt: c C : d( c, w) e. So en Code heßt dann perfekt. Anders ausgedrückt: Man möchte möglchst vele Codewörter zu gegebenem mnmalem Abstand haben. DEFINITION 7: Erweterter Code Se C en [n,k]-code, der erweterte Code Ĉ st en [n+,k]-code mt Codewörtern aus C denen en c angehängt wurde, so dass de Summe enes Codewortes st. (Partycheck) Be bnären Codes heßt das, de Codewörter haben nur gerades Gewcht. Bespel Se G de Generatormatrx des Codes C mt G = So st C en [7,4,3] Code, der Hammng-Code. Mt desen Codes kann en Fehler korrgert werden. Soll z.b. der Wert = ( ) c = Und der erweterte Code von C st Ĝ = x übertragen werden, ergbt sch das Codewort c: ( ) = ( ) Ĉ st en [8,4,4] Code, der erweterte Hammng- Code. Wrd en Wort w C empfangen, so muss nur an ener Stelle n W en Bt geflppt werden. Das entsprcht ener Addton mt enem Vektor e mt w(e) =. 2 Codes aus Heap-Spelen Aus ener Verallgemenerung des Grundy-Spels lassen sch sehr lecht Codes Gewnnen. Wr betrachten her nur bnäre Codes und begnnen mt enem Bespel für den wnnng code Betrachte das Spel Turnng Turtles [5]: 7 Münzen n ener Rehe an Postonen bs 7, Kopf =, Zahl =. Man darf ene Münze von Kopf nach Zahl umdrehen (Æ). Zusätzlch kann man ene Münze an ener kleneren Poston belebg umdrehen (Æ oder Æ). Zu Begnn snd de Münzen n zufällger Lage. Verloren hat der Speler, der zuerst kene Münze mehr umdrehen kann. Der gewnnende Code Schrebe ene Poston m Spel als: (ξ 7ξ 6ξ 5ξ 4ξ 3ξ 2ξ ) mt ξ = oder. Sete 2 ξ 7 ξ 6 ξ 5 ξ 4 ξ 3 ξ 2 ξ De Poston P = () n Turnng Turtles G(P) = = Gewnnzug währe auf: ξ 3=, ξ 2=

3 Für jede atomare Poston P mt ( ) mt nur ener an der -ten Stelle glt: G(P ) = ( Turnng Turtles st nur ene Verkledung von Nm) Und somt snd de Gewnnpostonen defnert durch: (Her treten nur Nm -Summen auf) () ξ G( ) = ξ = Das defnert enen Code C, genannt der wnnng code enes Spels. Da der Code über ene lneare Bedngung () defnert st, glt folgender Satz: SATZ 2 Der wnnng code enes Spels st en lnearer Code über GF(2). Man kann sch natürlch den wnnng code auch zu anderen Spelen angucken. Anstatt en oder zwe Münzen kann man bs zu t Münzen um drehen. Für t = 3 heßt das Spel Mock Turtles, Moebus, Mogul, Modores entsprechend für t = 5, 7 und 9. n [5] snd de Spele beschreben. Der allgemene Fall für belebges t führt zu ener Verallgemenerung von Grundys Spel. Lexcodes Lexcode kommt von lexkographscher Ordnung. Zunächst ene Verallgemenerung von Grundys-Spel: Es gbt atomare Postonen P. Ene allgemene Poston st Summe von atomaren Postonen (2) P a + P b + P c De Regel snd durch turnng sets gegeben, de allgemen so aussehen: { h,, j, } mt h > > j > und bedeuten de atomare Poston P h darf durch de Poston P +P j+ ersetzt werden. Man kann dese Regeln auch für Zahlen um fomuleren. Danach s t ene Poston gegeben als ene Zahl: = ξ mt ξ = oder N 2 En Zug muss folgende Bedngungen erfüllen:. N < N (de lexcographsche Bedngung) 2. De Menge der mt ξ ξ st en turnng set DEFINITION 8: (unbeschränkter) Lexcode En Lexcode C wrd durch folgenden Greedy-Algorthmus defnert: Betrachte alle möglchen Poston w = ( ξ 3ξ 2ξ ) n lexkographscher Rehenfolge, d.h. sortert nach N = ξ 2 En Wort w wrd ncht n den Code aufgenommen, wenn es en Wort w C gbt (also mt N < N), für welches (w,w ) = { ξ ξ } en turnng set st. Wenn man als turnng sets alle Mengen der Größe t oder klener nmmt, so erhält man enen Code mt mnmaler Dstanz d = t +. De Lexcodes snd äquvalent zu den zuvor erwähnten wnnng codes : SATZ 4 De Postonen m Lexcode snd genau de P-Postonen des dazugehörgen Speles. Bewes Indukton über N (de Poston n der lexkographschen Sorterung) Es müssen zwe Dnge überprüft werden: () Wenn w C, dann st w kene P-Poston (Also N-Poston). Wenn w C gbt es en w C mt N < N und (w,w ) st en turnng set. Nach Induktonsannahme st w ene N-Poston. () Wenn w C, dann st w ene P -Poston. Für alle w de Nachfolger von w snd glt, (w,w ) st en turnng set und N < N. Da aber w aufgenommen wurde, muss w C gelten. Also st w ene P-Poston. Somt lässt sch nun der wnnng code aus dem vorangegangenen Bespel enfach konstrueren. Sete 3

4 Deser Code st äquvalent zum [7,4,3] Hammng-Code aus dem vorhergen Abschntt. Um de Äquvalenz zum Hammng-Code zu sehen, benutze de Indexpermutaton So blden de Zelen 2, 3, 8 und de Generatormatrx G. Ene andere Möglchket st zu zegen, dass en [7,4,3]-Code endeutg bestmmt st. Mt n = 8 Münzen und d = 4 erhält man den erweterten Hammng-Code. Allgemen glt folgender Satz, welcher zum Mock-Turtle Theorem äquvalent st: ξ 7 ξ 6 ξ 5 ξ 4 ξ 3 ξ 2 ξ SATZ 5 De Lexcodes mt gerader mnmaler Dstanz d erhält man aus den Lexcodes ungerader Dstanz, ndem man en Partycheck-Bt hnzufügt. (sehe erweterter Code oben) Aus den oben erwähnten Spelen ergeben sch: ([] und [2]) Moebus (t=5): Extended Quadratc Resdue Code der Länge 8 [8,9,6] Mogul (t=7): Extended Golay Code [24,2,8] Modores (t=9): Bnäre Codes mt Dstanz : [27,9,] und [32,2,] Constant weght Lexcodes Bsher hatten wr Lexcodes betrachtet, de unbeschränkt waren. Deser Begrff wrd nur dadurch gerechtfertgt, dass man sch auch Lexcodes mt Beschränkungen angucken kann. Ene Möglchket snd constant weght lexcodes. Constant weght lexcode snd genauso defnert we Lexcodes, nur müssen alle en gegebenes Gewcht w haben. Das Spel zu enem Lexcode mt konstantem Gewcht w und mnmaler Dstanz d = 2t 4 st folgendes: Ene Poston st ene Menge von ncht negatven ganzen Zahlen {a, a 2,, a w}, en zulässger Zug st bs zu t- Zahlen zu verrngern. Dabe müssen alle Zahlen verscheden bleben. We mmer verlert der erste Speler, der ncht mehr zehen kann. SATZ 6 Für alle d = 2t 4 und alle w st der wnnng code enes solchen Speles der Lexcode mt konstantem Gewcht und den glechen Parametern. Der Bewes st analog zu Satz 4. Für d=2 st besteht der Code aus allen Wörtern mt Gewcht w. Für d=4 st das Spel Welters-Spel und für Welters-Spel gbt es ene vollständge Theore. Für alle anderen Werte für d gbt es schenbar kene allgemene Struktur. 3 Lteratur Speltheore und Lexcodes [] J. H. Conway und N. J. A. Sloane, Lexcographc Codes: Error-Correctng Codes from Game Theory, IEEE Transactons on Informaton Theory, Vol IT-32, No. 3, S , 986 [2] V. Pless, Games and Codes, Proceedngs of Symposa n Appled Mathematcs, Volume 43, S., 99 Speltheore und Ann-Codes (ncht m Vortrag) [3] A. S. Fraenkel, Error-Correctng Codes Derved from Combnatoral Games, MSRI Publcatons Volume 29 Games of No Chance, S , 996 Coderungstheore [4] Jacobus H. van Lnt: Introducton to codng theory, Sprnger GTM 86, 982 Speltheore [5] R. K. Guy, Impartal Games, Proceedngs of Symposa n Appled Mathematcs, Volume 43, S , 99 [6] A. S. Fraenkel, Scenc Trals Ascendng from Sea-Level Nm to Alpne Chess, MSRI Publcatons Volume 29 Games of No Chance, S. 3 42, 996 Sete 4

5 Ergänzungen zu Spele und Codes 4 Ann-Codes: Codes aus Annhlatons-Spelen Das Vernchtungsspel Be Heap-Spelen n Abschntt 3 ergab sch, dass ncht de Anzahl der Haufen, sondern ledglch de Partät der Anzahl entschedend war. Der Grund war: x x = für alle x. Das kann man auch für allgemene Spele auf Graphen defneren und kommt zum Annhlaton-Game (annhlaton = Vernchtung, Zerstörung). Wr betrachten n desem Abschntt Ann-Spele, de auf enem gerchteten Graph Γ gespelt werden. Auf den Knoten von Γ snd Spelstene vertelt, maxmal ener pro Knoten. En Zug besteht darn, enen Sten von enem Knoten v zu enem Nachfolger u zu scheben. De Anzahl der Spelstene auf u wrd dann modulo zwe reduzert. Zu enem Annhlatons-Spel A auf enem Graph Γ gbt es enen Annhlatons-Graph G = (V,E) (kurz: Anngraph), mt V de Postonen von A und (u,v) E genau dann, wenn es enen Zug von u nach v gbt. Für desen Graphen gbt exstert de allgemene Sprague -Grundy-Funkton γ. (sehe [6]) De Knoten von Γ werden durchnummerert von z bs z n. En Spelsten auf enem z entsprcht weder, sonst. So werden de Knoten (we be den Heap-Games zuvor) zur bnären Darstellung der Zahlen bs 2 n - und V (de Knoten des Anngraphen) werden zu enem Vektorraum über GF(2). [3] Bespele. Bespel P = {, 7,, 2} Z Z Z 2 Z 3 2. Bespel En Nm-Haufen der Größe 5, d.h. Γ hat als Knoten V das Blatt und z,, z 4 mt Kanten E und (z,z j) E genau dann wenn < j und (z,) E für alle {,, 4}. Dezmal geschreben ergbt sch: P = {, 7, 25, 3}. Das entsprcht den ersten ver Wörtern des wnnng codes von Turnng Turtles. So seht man auch en, dass folgender Graph zum glechen Ergebns führt. Z Z 2 Z Z 3 Z 4 Es st ken Zufall, dass dese beden Bespelcodes lnear snd. Egenschaften der Ann-Codes Se V f V de Menge der Knoten des Anngraphen, auf denen γ endlch st. Dann lässt sch zegen, dass γ lnear st und somt für ene postve ganze Zahl t γ en Homöomorphsmus zwschen V f und GF(2) t st. Der Kern von γ V = γ - () st der Ann-Code und somt lnear über GF(2). [3] En Problem st de Größe von G. Es glt nämlch: V = 2 n, n de Anzahl der Knoten von Γ Zur Berechnung von γ genügt es aber enen O(n 4 ) großen Tel von G zu betrachten. Damt kann γ n O(n 6 ) Zet für den gesamten Graphen berechnet werden. [6] Der Hammng-Abstand zwschen zwe aufenanderfolgenden P-Postonen enes belebgen Ann-Games st mmer klener glech 4. Somt können mt deser Methode kene Codes mt mnmaler Dstanz größer als 4 erzeugt werden. Mann kann aber de Lexcode-Methode mt den Ann-Games verbnden, umso größere Codes zu erzeugen. So lässt sch der Rechenaufwand, um den Lexcode zu berechnen, verrngern. Andere Ideen snd statt enem Spelsten genau k oder k Stene auf enmal zu bewegen. Sete 5

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2

12 LK Ph / Gr Elektrische Leistung im Wechselstromkreis 1/5 31.01.2007. ω Additionstheorem: 2 sin 2 2 1 K Ph / Gr Elektrsche estng m Wechselstromkres 1/5 3101007 estng m Wechselstromkres a) Ohmscher Wderstand = ˆ ( ω ) ( t) = sn ( ω t) t sn t ˆ ˆ P t = t t = sn ω t Momentane estng 1 cos ( t) ˆ ω = Addtonstheorem:

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 2 Prv.-Doz. Dr. D. Kadelka Dpl.-Math. W. Lao Übungen zur Vorlesung Stochastsche Prozesse Musterlösungen Aufgabe 7: (B. Fredmans Urnenmodell)

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden.

Daten sind in Tabellenform gegeben durch die Eingabe von FORMELN können mit diesen Daten automatisierte Berechnungen durchgeführt werden. Ene kurze Enführung n EXCEL Daten snd n Tabellenform gegeben durch de Engabe von FORMELN können mt desen Daten automatserte Berechnungen durchgeführt werden. Menüleste Symbolleste Bearbetungszele aktve

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Kapitel 8: Graph-Strukturierte Daten

Kapitel 8: Graph-Strukturierte Daten Ludwg Maxmlans Unerstät München Insttut für Informatk Lehr- und Forschungsenhet für Datenbanksysteme Skrpt zur Vorlesung Knowledge Dscoery n Dtb Databases II m Wntersemester 2011/2012 Kaptel 8: Graph-Strukturerte

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

AUFGABEN ZUR INFORMATIONSTHEORIE

AUFGABEN ZUR INFORMATIONSTHEORIE AUFGABEN ZUR INFORMATIONSTHEORIE Aufgabe Wr betrachten das folgende Zufallsexperment: Ene fare Münze wrd so lange geworfen, bs erstmals Kopf erschent. De Zufallsvarable X bezechne de Anzahl der dazu notwendgen

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

13.Selbstinduktion; Induktivität

13.Selbstinduktion; Induktivität 13Sebstndukton; Induktvtät 131 Sebstndukton be En- und Ausschatvorgängen Versuch 1: Be geschossenem Schater S wrd der Wderstand R 1 so groß gewäht, dass de Gühämpchen G 1 und G 2 gech he euchten Somt snd

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Insttut für Stochastk Prof Dr N Bäuerle Dpl-Math S Urban Lösungsvorschlag 6 Übungsblatt zur Vorlesung Fnanzatheatk I Aufgabe Put-Call-Party Wr snd nach Voraussetzung n ene arbtragefreen Markt, also exstert

Mehr

Übung zur Vorlesung. Informationstheorie und Codierung

Übung zur Vorlesung. Informationstheorie und Codierung Übung zur Vorlesung Informatonstheore und Coderung Prof. Dr. Lla Lajm März 25 Ostfala Hochschule für angewandte Wssenschaften Hochschule Braunschweg/Wolfenbüttel Postanschrft: Salzdahlumer Str. 46/48 3832

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen.

IT- und Fachwissen: Was zusammengehört, muss wieder zusammenwachsen. IT- und achwssen: Was zusammengehört, muss weder zusammenwachsen. Dr. Günther Menhold, regercht 2011 Inhalt 1. Manuelle Informatonsverarbetung en ntegraler Bestandtel der fachlchen Arbet 2. Abspaltung

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

Datenträger löschen und einrichten

Datenträger löschen und einrichten Datenträger löschen und enrchten De Zentrale zum Enrchten, Löschen und Parttoneren von Festplatten st das Festplatten-Denstprogramm. Es beherrscht nun auch das Verklenern von Parttonen, ohne dass dabe

Mehr

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen

Klassische Gatter und Logikelemente. Seminarvortrag zu Ausgewählte Kapitel der Quantentheorie Quantenalgorithmen Klasssche Gatter und Logkelemente Semnarvortrag zu Ausgewählte Kaptel der Quantentheore Quantenalgorthmen Gerd Ch. Krzek WS 2003 I. Grundlagen und Methoden der Logk: Im folgenden soll de Konstrukton und

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen

Hefte zur Logistik Prof. Dr. Siegfried Jetzke. Heft 1 Begriffsdefinitionen Hefte zur Logstk Prof. Dr. Segfred Jetzke Heft 1 Begrffsdefntonen Jun 2010 Deses Heft st urheberrechtlch geschützt. Wenn Se de Quelle angeben, können Se gerne deses Heft wetergeben, Tele koperen oder aus

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

Seminar Netzwerkanalyse. Kapitel 12 Vergleiche von Netzw erken. Sommersemester 2005 Universität Trier

Seminar Netzwerkanalyse. Kapitel 12 Vergleiche von Netzw erken. Sommersemester 2005 Universität Trier Kaptel 2 Vergleche von Netzw erken Sommersemester 2005, 697862 Kaptel 2.0 Allgemenes Allgemenes Graph-Isomorphsmus Problem (GI) besteht darn festzustellen, ob zwe gegebene Graphen somorph snd In der Praxs

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden.

Z Z, kurz { } Zählt die Reihenfolge der Buchstaben (ja/nein) Daraus ergeben sich wiederum vier Möglichkeiten, Wörter der Länge k zu bilden. Kombnator. Problemstellung Ausgangspunt be ombnatorschen Fragestellungen st mmer ene endlche Menge M, aus deren Elementen man endlche Zusammenstellungen von Elementen aus M bldet. Formal gesprochen bedeutet

Mehr

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage

Für wen ist dieses Buch? Was ist dieses Buch? Besonderheiten. Neu in dieser Auflage Für wen st deses Bch? Das Taschenbch der Elektrotechnk rchtet sch an Stdentnnen nd Stdenten an nverstäten nd Fachhochschlen n den Berechen Elektrotechnk Nachrchtentechnk Technsche Informatk allgemene Ingenerwssenschaften

Mehr

4. Optische Resonatoren

4. Optische Resonatoren 4. Optsche Resonatoren 4.. Modenselekton Bs jetzt haben wr nur den enfachsten Resonatortyp, den Fabry-erot Laser besprochen. In Abb. 4.. snd nochal de wchtsten Eenschaften deses Lasertyps darestellt. a)

Mehr

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit

Einführung in die Wahrscheinlichkeitsrechnung. Wahrscheinlichkeitsrechnung. Übersicht. Wahrscheinlichkeitsrechnung. bedinge Wahrscheinlichkeit Enführung n de bednge Wahrschenlchket Laplace-Wahrschenlchket p 0.56??? Zufallsexperment Randwahrschenlchket Überscht Was st Wahrschenlchket? Rechenregeln Der Multplkatonssatz Axomatsche Herletung Unabhänggket

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Erwartungswert, Varianz, Standardabweichung

Erwartungswert, Varianz, Standardabweichung RS 24.2.2005 Erwartungswert_Varanz_.mcd 4) Erwartungswert Erwartungswert, Varanz, Standardabwechung Be jedem Glücksspel nteresseren den Speler vor allem de Gewnnchancen. 1. Bespel: Setzen auf 1. Dutzend

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

5. ZWEI ODER MEHRERE METRISCHE MERKMALE

5. ZWEI ODER MEHRERE METRISCHE MERKMALE 5. ZWEI ODER MEHRERE METRISCHE MERKMALE wenn an ener Beobachtungsenhet zwe (oder mehr) metrsche Varablen erhoben wurden wesentlche Problemstellungen: Frage nach Zusammenhang: Bsp.: Duxbury Press (sehe

Mehr

Spule, Induktivität und Gegeninduktivität

Spule, Induktivität und Gegeninduktivität .7. Sple, ndktvtät nd Gegenndktvtät Bldqelle: Doglas C. Gancol, Physk, Pearson-Stdm, 006 - das Magnetfeld Glechnamge Pole enes Magneten stoßen enander ab; nglechnamge Pole zehen sch gegensetg an. Wenn

Mehr

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression

Beschreibung des Zusammenhangs zweier metrischer Merkmale. Streudiagramme Korrelationskoeffizienten Regression Beschrebung des Zusammenhangs zweer metrscher Merkmale Streudagramme Korrelatonskoeffzenten Regresson Alter und Gewcht be Kndern bs 36 Monaten Knd Monate Gewcht 9 9 5 8 3 4 7.5 4 3 6 5 3 6 4 3.5 7 35 5

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Lösungen zum 3. Aufgabenblock

Lösungen zum 3. Aufgabenblock Lösungen zum 3. Aufgabenblock 3. Aufgabenblock ewerber haben n enem Test zur sozalen Kompetenz folgende ntervallskalerte Werte erhalten: 96 131 11 1 85 113 91 73 7 a) Zegen Se für desen Datensatz, dass

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Standardnormalverteilung / z-transformation

Standardnormalverteilung / z-transformation Standardnormalvertelung / -Transformaton Unter den unendlch velen Normalvertelungen gbt es ene Normalvertelung, de sch dadurch ausgeechnet st, dass se enen Erwartungswert von µ 0 und ene Streuung von σ

Mehr

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct?

Wie eröffne ich als Bestandskunde ein Festgeld-Konto bei NIBC Direct? We eröffne ch als Bestandskunde en Festgeld-Konto be NIBC Drect? Informatonen zum Festgeld-Konto: Be enem Festgeld-Konto handelt es sch um en Termnenlagenkonto, be dem de Bank enen festen Znssatz für de

Mehr

Die Zahl i phantastisch, praktisch, anschaulich

Die Zahl i phantastisch, praktisch, anschaulich Unverstät Würzburg 977 Würzburg Telefon: (91 888 5598 De Zahl phantastsch, praktsch, anschaulch De Geschchte der Zahl war dre Jahrhunderte lang dadurch geprägt, dass se und damt de kompleen Zahlen n Mathematkerkresen

Mehr

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines

6 Wandtafeln. 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln. 6.3.1 Allgemeines 6 Wandtafeln 6.3 Berechnung der Kräfte und des Schubflusses auf Wandtafeln 6.3.1 Allgemenes Be der Berechnung der auf de enzelnen Wandtafeln entfallenden Horzontalkräfte wrd ene starre Deckenschebe angenommen.

Mehr

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. .

Neuronale Netze. M. Gruber (1) ausgeloste Reiz ist x (1) = (1) (s (1) ) mit (1) (s) = 1 sgn(s 1 ) sgn(s 2 ) T. . Neuronale Netze M. Gruber 7.11.015 Begnnen wr mt enem Bespel. Bespel 1 Wr konstrueren enen Klasskator auf der Menge X = [ 1; 1], dessen Wrkung man n Abb.1 rechts sehen kann. Auf der blauen Telmenge soll

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

8 Logistische Regressionsanalyse

8 Logistische Regressionsanalyse wwwstatstkpaketde 8 Logstsche Regressonsanalyse De logstsche Regressonsanalyse dent der Untersuchung des Enflusses ener quanttatven Varable auf ene qualtatve (n unserem Fall dchotomen Varable Wr gehen

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07

Auswertung von Umfragen und Experimenten. Umgang mit Statistiken in Maturaarbeiten Realisierung der Auswertung mit Excel 07 Auswertung von Umfragen und Expermenten Umgang mt Statstken n Maturaarbeten Realserung der Auswertung mt Excel 07 3.Auflage Dese Broschüre hlft bem Verfassen und Betreuen von Maturaarbeten. De 3.Auflage

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher.

NSt. Der Wert für: x= +1 liegt, erkennbar an dem zugehörigen Funktionswert, der gesuchten Nullstelle näher. PV - Hausaugabe Nr. 7.. Berechnen Se eakt und verglechen Se de Werte ür de Nullstelle, de mttels dem Verahren von Newton, der Regula als und ener Mttelung zu erhalten snd von der! Funkton: ( ) Lösungs

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Wahl auf Bäumen: FireWire

Wahl auf Bäumen: FireWire Wahl auf Bäumen: FreWre IEEE 94 Hgh Performance Seral Bus (FreWre) Internatonaler Standard Hochgeschwndgketsbus Transport von dgtalen Audo- und Vdeo-Daten 400 Mbps (94b: 800 MBps... 3200 Mbps) Hot-pluggable

Mehr

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1

Vorlesung 1. Prof. Dr. Klaus Röder Lehrstuhl für BWL, insb. Finanzdienstleistungen Universität Regensburg. Prof. Dr. Klaus Röder Folie 1 Vorlesung Entschedungslehre h SS 205 Prof. Dr. Klaus Röder Lehrstuhl für BWL, nsb. Fnanzdenstlestungen Unverstät Regensburg Prof. Dr. Klaus Röder Fole Organsatorsches Relevante Informatonen önnen Se stets

Mehr

Bildverarbeitung Herbstsemester 2012. Bildspeicherung

Bildverarbeitung Herbstsemester 2012. Bildspeicherung Bldverarbetung Herbstsemester 2012 Bldspecherung 1 Inhalt Bldformate n der Überscht Coderung m Überblck Huffman-Coderung Datenredukton m Überblck Unterabtastung Skalare Quantserung 2 Lernzele De wchtgsten

Mehr

Anwendungsmöglichkeiten von Lernverfahren

Anwendungsmöglichkeiten von Lernverfahren Künstlche Neuronale Netze Lernen n neuronalen Netzen 2 / 30 Anwendungsmöglcheten von Lernverfahren Prnzpelle Möglcheten Verbndungsorentert 1 Hnzufügen neuer Verbndungen 2 Löschen bestehender Verbndungen

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Unverstät Karlsruhe (TH) Forschungsunverstät gegründet 825 Parallele Algorthmen I Augaben und Lösungen Pro. Dr. Walter F. Tchy Dr. Vctor Pankratus Davd Meder Augabe () Gegeben se en N-elementger Zahlenvektor

Mehr

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen

6.5. Rückgewinnung des Zeitvorgangs: Rolle der Pole und Nullstellen 196 6.5. Rückgewnnung des Zetvorgangs: Rolle der Pole und Nullstellen We n 6.2. und 6.. gezegt wurde, st de Übertragungsfunkton G( enes lnearen zetnvaranten Systems mt n unabhänggen Spechern ene gebrochen

Mehr

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert

Zufallsvariable, Wahrscheinlichkeitsverteilungen und Erwartungswert R. Brnkmann http://brnkmann-du.de Sete..8 Zufallsvarable, Wahrschenlchketsvertelungen und Erwartungswert Enführungsbespel: Zwe Würfel (en blauer und en grüner) werden 4 mal zusammen geworfen. De Häufgketen

Mehr

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells

Versuch C2: Monte-Carlo Simulationen eines Ferromagneten im Rahmen des Ising-Modells Versuch C2: Monte-Carlo Smulatonen enes Ferromagneten m Rahmen des Isng-Modells 15. November 2010 1 Zelstellung Es glt de Temperatur des Phasenüberganges zwschen dem ferro- und paramagnetschen Verhalten

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

Stochastik - Kapitel 4

Stochastik - Kapitel 4 Aufgaben ab Sete 5 4. Zufallsgrößen / Zufallsvarablen und hre Vertelungen 4. Zufallsgröße / Zufallsvarable Defnton: Ene Zufallsgröße (Zufallsvarable) X ordnet jedem Versuchsergebns ω Ω ene reelle Zahl

Mehr