O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik"

Transkript

1 W eierstraß-institut für Angew andte Analysis und Stochastik Robotik-Seminar O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik Mohrenstr Berlin May 18, 2005

2 Problemstellung, benötigte Definitionen I Faktoren, die einen Einfluss auf die Roboterdynamik haben: Funktionelle Anforderungen Trajektorien des Arbeitsgliedes (und dessen Geschwindigkeit) Lasten am Arbeitsglied Steuergrößen Gelenkverschiebungen und Drehungen (bzw. deren Geschwindigkeiten und Beschleunigungen) Gelenkkräfte und Gelenkmomente Roboterspezifische Elemente Geometrie Massenverteilung Ziel Bestimmung der Gelenkkräfte und Momente für einen gegebenen Punkt (Θ, Θ und Θ) der Trajektorie des Arbeitsgliedes Bestimmung der Bewegung des Arbeitsgliedes (und des gesamten Roboterarms) für gegeben Gelenkräfte und Momente τ i (vornehmlich für Simulationen) Mathematische Modellierung Formulierung der Roboterdynamik durch Verbindung der verschiedenen Einflussfaktoren in roboterspezifischen Newton-Euler-Bewegungsgleichungen (Θ, Θ und Θ aus Kinematik): τ i = M ij (Θ k ) Θ j + V i (Θ k, Θ k ) + G i (Θ k ) + F i (Θ k, Θ k ), (1) bzw. implizit für numerische Simulationen: Θ = M 1 ij (Θ k) ( τ j V j (Θ k, Θ k ) G j (Θ k ) F j (Θ k, Θ ) k ) (2) Robotik-Seminar May 18, (12)

3 Problemstellung, benötigte Definitionen II Lösung der Newton-Euler-Bewegungsgleichungen Iterative Lösung Geschlossene Lösung (wenn möglich) Praktische Umsetzung Bei kompliziert aufgebauten Roboterarmen vermeidet man es unter Umständen die in Gl. (1) benötigte Massenmatrix (M ij ) und die generalisierten Kraftvektoren (V i, G i und F i ) analytisch zu bestimmen. Anwendung von iterativen Verfahren Newton-Bewegungsgleichungen für jedes Verbindungsglied: Euler-Bewegungsgleichung für jedes Verbindungsglied: F i = m v C i i. (3) M i = I Ci ω i + ω i I Ci ω i (4) Beschreibung sämtlicher Verbindungsgliedgeschwindigkeiten und Verbindungsgliedwinkelgeschwindigkeiten sowie der am Verbindungsglied angreifenden Kräfte und Momente in verbindungsgliedfesten Koordinatensystemen Vorteil dieses Verfahrens: Numerisch relativ effektiv und für komplizierteste Geometrien anwendbar, leichte Modulisierbarkeit ( Once the inertia tensors, link masses,p Ci vectors and Ri i+1 matrices are specified for a particular manipulator, the equations can be applied directly to compute the joint torques corresponding to any motion. ) Robotik-Seminar May 18, (12)

4 Zur Notation, Umrechnung zwischen den verschiedenen Darstellungen replacements e 0 z K e 1 z e 0 y e 2 y e 0 x P (20) e 1 x P (10) e 2 x P (21) e 1 y e 2 z Definition von Basistransformationen Der Vektor K kann in allen 3 Basen dargestellt werden: K = K (0) i e (0) i = K (1) i e (1) i = K (2) i e (2) i (5) Transformationen zwischen den einzelnen Vektoren sind folgendermassen definiert: (A) K = (A) (B) R(B) K + (A) P B0 (6) oder in Matrixschreibweise: (A) ˆK = (A) (B) T(B) ˆK (7) Robotik-Seminar May 18, (12)

5 Herleitung der Verbindungsgliedgeschwindigkeit Zeitableitung eines Vektors (A) P C = (A) (B) R(B) P C : mit A BṘB A R = A Ω B und A B RB AR = I findet man: bewegt sich noch der Koordinatenursprung von A erhält man: (A) V C = ( (A) (B) R(B) P C ) = (A) (B)Ṙ(B) P C + (A) (B) R(B) Ṗ C (8) (A) V C = (A) (B) R(B) V C + A Ω B (A) (B) R(B) P C (9) (A) V C = (A) V B0 + (A) (B) R(B) V C + A Ω B (A) (B) R(B) P C = (A) V B0 + (A) (B) R(B) V C + A Ω B (A) P C (10) Für das obige Verbindungsglied identifizieren wir A = i und C = i+1. Weiterhin ist (B) P C = const in B : v i+1 = v i + ω i P i+1 (11) Formulierung dieser Beziehung in der Basis e (i+1) j : ( ) 1 ( ) (i+1) (i+1) v i+1 = R v i + ω i P i+1 (12) Robotik-Seminar May 18, (12)

6 Herleitung der Verbindungsgliedwinkelgeschwindigkeit, Jacobimatrix Bei der Winkelgeschwindigkeit geht man analog vor: ( ) 1 ω i+1 = (i+1) ω i + R Θi+1 e (i+1) 3, (13) wobei man Θ i+1 e (i+1) 3 als Winkelgeschwindigkeit des Verbindungsgliedes i+1 relativ zum Verbindungsglied i ansieht. Was wiederum in der Basis e (i+1) j die Form hat: ( ) (i+1) (i+1) ω i+1 = R ω i + Θ i+1 e (i+1) 3 (14) Sukzessives Einsetzen der eingerahmten Gleichungen ineinander liefert schließlich: [ (N) ] v (N) = (N) J(Θ ω 1, Θ 2,..., Θ 6 ) (N) Θ (N) J(Θ 1, Θ 2,..., Θ 6 ) kann als Jacobimatrix interpretiert werden, denn es gilt allgemein: (N) x = (N) F(Θ 1, Θ 2,..., Θ 6 ) (N) v = (N) Ḟ(Θ 1, Θ 2,..., Θ 6 ) = (N) F (N) Θ (N) Θ (15) ACHTUNG: (N) J kann in der Praxis nicht regulär sein! Robotik-Seminar May 18, (12)

7 Aufstellen der Newton-Euler-Bewegungsgleichungen, Kräfte und Momente Craig verwendet ein Verfahren der gliedweisen Aufstellung der Bewegungsgleichungen Was benötigen wir prinzipiell? Beschleunigung des Massenmittelpunktes Winkelbeschleunigung Trägheitstensoren Resultierende Kraft am Verbindungsglied Resulierendes Moment bez uglich des Massenmittelpunktes Kräfte- und Momentenbilanz (mit Trägheitskräften) für ein Verbindungsglied liefert die Gelenkkräfte und Momente als Funkion der Trägheitskräfte : und weiterhin f i = ( (i+1) R) 1 (i+1) f i+1 + F, (16) n i = N i + ( (i+1) R) 1 (i+1) n i+1 + P Ci F i + P i+1 ( (i+1) R) 1 (i+1) f i+1 (17)

8 Aufstellen der Newton-Euler-Bewegungsgleichungen, Beschleunigungen umd Winkelbeschleunigungen Herleitung der Winkelbeschleunigung: Zunächst betrachten wir ein System B welches relativ zu einem System A rotiert und ein System C, welches relativ zu B rotiert: mit A BṘB A R = A Ω B und A B RB AR = I findet man schließlich: A Ω C = A Ω B + A B RB Ω C A ΩC = A Ω B + ( A B R B Ω C ) (18) A ΩC = A Ω B + A B RB Ω C + A Ω B A B RB Ω C (19) Mutlipliziert man die Gleichung mit C AR und setzt A = B = i, C= i+1 erhält man: (i+1) ω i+1 = (i+1) R ω i + (i+1) R ω i Θ i+1 e (i+1) 3 + Θ i+1 e (i+1) 3 (20) Zur Herleitung der Beschleunigung gehen wir analog vor. Wir bilden die Zeitableitung von 10 und ordnen die Terme ein wenig um: ( ) (A) V C = (A) V B0 + (A) (B) R(B) V C + 2 A Ω B (A) (B) R(B) V C + A ΩB (A) (B) R(B) P C + A Ω B A Ω B (A) (B) R(B) P C (21) mit (B) P C = const, den Identifikationen A = i und C = i+1 und der Transformation in das System i+1 erhalten wir: ( (i+1) v i+1 = (i+1) ( ) ) R ω i P i+1 + ω i ω i P i+1 + v i (22) Für die Beschleunigung des Massemittelpunktes erhält man ensprechend: ( ) v Ci = ω i P Ci + ω i ω i P Ci + v i (23) Robotik-Seminar May 18, (12)

9 Berechnung der Massenträgheitsmomente Berechnung der Massenträgheitsmomente durch Integration oder Messung Praktisch: Steinersche Satz Sei P C = (x C, y C, z C ) T, ein Vektor von einem beliebigen Punkt A zum Massenmittelpunkt des Körpers. Damit kann man schreiben: (A) I = (C) I + m(p T CP C I P C P T C) (24) Wir brauchen nur (C) I!! Robotik-Seminar May 18, (12)

10 Iterativer Algorithmus zum Aufstellen der Bewegungsgleichungen R, (C) I, m und P Ci müssen für jedes Verbindungsglied bekannt sein. Algorithmus kann dazu benutzt werden, direkt die Bewegungsgleichungen für den Roboter zu lösen Anlytische Aufstellung der Bewegungsgleichungen ist ebenfalls möglich Drehmomente in den Gelenken ergeben sich per Definition aus (i+1) τ i = n T i ei 3 (25) Robotik-Seminar May 18, (12)

11 Reibung und Gravitation Wir betrachten hier verallgemeinerte Reibkräfte Viskose Reibung: Coulombsche Reibung Beide Komponenten können zusammengefasst werden τ f = C 1 Θ (26) τ f = C 2 sign( Θ) (27) τ f = C 1 Θ + C 2 sign( Θ) = f(θ, Θ) (28) Die Gravitation berücksichtigt man, indem man das erste Koordinatensystem mit g beschleunigt: (0) v 0 = g (29) Robotik-Seminar May 18, (12)

12 Beispiel Robotik-Seminar May 18, (12)

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1

Computergraphik II. Computer-Animation. Oliver Deussen Animation 1 Computer-Animation Oliver Deussen Animation 1 Unterscheidung: Interpolation/Keyframing Starrkörper-Animation Dynamische Simulation Partikel-Animation Verhaltens-Animation Oliver Deussen Animation 2 Keyframing

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5

1 Einleitung 1 1.1 Motivation... 1 1.2 Zielsetzung... 4 1.3 Aufbau und Gliederung der Arbeit... 5 1 Einleitung 1 1.1 Motivation.................................... 1 1.2 Zielsetzung................................... 4 1.3 Aufbau und Gliederung der Arbeit...................... 5 2 Hygromechanische

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand)

Mechanische Struktur. Digitalrechner (Steuerung, Regelung und Datenverarbeitung) Leistungsteil. Stellgrößen. Rückmeldungen (Lage, Bewegungszustand) l. Kinematik in der Mechatronik Ein tpisches mechatronisches Sstem nimmt Signale auf, verarbeitet sie und gibt Signale aus, die es in Kräfte und Bewegungen umsett. Mechanische Struktur Leistungsteil phsikalische

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung

Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung Einsatz der Mehrkörpersimulation in Verbindung mit Computertomographie in der Produktentwicklung Hintergrund Bei komplexen Baugruppen ergeben sich sehr hohe Anforderungen an die Tolerierung der einzelnen

Mehr

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10

Kern- und Schulcurriculum Mathematik Klasse 9/10. Stand Schuljahr 2009/10 Kern- und Schulcurriculum Mathematik /10 Stand Schuljahr 2009/10 Fett und kursiv dargestellte Einheiten gehören zum Schulcurriculum In allen Übungseinheiten kommt die Leitidee Vernetzung zum Tragen - Hilfsmittel

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze

Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie von Naturgesetzen - Galilei-Transformationen und die Invarianz der Newton schen Gesetze Symmetrie (Physik) (aus Wikipedia, der freien Enzyklopädie) Symmetrie ist ein grundlegendes Konzept der

Mehr

3.6 Drehungen in der Ebene

3.6 Drehungen in der Ebene 3.6-1 3.6 Drehungen in der Ebene 3.6.1 Die Drehmatrix Gelegentlich müssen wir die Lage eines Teilchens in einem ebenen Koordinatensystem beschreiben, das gegenüber einem festen System um φ gedreht ist.

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

ERGEBNISSE TM I,II UND ETM I,II

ERGEBNISSE TM I,II UND ETM I,II ERGEBNISSE TM I,II UND ETM I,II Lehstuhl fü Technische Mechanik, TU Kaiseslauten WS /2, 8.02.22. Aufgabe: ( TM I, TM I-II, ETM I, ETM I-II) q 0 = 3F a F G a M 0 = 2Fa x a A y z B a a De skizziete Rahmen

Mehr

& REGELUNGSTECHNIK AUTOMATISIERUNGS- Fachvertiefung WS 2012/2013

& REGELUNGSTECHNIK AUTOMATISIERUNGS- Fachvertiefung WS 2012/2013 - Fachvertiefung WS 01/013 AUTOMATISIERUNGS- & REGELUNGSTECHNIK Dipl.-Ing. Tobias Glück Dr.-Ing. Wolfgang Kemmetmüller Univ.-Prof. Dr. techn. Andreas Kugi Automatisierungs- und Regelungstechnik Fachvertiefung

Mehr

CURRICULUM 10 NOV. 2011

CURRICULUM 10 NOV. 2011 CURRICULUM 10 NOV. 2011 Diese Kompetenzen spielen in allen Unterrichts-Themen eine zentrale Rolle: 2. Physik als theoriegeleitete Erfahrungswissenschaft Die Schülerinnen und Schüler können die naturwissenschaftliche

Mehr

Matrizen und Drehungen

Matrizen und Drehungen Matrizen und Drehungen 20. Noember 2003 Diese Ausführungen sind im wesentlichen dem Skript zur Vorlesung Einführung in die Theoretische Physik I und II on PD Dr. Horst Fichtner entnommen. Dieses entstand

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Zur Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung müssen mehr oder weniger komplizierte Integrale berechnet werden. Bei einer Reihe von wichtigen Anwendungen treten die

Mehr

Vektoren - Basiswechsel

Vektoren - Basiswechsel Vektoren - Basiswechsel Grundprinzip Für rein geometrische Anwendungen verwendet man üblicherweise die Standardbasis. Damit ergibt sich in den Zahlenangaben der Koordinaten kein Unterschied zu einem Bezug

Mehr

1. Rotation um eine feste Achse

1. Rotation um eine feste Achse 1. Rotation um eine feste Achse Betrachtet wird ein starrer Körper, der sich um eine raumfeste Achse dreht. z ω Das Koordinatensystem wird so gewählt, dass die Drehachse mit der z-achse zusammenfällt.

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur

JOHANNES BONNEKOH. Analysis. Allgemeine Hochschulreife und Fachabitur JOHANNES BONNEKOH Analysis Allgemeine Hochschulreife und Fachabitur Vorwort Vorwort Mathematik ist eine Sprache, die uns hilft die Natur und allgemeine naturwissenschaftliche Vorgänge zu beschreiben. Johannes

Mehr

mentor Abiturhilfe: Physik Oberstufe Weidl

mentor Abiturhilfe: Physik Oberstufe Weidl mentor Abiturhilfen mentor Abiturhilfe: Physik Oberstufe Mechanik von Erhard Weidl 1. Auflage mentor Abiturhilfe: Physik Oberstufe Weidl schnell und portofrei erhältlich bei beck-shop.de DIE ACHBUCHHANDLUNG

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Skalierung des Ausgangssignals

Skalierung des Ausgangssignals Skalierung des Ausgangssignals Definition der Messkette Zur Bestimmung einer unbekannten Messgröße, wie z.b. Kraft, Drehmoment oder Beschleunigung, werden Sensoren eingesetzt. Sensoren stehen am Anfang

Mehr

Grundlagen der Kinematik und Dynamik

Grundlagen der Kinematik und Dynamik INSTITUT FÜR UNFALLCHIRURGISCHE FORSCHUNG UND BIOMECHANIK Grundlagen der Biomechanik des Bewegungsapparates Grundlagen der Kinematik und Dynamik Dr.-Ing. Ulrich Simon Ulmer Zentrum für Wissenschaftliches

Mehr

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3)

A(3/1/2) B(6/2/2) C(5/9/4) D(1/4/3) Ein Raumviereck ABCD kann eben sein oder aus zwei gegeneinander geneigten Dreiecken bestehen. In einem ebenen Viereck schneiden sich die Diagonalen. Überprüfen Sie, ob die gegebenen Vierecke eben sind.

Mehr

Einführung in die Numerik mit VBA

Einführung in die Numerik mit VBA Stefan Kolling Einführung in die Numerik mit VBA 2005 Fachhochschulverlag DER VERLAG FÜR ANGEWANDTE WISSENSCHAFTEN Inhaltsverzeichnis 1 Einführung 1 1.1 Einige Grundbegriffe aus der EDV 2 1.1.1 Darstellung

Mehr

4 Dynamik der Rotation

4 Dynamik der Rotation 4 Dynamik der Rotation Fragen und Probleme: Was versteht man unter einem, wovon hängt es ab? Was bewirkt ein auf einen Körper einwirkendes? Welche Bedeutung hat das Massenträgheitsmoment eines Körpers?

Mehr

Das mathematische Modell der inversen Kinematik in der Computeranimation

Das mathematische Modell der inversen Kinematik in der Computeranimation Das mathematische Modell der inversen Kinematik in der Computeranimation 44551 Tobias Ebert HTW Aalen Seminar 44609 Mario Margarone Wintersemester 14/15 Vorwort Heutzutage ist die Kinematik aus den meisten

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe?

In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Aufgabe 1: Das Stanzblech: Löcher In ein quadratisches Blech werden Löcher gestanzt. Insgesamt sind es 85 Löcher. Wie viele Löcher sind in der untersten Reihe? Bei dieser Aufgabe kann rückwärts gearbeitet

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend:

1. Kinematik. Untersucht wird die Bewegung eines Punktes P in Bezug auf zwei Bezugssysteme: Bezugssystem Oxyz ist ruhend: Untersucht wird die ewegung eines Punktes P in ezug auf zwei ezugssysteme: ezugssystem Oxyz ist ruhend: Ursprung O Einheitsvektoren e x, e y, e z Koordinaten x, y, z ezugssystem ξηζ bewegt sich: Ursprung

Mehr

(1) Problemstellung. (2) Kalman Filter

(1) Problemstellung. (2) Kalman Filter Inhaltsverzeichnis (1) Problemstellung...2 (2) Kalman Filter...2 Funktionsweise... 2 Gleichungen im mehrdimensionalen Fall...3 Schätzung des Systemzustands...3 Vermuteter Schätzfehler... 3 Aktualisierung

Mehr

Inertialsysteme keine keine

Inertialsysteme keine keine Inertialsysteme Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Der Beobachter wird i.d.r. mit dem Bezugssystem identifiziert, so dass das Koordinatensystem am Beobachter

Mehr

Inhaltsverzeichnis. Abbildungsverzeichnis. Tabellenverzeichnis. Abkürzungsverzeichnis. Notation und physikalische Größen.

Inhaltsverzeichnis. Abbildungsverzeichnis. Tabellenverzeichnis. Abkürzungsverzeichnis. Notation und physikalische Größen. Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Abkürzungsverzeichnis Notation und physikalische Größen I VIII XI ХП XIV 1 Einleitung 1 1.1 Ausgangssituation 1 1.2 Zielsetzung und Vorgehensweise

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

Rekonfigurierbare Regelung der Stuttgart SmartShell

Rekonfigurierbare Regelung der Stuttgart SmartShell Rekonfigurierbare Regelung der Stuttgart SmartShell Michael Heidingsfeld Institut für Systemdynamik, Universität Stuttgart 9. Elgersburg Workshop (2.-6. März 2014) Institut für Systemdynamik Stuttgart

Mehr

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation

Anwendung v. symmetrischen Matrizen: Hauptachsentransformation Zusammenfassung: Eigenwerte, Eigenvektoren, Diagonalisieren Eigenwertgleichung: Bedingung an EW: Eigenwert Eigenvektor charakteristisches Polynom Für ist ein Polynom v. Grad, Nullstellen. Wenn EW bekannt

Mehr

Übungen zur Animation & Simulation. Übungsblatt 1

Übungen zur Animation & Simulation. Übungsblatt 1 Übungen zur Animation & Simulation SS 21 Prof. Dr. Stefan Müller et al. Übungsblatt 1 Aufgabe 1 (Die Newton schen Gesetze) Nennen und erklären Sie die Newton schen Gesetze. Aufgabe 2 (Kräfte und numerische

Mehr

Aufbau und Kalibrierung einer redundant angetriebenen Parallelkinematik

Aufbau und Kalibrierung einer redundant angetriebenen Parallelkinematik Modellierung Aufbau und Kalibrierung einer redundant angetriebenen Parallelkinematik Ziel: Entwicklung eines Prototypen einer PKM mit redundanten Antrieben Bewegungsgleichungen in Minimalkoordinaten (Gelenkraum,

Mehr

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT

Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge MTR/BMT TECHNISCHE UNIVERSITÄT ILMENAU Institut für Automatisierungs- und Systemtechnik Fachgebiet Simulation und Optimale Prozesse Aufgabensammlung Regelungs- und Systemtechnik 2 / Regelungstechnik für die Studiengänge

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Der Einsatz von Computeralgebrasystemen in Abiturprüfungen

Der Einsatz von Computeralgebrasystemen in Abiturprüfungen Der Einsatz von Computeralgebrasystemen in Abiturprüfungen Dr. Gilbert Greefrath Ausgangslage Zentrale Prüfungen mit (und ohne) CAS Aufgabeninhalt und -kontext Verwendung verschiedener Werkzeuge Erfahrungen

Mehr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr

Klassische Theoretische Physik II. V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch. Klausur 1 Lösung. 01. August 2012, 17-19 Uhr KIT SS 0 Klassische Theoretische Physik II V: Prof. Dr. M. Mühlleitner, Ü: Dr. M. Rauch Klausur Lösung 0. August 0, 7-9 Uhr Aufgabe : Kurzfragen (+++4=0 Punkte (a Zwangsbedingungen beschreiben Einschränkungen

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

II. Klein Gordon-Gleichung

II. Klein Gordon-Gleichung II. Klein Gordon-Gleichung Dieses Kapitel und die zwei darauf folgenden befassen sich mit relativistischen Wellengleichungen, 1 für Teilchen mit dem Spin 0 (hiernach), 2 (Kap. III) oder 1 (Kap. IV). In

Mehr

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen

H. Gruber, R. Neumann. Erfolg im Mathe-Abi. Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen H. Gruber, R. Neumann Erfolg im Mathe-Abi Übungsbuch für die optimale Vorbereitung in Analysis, Geometrie und Stochastik mit verständlichen Lösungen Inhaltsverzeichnis Inhaltsverzeichnis Analysis Von der

Mehr

Arbeitsblatt Arbeit und Energie

Arbeitsblatt Arbeit und Energie Arbeitsblatt Arbeit und Energie Arbeit: Wird unter der Wirkung einer Kraft ein Körper verschoben, so leistet die Kraft die Arbeit verrichtete Arbeit Kraft Komponente der Kraft in Wegrichtung; tangentiale

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

DIE REGELUNG DES KUKA KR-500 ROBOTERS

DIE REGELUNG DES KUKA KR-500 ROBOTERS Gemeinschaft für studentischen Austausch in Mittel- und Osteuropa ev Schriftenreihe der GFPS ev Ausgabe 02/2009 DIE REGELUNG DES KUKA KR-500 ROBOTERS von Agnieszka Leyko GFPS ev ist die Gemeinschaft für

Mehr

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011

Monte-Carlo-Simulationen mit Copulas. Kevin Schellkes und Christian Hendricks 29.08.2011 Kevin Schellkes und Christian Hendricks 29.08.2011 Inhalt Der herkömmliche Ansatz zur Simulation logarithmischer Renditen Ansatz zur Simulation mit Copulas Test und Vergleich der beiden Verfahren Fazit

Mehr

Übung zur theoretischen Mechanik (Bachelor) Blatt 1

Übung zur theoretischen Mechanik (Bachelor) Blatt 1 PD Dr. Gerald Kasner Dr. Volker Becker Übung zur theoretischen Mechanik (Bachelor) Blatt 1 WS 2013 16. 10. 2013 1. Global Positioning System 8 Pkt. Das amerikanische GPS-System findet heutzutage in vielen

Mehr

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK?

Achim Rosch, Institut für Theoretische Physik, Köln. Belegt das Gutachten wesentliche fachliche Fehler im KPK? Impulsstrom Achim Rosch, Institut für Theoretische Physik, Köln zwei Fragen: Belegt das Gutachten wesentliche fachliche Fehler im KPK? Gibt es im Gutachten selbst wesentliche fachliche Fehler? andere wichtige

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung

Definition 3.1: Ein Differentialgleichungssystem 1. Ordnung Kapitel 3 Dynamische Systeme Definition 31: Ein Differentialgleichungssystem 1 Ordnung = f(t, y) ; y R N ; f : R R N R N heißt namisches System auf dem Phasenraum R N Der Parameter t wird die Zeit genannt

Mehr

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik

Otto-von-Guericke-Universität Magdeburg Lehrstuhl Mikrosystemtechnik Mechanische Eigenschaften Die Matrix der Verzerrungen ε ij und die Matrix der mechanischen Spannungen σ ij bilden einen Tensor 2. Stufe und werden durch den Tensor 4. Stufe der elastischen Koeffizienten

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

1 C++Programmcodes. 1.1 Homogene Transformationen und Posen. 1. C++Programmcodes

1 C++Programmcodes. 1.1 Homogene Transformationen und Posen. 1. C++Programmcodes 1 C++Programmcodes 1.1 Homogene Transformationen und Posen Die Tab. 1-1 nennt die Header-Dateien der Programmmodule der im Script Robotik (Analyse, Modellierung und Identifikation) erörterten mathematischen

Mehr

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu

(λ Ri I A+BR)v Ri = 0. Lässt sich umstellen zu Herleitung der oppenecker-formel (Wiederholung) Für ein System ẋ Ax + Bu (B habe Höchstrang) wird eine Zustandsregelung u x angesetzt. Der geschlossene egelkreis gehorcht der Zustands-Dgl. ẋ (A B)x. Die

Mehr

Vorkurs Mathematik Übungen zu Komplexen Zahlen

Vorkurs Mathematik Übungen zu Komplexen Zahlen Vorkurs Mathematik Übungen zu Komplexen Zahlen Komplexe Zahlen Koordinatenwechsel Aufgabe. Zeichnen Sie die folgende Zahlen zunächst in ein (kartesisches) Koordinatensystem. Bestimmen Sie dann die Polarkoordinaten

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung

Regelungs- und Systemtechnik 1. Kapitel 1: Einführung Regelungs- und Systemtechnik 1 Kapitel 1: Einführung Prof. Dr.-Ing. Pu Li Fachgebiet Simulation und Optimale Prozesse (SOP) Luft- und Raumfahrtindustrie Zu regelnde Größen: Position Geschwindigkeit Beschleunigung

Mehr

Klausur Technische Logistik I 31. Januar 2013

Klausur Technische Logistik I 31. Januar 2013 Professur für Maschinenelemente und Technische Logistik Name: Vorname: Matr.-Nr.: Fachrichtung: Ich bin einverstanden nicht einverstanden, dass mein Ergebnis in Verbindung mit meiner Matrikelnummer auf

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

Erfolg im Mathe-Abi 2014

Erfolg im Mathe-Abi 2014 Gruber I Neumann Erfolg im Mathe-Abi 2014 Prüfungsaufgaben Hessen Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN

FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN FUNKTIONENTHEORIE - ZUSÄTZLICHE LERNMATERIALIEN JOSEF TEICHMANN 1. Ein motivierendes Beispiel aus der Anwendung Das SABR-Modell spielt in der Modellierung von stochastischer Volatilität eine herausragende

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen

Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Messung des Kopplungsfaktors Induktiv Gekoppelter Spulen Dipl.-Phys. Jochen Bauer 11.8.2013 Zusammenfassung Induktiv gekoppelte Spulen finden in der Elektrotechnik und insbesondere in der Funktechnik vielfältige

Mehr

Kapitel 15: Differentialgleichungen

Kapitel 15: Differentialgleichungen FernUNI Hagen WS 00/03 Kapitel 15: Differentialgleichungen Differentialgleichungen = Gleichungen die Beziehungen zwischen einer Funktion und mindestens einer ihrer Ableitungen herstellen. Kommen bei vielen

Mehr

Einführung in Statistik und Messwertanalyse für Physiker

Einführung in Statistik und Messwertanalyse für Physiker Gerhard Böhm, Günter Zech Einführung in Statistik und Messwertanalyse für Physiker SUB Göttingen 7 219 110 697 2006 A 12486 Verlag Deutsches Elektronen-Synchrotron Inhalt sverzeichnis 1 Einführung 1 1.1

Mehr

Gravitation und Krümmung der Raum-Zeit - Teil 1

Gravitation und Krümmung der Raum-Zeit - Teil 1 Gravitation und Krümmung der Raum-Zeit - Teil 1 Gauß hat gezeigt, daß es Möglichkeiten gibt, die Krümmung von Flächen durch inhärente Messungen auf der Fläche selbst zu bestimmen Gauß sches Krümmungsmaß

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Lineare Algebra und Computer Grafik

Lineare Algebra und Computer Grafik Lineare Algebra und Computer Grafik Vorlesung an der Hochschule Heilbronn (Stand: 7 Mai ) Prof Dr V Stahl Copyright 6 by Volker Stahl All rights reserved Inhaltsverzeichnis Vektoren 4 Vektoren und Skalare

Mehr

Freier Fall. 1 Versuchsbeschreibung

Freier Fall. 1 Versuchsbeschreibung Freier Fall 1 Versuchsbeschreibung Materialliste lange Stativstange (etwa 2,5m) Frequenzgenerator(1MHz) und -zähler 2 kürzere Stativstangen zur Stabilisierung Spannungsquelle (9V) Muen, Halterungen für

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Robotik. Prüfung. Prüfer Note

Robotik. Prüfung. Prüfer Note Prüfung Robotik Anmerkungen: Nur Blätter mit Namen und Matr.Nr. werden korrigiert. Keine rote Farbe verwenden. Zu jeder Lösung Aufgabennummer angeben. Aufgabe max. Punkte 1 a) 3 b) 2 c) 6 d) 3 e) 3 2 a)

Mehr

Entwurf. Anwendungsbeginn E DIN EN 62433-3 (VDE 0847-33-3):2015-02. Anwendungsbeginn dieser Norm ist...

Entwurf. Anwendungsbeginn E DIN EN 62433-3 (VDE 0847-33-3):2015-02. Anwendungsbeginn dieser Norm ist... Anwendungsbeginn Anwendungsbeginn dieser Norm ist.... Inhalt 1 Anwendungsbereich... 9 2 Normative Verweisungen... 9 3 Begriffe, Abkürzungen und Vereinbarungen... 10 3.1 Begriffe... 10 3.2 Abkürzungen...

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

Modellbasierte und komponentenorientierte Programmierung von Steuerungen

Modellbasierte und komponentenorientierte Programmierung von Steuerungen Labor für CIM & Robotik Prof. Dipl.-Ing. Georg Stark Modellbasierte und komponentenorientierte Programmierung von Steuerungen 1. Entwicklungsprozess Industriesteuerung 2. Programmierparadigmen - objektorientiert

Mehr

Physikalische Analyse zur Bestimmung von Kriterien für die Auslegung und Optimierung von mittelschlächtigen Wasserrädern

Physikalische Analyse zur Bestimmung von Kriterien für die Auslegung und Optimierung von mittelschlächtigen Wasserrädern Oktober, Passau Physikalische Analyse zur Bestimmung von Kriterien für die Auslegung und Optimierung von mittelschlächtigen Wasserrädern Dipl.-Phys. Dr.-Ing. Klaus Brinkmann Einleitung: Lehrgebiet Elektrische

Mehr

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete

Kapitel 0. Einführung. 0.1 Was ist Computergrafik? 0.2 Anwendungsgebiete Kapitel 0 Einführung 0.1 Was ist Computergrafik? Software, die einen Computer dazu bringt, eine grafische Ausgabe (oder kurz gesagt: Bilder) zu produzieren. Bilder können sein: Fotos, Schaltpläne, Veranschaulichung

Mehr

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min

Monatliche Grundgebühr: 5,00 Zeitabhängige Nutzung: Feiertags/Sonntags: 0,04 /min Aufgabe 1: Wortvorschriften Gib zu den Wortvorschriften je eine Funktionsgleichung an: a) Jeder Zahl wird das Doppelte zugeordnet b) Jeder Zahl wird das um 6 verminderte Dreifache zugeordnet c) Jeder Zahl

Mehr

Düsendynamik am Einspritzventil

Düsendynamik am Einspritzventil Düsendynamik am Einspritzventil Prof. Dr.-Ing. HOLGER WATTER www.fh-flensburg.de/watter Eine praktische Einführung in die Simulation dynamischer Systeme Inhaltsverzeichnis Eine praktische Einführung in

Mehr

Mathematik Akzentfach

Mathematik Akzentfach Mathematik Akzentfach 1. Stundendotation Klasse 1. Klasse 2. Klasse 3. Klasse 4. Klasse Wochenlektionen 3 3 2. Didaktische Konzeption Überfachliche Kompetenzen Das Akzentfach Mathematik fördert besonders...

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 8. Vorlesung Stefan Hickel Visualisierung Prinzipien zur sinnvollen Ergebnisdarstellung! Achsen immer beschriften Einheiten angeben! Bei Höhenliniendarstellungen und Konturdarstellungen

Mehr