Big Data Anwendungen

Größe: px
Ab Seite anzeigen:

Download "Big Data Anwendungen"

Transkript

1 Big Data Anwendungen Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4 1

2 Wrap-Up Effiziente Speicherung/Verarbeitung von Big Data erfordert Alternativen zu Standardtechnologien Column-Stores als alternative Software-Lösung für Datenhaltung Cloud-Computing als alternative Hardware-Lösung für Datenhaltung Hauptproblem ist nicht das Speichern sondern der Zugriff auf Daten Anwendungs-Design für Big Data hat ebenfalls spezielle Anforderungen! verteilte Speicherung/Verarbeitung " parallele Algorithmen Slide 2

3 Amdahlsches Gesetz Modell über Beschleunigung von Programmen durch parallele Ausführung Gene M. Amdahl Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the April 18-20, 1967, spring joint computer conference (AFIPS '67 (Spring)). ACM, New York, NY, USA, Speedup(n) = Aufteilung des Programms in sequentielle und parallel ausführbare Teile p sei Anteil der parallel ausführbaren Teile an Gesamtlaufzeit s ist Anteil der sequentiellen Teile an Gesamtlaufzeit Gesamtlaufzeit 10h, davon 1h sequentiell (s) und 9h parallel ausführbar (p) Bei einem Prozessor 1h + 9h = 10h Bei zwei Prozessoren 1h + 9h / 2 = 5,5h s + p s + p n + o(n) Bei unendlich vielen Prozessoren 1h + 9h / = 1h Mit Anzahl der Prozessoren n steigt aber auch der Overhead o(n), um die Parallelisierung zu realisieren (z.b. für Kommunikation) Slide 3

4 Amdahlsches Gesetz Speedup o(n) = 1min * n p/s = 4/1 p/s = 3/2 Speedup o(n)= 1min * n 2 p/s = 2/3 p/s = 1/4 Prozessoren Prozessoren Slide 4

5 Gustafsons Gesetz Amdahl: Die Verarbeitung eines gegebenen Problem (fixe Gesamtlaufzeit) kann nur bis zu einem bestimmten Grad durch Parallelisierung optimiert werden Gustafson: Mit einem höheren Grad an Parallelisierung können größere Probleme gelöst werden (variable Gesamtlaufzeit) John L. Gustafson Reevaluating Amdahl's law. Commun. ACM 31, 5 (May 1988), Speedup Speedup(n) = s s + p + n p/s = 4/1 p/s = 3/1 p s + p p/s = 2/1 p/s = 1/1 Prozessoren Slide 5

6 Methodisches Design paralleler Algorithmen 1. Partitionierung Partitionierung der Daten Problem Dekomposition: Problem wird in Teilprobleme (Tasks) zerlegt, die durch mehrere Prozessoren gelöst werden können 2. Kommunikation Festlegung der Struktur des Kommunikationskanals Bestimmung eines Protokolls zur Koordinierung der Tasks 3. Agglomeration Evaluierung der Partitionierungs- und Kommunikationsstruktur hinsichtlich Performanz und Implementierungsaufwand Ggf. Rekombination der Tasks 4. Mapping Zuweisung der Tasks an Prozessoren Optimale Ressourcen-Ausnutzung (Prozessorauslastung vs. Kommunikationsaufwand) Statisch (Zuweisung im Voraus) oder dynamisch (Load-Balancing zur Laufzeit) book.html Slide 6

7 Partitionierung Eigenschaften der Tasks Ist die Lösung eines Tasks abhängig von der Lösung eines anderen? Festlegung der Tasks im Voraus oder zur Laufzeit? Aufwand der Tasks gleichverteilt, ungleichmäßig oder unbekannt? Interaktion zw. Tasks vorbestimmt (statisch) oder dynamisch? Interaktion zw. Tasks zeigt Regelmäßigkeiten oder ist unregelmäßig? Skalierbare Designs Vermeidung redundanter Berechnungen und Bereitstellung von Daten Anzahl der Tasks steigt proportional zur Größe des Gesamtproblems Tasks haben ähnlich großen Aufwand Flexibles Design (hinsichtl. Kommunikation, Agglomeration und Mapping) Fein-granulare Zerlegung (Vielfaches an Tasks im Vergleich zu Prozessoren) Alternative Zerlegungen identifizieren (Daten- und prozessgetriebene Dekomposition) Slide 7

8 Partitionierung Daten- vs. prozessgetriebene Dekomposition Daten Dekomposition (auch: Geometrische Dekomposition, Domänen Dekomposition): Zerlegung in Tasks richtet sich nach Partitionierung der Daten, Tasks für benachbarte Datensegmente sind ggf. von einander abhängig Funktionale Dekomposition: Zerlegung in Tasks entsprechend der Operationen, die auf den Daten ausgeführt werden Abhängigkeiten zw. Tasks Iterative Dekomposition: Zerlegung in unabhängige Tasks, die nach wiederkehrendem Schema gelöst werden können Rekursive Dekomposition: Hierarchische Zerlegung in (Sub-)Tasks, die nach Bottom- Up-Prinzip gelöst werden können Explorative Dekomposition: Tasks sind voneinander abhängig, Überprüfung aller möglichen Lösungspfade Spekulative Dekomposition: Tasks sind voneinander abhängig, Auswahl des vielversprechendsten Lösungspfades erfolgt schrittweise während der Lösung der einzelnen Tasks Slide 8

9 Kommunikation Kommunikationskanal: Topologie (Bus, Ring, Stern, etc.) Bandbreite Eigenschaften der Kommunikation Lokal/Global: Komm. mit wenigen benachbarten Tasks oder Komm. mit vielen Tasks Strukturiert/Unstrukturiert: Regelmäßigkeit der Kommunikationsstruktur (z.b. Baum vs. beliebiger Graph) " Unstrukturierte Komm. erschwert Agglomeration und Mapping Statisch/Dynamisch: Feste vs. wechselnde Kommunikationspartner Synchron/Asynchron: Synchron: Empfänger-Tasks warten auf Sender-Tasks (Blockierung) Asynchron: Empfänger-Tasks fordern Informationen von Sendern an Slide 9

10 Kommunikation Skalierbares Design Ein Task kommuniziert mit möglichst wenig anderen Tasks Lokale Kommunikation anstelle globaler Kommunikation Tasks erfordern ähnlich viele Kommunikations-Operationen Tasks und Kommunikation zw. Tasks sollten möglichst nebenläufig ablaufen Situation Big Data Tasks greifen periodisch auf geteilte Datenstruktur zu " asynchrone Kommunikation Geteilte Datenstruktur ist zu groß bzw. zu viele Zugriffe für einen Task " Verteilung auf mehrere Tasks Strategien Datenstruktur wird auf die verarbeitenden Tasks verteilt; Kommunikation mit anderen Tasks, um Eingabedaten zu beziehen bzw. Teilergebnisse zu senden Zugriff auf Datenstruktur wird in zusätzliche Tasks gekapselt (Encapuslation) Zugriff auf Datenstruktur über DBMS Slide 10

11 Agglomeration Zusammenfassen von Tasks für effiziente parallele Berechnung Reduktion der Kosten für Task-Erstellung Reduktion der Kommunikationskosten (Größe/ Frequenz der Nachrichten) Ggf. Einführung von Redundanzen für effizientere Kommunikation Erhaltung der Flexibilität " Granularität als Parameter Entwicklungskosten beachten " Agglomeration vs. Code-Reuse (z.b. Modularität, Separation-of-Concerns) Slide 11

12 Agglomeration (z.b. spaltenorientierte Speicherung) Slide 12

13 Mapping Generalisiertes Zuweisungsproblem: NP-vollständiges Problem (alle bekannten deterministischen Algorithmen erfordern exponentiellen Rechenaufwand) " Kann zum Performance-Flaschenhals werden Gegeben ist eine Menge Prozessoren und einer Menge Tasks. Prozessoren können Tasks zugewiesen werden. Ein Prozessor hat ein Budget, ein Task hat Kosten, die Zuweisung von einem Prozessor zu einem Task hat einen Profit. Finde eine Zuweisungs-Funktion, bei der das Budget jedes Prozessors nicht durch die Kosten der zugewiesenen Tasks überschritten wird und der Gesamtprofit maximiert wird (Ggf. mehrfache Ausführung wg. dynamischen Veränderungen) (Globale/Lokale) Load-Balancing-Algorithmen für komplexe Probleme (unstrukturierte Komm., heterogene Tasks) Task-Scheduling-Algorithmen für simplere Probleme (viele Tasks, wenig lokale Abhängigkeit) Zuweisung von Manager- und Worker-Rollen (zentralisiert, hierarchisch, dezentral) Slide 13

14 Paradigmen: Data-Pipelining (Data Flow Parallelism) Funktionale Dekomposition (Tasks entsprechen Operationen auf Eingabedaten) Festlegung von Prozessketten Abhängig von angemessener Verteilung über Prozessschritte Bsp.: Render-Pipeline L. M. e Silva and R. Buyya, Parallel Programming Models and Paradigms, vol. 2, High Performance Cluster Computing: Programming and Applications, Prentice-Hall (1999). Slide 14

15 Paradigmen: Single-Program-Multiple-Data (SPMD) Daten Dekomposition (Tasks entsprechen Partitionierung der Eingabedaten) Erfordert homogenes System, Kommunikation sollte klar strukturiert und vorhersehbar sein Gefährdung bei Ausfall einzelner Prozesse Bsp.: Faltung bei Bildverarbeitung L. M. e Silva and R. Buyya, Parallel Programming Models and Paradigms, vol. 2, High Performance Cluster Computing: Programming and Applications, Prentice-Hall (1999). Slide 15

16 Paradigmen: Task-Farming (Master/Slave) Iterative Dekomposition (unabhängige Tasks) Ein Master-Knoten: Aufteilung des Problems und Verteilung der Tasks an Slave-Knoten Sammeln der Teilergebnisse und Zusammenführung zu Gesamtlösung Slave-Knoten generieren Teilergebnisse für Tasks Gefährdung bei Ausfall des Master-Knoten Bsp.: Suche L. M. e Silva and R. Buyya, Parallel Programming Models and Paradigms, vol. 2, High Performance Cluster Computing: Programming and Applications, Prentice-Hall (1999). Slide 16

17 Paradigmen: Divide-and-Conquer Rekursive Dekomposition (Aufteilung in Sub-Probleme) Abbildung der Baum-Struktur auf Prozessoren Bsp.: Schnelle Fourier- Transformation (FFT) L. M. e Silva and R. Buyya, Parallel Programming Models and Paradigms, vol. 2, High Performance Cluster Computing: Programming and Applications, Prentice-Hall (1999). dsp/training/coding/transform/fft.html Slide 17

18 Map Reduce Framework MapReduce Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI, pages , SPMD + gegenwärtig als Task-Farming implementiert (z.b. Hadoop) Map und Reduce als Funktionen zweiter Ordnung mit Parameter: Key-Value-Set Berechnungsfunktion (Funktion erster Ordnung) Generalisierung: Parallelization Contracts (PACT) Dominic Battré, Stephan Ewen, Fabian Hueske, Odej Kao, Volker Markl, and Daniel Warneke Nephele/PACTs: a programming model and execution framework for web-scale analytical processing. In Proceedings of the 1st ACM symposium on Cloud computing (SoCC '10). ACM, New York, NY, USA, Map-Funktion (links), Reduce- Funktion (rechts) Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej Kao, Volker Markl, Erik Nijkamp, Daniel Warneke: MapReduce and PACT - Comparing Data Parallel Programming Models. BTW 2011: Slide 18

19 Map Reduce Framework MapReduce Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI, pages , Slide 19

20 Weitere Frameworks SPMD OpenMP Data-Pipelining Definieren von Data-Flow-Graphen (gerichtete azyklische Graphen) Framework bildet Komponenten des Graphen auf Prozessoren ab Dryad (Microsoft) Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly Dryad: distributed data-parallel programs from sequential building blocks. SIGOPS Oper. Syst. Rev. 41, 3 (March 2007), FlumeJava Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert Bradshaw, and Nathan Weizenbaum FlumeJava: easy, efficient data-parallel pipelines. SIGPLAN Not. 45, 6 (June 2010), Slide 20

21 Literatur Artikel: L. M. e Silva and R. Buyya, Parallel Programming Models and Paradigms, vol. 2, High Performance Cluster Computing: Programming and Applications, Prentice-Hall (1999). Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In OSDI, pages , Alexander Alexandrov, Stephan Ewen, Max Heimel, Fabian Hueske, Odej Kao, Volker Markl, Erik Nijkamp, Daniel Warneke: MapReduce and PACT - Comparing Data Parallel Programming Models. BTW 2011: Web: Ian Foster: Designing and Building Parallel Programs White Paper von Oracle Developing Parallel Programs A Discussion of Popular Models Slide 21

22 Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Saarland University, Germany Slide 22

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen:

Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen: 1 Parallele Algorithmen Grundlagen Parallele Algorithmen Grundlagen Wir unterscheiden folgende drei Schritte im Design paralleler Algorithmen: Dekomposition eines Problems in unabhängige Teilaufgaben.

Mehr

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Institut für Kartographie und Geoinformatik Leibniz Universität Hannover Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Frank Thiemann, Thomas Globig Frank.Thiemann@ikg.uni-hannover.de

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

Seminar SS 09 Amdahl`s Law and Cloud-Computing

Seminar SS 09 Amdahl`s Law and Cloud-Computing Seminar SS 09 Amdahl`s Law and Cloud-Computing Prof. G. Bengel Fakultät für Informatik SEMB 7IBW 8IB Raum HO609 Mo 9:45-11:15 1. Teil: Amdahl sches Gesetz 1. Vortrag Das Gesetz von Amdahl und Gustafson

Mehr

Data Mining in der Cloud

Data Mining in der Cloud Data Mining in der Cloud von Jan-Christoph Meier Hamburg, 21.06.2012 1 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur 2 Ablauf Einführung Verwandte Arbeiten Fazit / Ausblick Literatur

Mehr

MATCHING VON PRODUKTDATEN IN DER CLOUD

MATCHING VON PRODUKTDATEN IN DER CLOUD MATCHING VON PRODUKTDATEN IN DER CLOUD Dr. Andreas Thor Universität Leipzig 15.12.2011 Web Data Integration Workshop 2011 Cloud Computing 2 Cloud computing is using the internet to access someone else's

Mehr

Grundlagen der Programmierung 2. Parallele Verarbeitung

Grundlagen der Programmierung 2. Parallele Verarbeitung Grundlagen der Programmierung 2 Parallele Verarbeitung Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 27. Mai 2009 Parallele Algorithmen und Ressourcenbedarf Themen: Nebenläufigkeit,

Mehr

Überblick. 2 Bestandsaufnahme 2.1 Beispiele von verteilten Systemen 2.2 Anwendungsszenarien 2.3 Vorteile 2.4 Problembereiche

Überblick. 2 Bestandsaufnahme 2.1 Beispiele von verteilten Systemen 2.2 Anwendungsszenarien 2.3 Vorteile 2.4 Problembereiche Überblick 2 Bestandsaufnahme 2.1 Beispiele von verteilten Systemen 2.2 Anwendungsszenarien 2.3 Vorteile 2.4 Problembereiche c rk,wosch,jk VS (SS 2015) 2 Bestandsaufnahme 2 1 Prozessorfarm @Google c rk,wosch,jk

Mehr

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2

Seminar Cloud Data Management WS09/10. Tabelle1 Tabelle2 Seminar Cloud Data Management WS09/10 Tabelle1 Tabelle2 1 Einführung DBMS in der Cloud Vergleich verschiedener DBMS Beispiele Microsoft Azure Amazon RDS Amazon EC2 Relational Databases AMIs Was gibt es

Mehr

Neue Ansätze der Softwarequalitätssicherung

Neue Ansätze der Softwarequalitätssicherung Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

Proling von Software-Energieverbrauch

Proling von Software-Energieverbrauch Proling von Software-Energieverbrauch Seminar Ausgewählte Kapitel der Systemsoftwaretechnik: Energiegewahre Systemsoftware im Sommersemester 2013 Michael Fiedler 6. Juni 2013 1 Motivation (1) Grundproblem

Mehr

Die Apache Flink Plattform zur parallelen Analyse von Datenströmen und Stapeldaten

Die Apache Flink Plattform zur parallelen Analyse von Datenströmen und Stapeldaten Die Apache Flink Plattform zur parallelen Analyse von Datenströmen und Stapeldaten Jonas Traub*, Tilmann Rabl*, Fabian Hueske, Till Rohrmann und Volker Markl* *Technische Universität Berlin, FG DIMA, Einsteinufer

Mehr

1 Konzepte der Parallelverarbeitung

1 Konzepte der Parallelverarbeitung Parallelverarbeitung Folie 1-1 1 Konzepte der Parallelverarbeitung Erhöhung der Rechenleistung verbesserte Prozessorarchitekturen mit immer höheren Taktraten Vektorrechner Multiprozessorsysteme (Rechner

Mehr

Grundlagen der Parallelisierung

Grundlagen der Parallelisierung Grundlagen der Parallelisierung Philipp Kegel, Sergei Gorlatch AG Parallele und Verteilte Systeme Institut für Informatik Westfälische Wilhelms-Universität Münster 3. Juli 2009 Inhaltsverzeichnis 1 Einführung

Mehr

Projektpraktikum: Verteilte Datenverarbeitung mit MapReduce

Projektpraktikum: Verteilte Datenverarbeitung mit MapReduce Projektpraktikum: Verteilte Datenverarbeitung mit MapReduce Timo Bingmann, Peter Sanders und Sebastian Schlag 21. Oktober 2014 @ PdF Vorstellung INSTITUTE OF THEORETICAL INFORMATICS ALGORITHMICS KIT Universität

Mehr

Paralleler Programmentwurf nach Foster

Paralleler Programmentwurf nach Foster Paralleler Programmentwurf nach Foster Die PCAM-Methode Partitionierung - ermittle maximale Parallelität Communication - ermittle Datenabhängigkeiten Agglomeration - erhöhe die Granularität der Aufgaben

Mehr

Visualisierung paralleler bzw. verteilter Programme

Visualisierung paralleler bzw. verteilter Programme Seminar Visualisierung in Informatik und Naturwissenschaften im SS 1999 Visualisierung paralleler bzw. verteilter Programme Holger Dewes Gliederung Zum Begriff Motivation PARADE Beispiel 1: Thread basierte

Mehr

Architekturmuster. Übung MSE, 04.11.2014

Architekturmuster. Übung MSE, 04.11.2014 Architekturmuster Übung MSE, 04.11.2014 Architekturmuster Schichtenarchitektur Kontext Dekomposition großer Systeme Probleme Abhängigkeit zwischen High- und Low-Level-Funktionalität Austauschbare Komponenten

Mehr

DATA MINING FÜR BIG DATA. Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov

DATA MINING FÜR BIG DATA. Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov DATA MINING FÜR BIG DATA Department Informatik Anwendungen 1 WiSe 2013/14 Anton Romanov 29.10.2013 2 Agenda Motivation Data Mining Assoziationsanalyse Clusteranalyse Big Data Map Reduce Apache Hadoop Relevante

Mehr

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher

Visualisierung hochdimensionaler Daten. Hauptseminar SS11 Michael Kircher Hauptseminar SS11 Inhalt Einführung zu hochdimensionalen Daten Visualisierungsmöglichkeiten dimensionale Teilmengen dimensionale Schachtelung Achsenumgestaltung Algorithmen zur Dimensionsreduktion Zusammenfassung

Mehr

GPU-basierte Beschleunigung von MapReduce am Beispiel von OpenCL und Hadoop

GPU-basierte Beschleunigung von MapReduce am Beispiel von OpenCL und Hadoop am Beispiel von OpenCL und Masterseminar Hochschule für Technik, Wirtschaft und Kultur Leipzig Leipzig, 02.11.2011 Gliederung 1 Grundlagen 2 3 Gliederung 1 Grundlagen 2 3 Was ist? Clustersystem zur verteilten

Mehr

Verteilte Systeme CS5001

Verteilte Systeme CS5001 CS5001 Th. Letschert TH Mittelhessen Gießen University of Applied Sciences Einführung Administratives Unterlagen Verwendbar: Master of Science (Informatik) Wahlpflichtfach (Theorie-Pool) Unterlagen Folien:

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 12 (8. Juli 12. Juli 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 12 (8. Juli 12. Juli 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität

Parallelrechner (1) Anwendungen: Simulation von komplexen physikalischen oder biochemischen Vorgängen Entwurfsunterstützung virtuelle Realität Parallelrechner (1) Motivation: Bedarf für immer leistungsfähigere Rechner Leistungssteigerung eines einzelnen Rechners hat physikalische Grenzen: Geschwindigkeit von Materie Wärmeableitung Transistorgröße

Mehr

Web Technologien NoSQL Datenbanken

Web Technologien NoSQL Datenbanken Web Technologien NoSQL Datenbanken Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4

Mehr

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce MapReduce Jan Kristof Nidzwetzki MapReduce 1 / 17 Übersicht 1 Begriffe 2 Verschiedene Arbeiten 3 Ziele 4 DEDUCE: at the intersection of MapReduce and stream processing Beispiel 5 Beyond online aggregation:

Mehr

Fragenkatalog zum Kurs 1666 (Datenbanken in Rechnernetzen) Kurstext von SS 96

Fragenkatalog zum Kurs 1666 (Datenbanken in Rechnernetzen) Kurstext von SS 96 Fragenkatalog zum Kurs 1666 (Datenbanken in Rechnernetzen) Kurstext von SS 96 Dieser Fragenkatalog wurde aufgrund das Basistextes und zum Teil aus den Prüfungsprotokollen erstellt, um sich auf mögliche

Mehr

Big Data Grundlagen. Univ.-Prof. Dr.-Ing. Wolfgang Maass. Chair in Information and Service Systems Department of Law and Economics

Big Data Grundlagen. Univ.-Prof. Dr.-Ing. Wolfgang Maass. Chair in Information and Service Systems Department of Law and Economics Big Data Grundlagen Univ.-Prof. Dr.-Ing. Wolfgang Maass Chair in Information and Service Systems Department of Law and Economics WS 2011/2012 Wednesdays, 8:00 10:00 a.m. Room HS 021, B4 1 Wrap-Up Inhaltliche

Mehr

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover

Big Data. Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Big Data Prof. Robert Jäschke Forschungszentrum L3S Leibniz Universität Hannover Agenda Was ist Big Data? Parallele Programmierung Map/Reduce Der Big Data Zoo 2 3Vs oder: Was ist Big Data? Deutsche Telekom:

Mehr

COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME

COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME D - CA - XIX - CC,M&SPC - 1 HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR INFORMATIK Vorlesung 19 COMPUTERKLASSEN MULTICOMPUTER und SPEZIALANWENDUNGSSYSTEME Sommersemester 2003 Leitung: Prof. Dr. Miroslaw

Mehr

11. Mehrrechner-DBMSe / Datenbankmaschinen

11. Mehrrechner-DBMSe / Datenbankmaschinen 11. Mehrrechner-e / Datenbankmaschinen In der Vergangenheit DB-Maschinen oft auf Basis von Spezial-HW-/SW Schnittstelle Anwendungsprogramm - DB-Maschine oft "nicht hoch" genug Interaktion und Integration

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

Prototypvortrag. Exploiting Cloud and Infrastructure as a Service (IaaS) Solutions for Online Game Service Provisioning. Projektseminar WS 2009/10

Prototypvortrag. Exploiting Cloud and Infrastructure as a Service (IaaS) Solutions for Online Game Service Provisioning. Projektseminar WS 2009/10 Prototypvortrag Exploiting Cloud and Infrastructure as a Service (IaaS) Solutions for Online Game Service Provisioning Projektseminar WS 2009/10 Eugen Fot, Sebastian Kenter, Michael Surmann AG Parallele

Mehr

Synthese Eingebetteter Systeme. 14 Abbildung von Anwendungen auf Multicore-Systeme

Synthese Eingebetteter Systeme. 14 Abbildung von Anwendungen auf Multicore-Systeme 12 Synthese Eingebetteter Systeme Wintersemester 2012/13 14 Abbildung von Anwendungen auf Multicore-Systeme Michael Engel Informatik 12 TU Dortmund 2012/12/19 Abbildung von Anwendungen auf Multicores Multicore-Architekturen

Mehr

CONCURRENCY MODELS. Auf der Suche nach dem heiligen Gral der ManyCores Peter Sturm. (c) Peter Sturm, Universität Trier

CONCURRENCY MODELS. Auf der Suche nach dem heiligen Gral der ManyCores Peter Sturm. (c) Peter Sturm, Universität Trier CONCURRENCY MODELS Auf der Suche nach dem heiligen Gral der ManyCores Peter Sturm 1 AUTOVERKEHR 61.5 Millionen zugelassene Autos (Anfang 2014) Quelle: Statistisches Bundesamt 2 3 SPERRGRANULAT Die Zeit

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Kapitel 14 Verteilte DBMS

Kapitel 14 Verteilte DBMS Kapitel 14 Verteilte DBMS 14 Verteilte DBMS 14 Verteilte DBMS...1 14.1 Begriff, Architektur und Ziele verteilter Datenbanksysteme...2 14.2 Verteilungsarten...5 14.2.1 Verteilung der Daten...5 14.2.2 Verteilung

Mehr

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher:

Quellen: Towards a Human Computer InteractionPerspective. Übersicht. Warum visuelle Sprachen? Begriffsdefinitionen: Hinderungsgründe bisher: Quellen: Towards a Human Computer InteractionPerspective von B.K. & B.K. LV: Visuelle Sprachen (03-763) Universität Bremen WS 2001/02 Visual Language Theory: Towards a Human- Computer Perspective; N. Hari

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Persönlichkeiten bei bluehands

Persönlichkeiten bei bluehands Persönlichkeiten bei Technologien bei Skalierbare Anwendungen mit Windows Azure GmbH & co.mmunication KG am@.de; posts..de/am 1 2 3 4 5 6 7 8 9 Immer mehr Mehr Performance Mehr Menge Mehr Verfügbarkeit

Mehr

Leistungs- und Geschwindigkeitssteigerung. Dipl.-Ing. Sebastian F. Kleinau Applikationsingenieur

Leistungs- und Geschwindigkeitssteigerung. Dipl.-Ing. Sebastian F. Kleinau Applikationsingenieur Leistungs- und Geschwindigkeitssteigerung von LabVIEW-Projekten Dipl.-Ing. Sebastian F. Kleinau Applikationsingenieur Agenda 1. Einführung 2. Hilfreiche Werkzeuge zur Codeanalyse 3. Benchmarks für LabVIEW-VIs

Mehr

Verteilte Systeme. Einführung. Prof. Dr. Oliver Haase

Verteilte Systeme. Einführung. Prof. Dr. Oliver Haase Verteilte Systeme Einführung Prof. Dr. Oliver Haase 1 Definition A distributed system is a collection of independent computers that appears to its users as a single coherent system. - Andrew Tanenbaum

Mehr

Überblick. Multi-Cloud Computing Motivation Redundant Array of Cloud Storage (RACS) Zusammenfassung. c td MWCC (WS14/15) Multi-Cloud Computing 13 1

Überblick. Multi-Cloud Computing Motivation Redundant Array of Cloud Storage (RACS) Zusammenfassung. c td MWCC (WS14/15) Multi-Cloud Computing 13 1 Überblick Multi-Cloud Computing Motivation Redundant Array of Cloud Storage (RACS) Zusammenfassung c td MWCC (WS14/15) Multi-Cloud Computing 13 1 Vendor Lock-In -Problem Typische Vorgehensweise bei der

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

Kurz: Stimme meinen Vorrednern zu: Angenehme Atmosphäre. Eher ein Fachgespräch als eine Prüfung. Eindeutig zu empfehlen

Kurz: Stimme meinen Vorrednern zu: Angenehme Atmosphäre. Eher ein Fachgespräch als eine Prüfung. Eindeutig zu empfehlen Kursversion WS: 10/11 02.2012 Kurs 1727 Kurz: Stimme meinen Vorrednern zu: Angenehme Atmosphäre. Eher ein Fachgespräch als eine Prüfung. Eindeutig zu empfehlen Grundlagen Parallele Programmierung? Was

Mehr

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006

Seminar Informationsintegration und Informationsqualität. Dragan Sunjka. 30. Juni 2006 Seminar Informationsintegration und Informationsqualität TU Kaiserslautern 30. Juni 2006 Gliederung Autonomie Verteilung führt zu Autonomie... Intra-Organisation: historisch Inter-Organisation: Internet

Mehr

Verkürzung von Entwurfszeiten

Verkürzung von Entwurfszeiten Verkürzung von Entwurfszeiten durch Matlab-basiertes HPC R. Fink, S. Pawletta Übersicht aktuelle Situation im ingenieurtechnischen Bereich Multi-SCEs als Konzept zur Verkürzung von Entwurfszeiten Realisierung

Mehr

Ausarbeitung AW2 SS2012. Jan-Christoph Meier Data Mining in der Cloud

Ausarbeitung AW2 SS2012. Jan-Christoph Meier Data Mining in der Cloud Ausarbeitung AW2 SS2012 Jan-Christoph Meier Data Mining in der Cloud Fakultät Technik und Informatik Department Informatik Faculty of Engineering and Computer Science Department of Computer Science Inhaltsverzeichnis

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

GIS in der Cloud: Beispiele von ESRI und con terra

GIS in der Cloud: Beispiele von ESRI und con terra GIS in der Cloud: Beispiele von ESRI und con terra Dr. Matthias Bluhm ESRI Deutschland GmbH 9. März 2011, Darmstadt 2 ESRI Deutschland GmbH, 2011 GmbH 2010 ESRI Unternehmensgruppe (in Deutschland und der

Mehr

Client/Server-Systeme

Client/Server-Systeme Fachbereich Informatik Projektgruppe KOSI Kooperative Spiele im Internet Client/Server-Systeme Vortragender Jan-Ole Janssen 26. November 2000 Übersicht Teil 1 Das Client/Server-Konzept Teil 2 Client/Server-Architekturen

Mehr

Vorhersagemodell für die Verfügbarkeit von IT-Services

Vorhersagemodell für die Verfügbarkeit von IT-Services Vorhersagemodell für die Verfügbarkeit von IT-Services Magdeburg Research and Competence Cluster Very Large Business Applications Lab Fakultät für Informatik Institut für Technische und Betriebliche Informationssysteme

Mehr

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2

Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Excel beschleunigen mit dem mit Windows HPC Server 2008 R2 Steffen Krause Technical Evangelist Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Haftungsausschluss Microsoft kann für die Richtigkeit

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

Möglichkeiten für bestehende Systeme

Möglichkeiten für bestehende Systeme Möglichkeiten für bestehende Systeme Marko Filler Bitterfeld, 27.08.2015 2015 GISA GmbH Leipziger Chaussee 191 a 06112 Halle (Saale) www.gisa.de Agenda Gegenüberstellung Data Warehouse Big Data Einsatz-

Mehr

BICsuite!focus Parallelisierung von Prozessen mit der BICsuite Dynamic Submit Funktion

BICsuite!focus Parallelisierung von Prozessen mit der BICsuite Dynamic Submit Funktion independit Integrative Technologies GmbH Bergstraße 6 D 86529 Schrobenhausen BICsuite!focus Parallelisierung von Prozessen mit der BICsuite Dynamic Submit Funktion Dieter Stubler Ronald Jeninga July 30,

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Message Oriented Middleware am Beispiel von XMLBlaster

Message Oriented Middleware am Beispiel von XMLBlaster Message Oriented Middleware am Beispiel von XMLBlaster Vortrag im Seminar XML und intelligente Systeme an der Universität Bielefeld WS 2005/2006 Vortragender: Frederic Siepmann fsiepman@techfak.uni bielefeld.de

Mehr

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz

Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Vorlesung 04.12.2006: Binäre Entscheidungsdiagramme (BDDs) Dr. Carsten Sinz Datenstruktur BDD 1986 von R. Bryant vorgeschlagen zur Darstellung von aussagenlogischen Formeln (genauer: Booleschen Funktionen)

Mehr

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz

25.09.2014. Zeit bedeutet eine Abwägung von Skalierbarkeit und Konsistenz 1 2 Dies ist ein Vortrag über Zeit in verteilten Anwendungen Wir betrachten die diskrete "Anwendungszeit" in der nebenläufige Aktivitäten auftreten Aktivitäten in einer hochgradig skalierbaren (verteilten)

Mehr

EMC. Data Lake Foundation

EMC. Data Lake Foundation EMC Data Lake Foundation 180 Wachstum unstrukturierter Daten 75% 78% 80% 71 EB 106 EB 133 EB Weltweit gelieferte Gesamtkapazität Unstrukturierte Daten Quelle März 2014, IDC Structured vs. Unstructured

Mehr

Übungen zur Softwaretechnik

Übungen zur Softwaretechnik Technische Universität München Fakultät für Informatik Lehrstuhl IV: Software & Systems Engineering Markus Pister, Dr. Bernhard Rumpe WS 2002/2003 Lösungsblatt 9 17. Dezember 2002 www4.in.tum.de/~rumpe/se

Mehr

Thread-Erzeugung kostengünstiger als Prozesserzeugung Thread-Umschaltung kostengünstiger als Prozessumschaltung

Thread-Erzeugung kostengünstiger als Prozesserzeugung Thread-Umschaltung kostengünstiger als Prozessumschaltung 1.5 Threaded Server Server als ein Prozess mit mehreren Threads Threads Thread als Aktivitätsträger virtueller Prozessor eigener Programmzähler eigener Stackbereich eingebettet in den Kontext eines Prozesses

Mehr

Thema: Das MapReduce-Framework

Thema: Das MapReduce-Framework Software as a Service Cloud Computing und aktuelle Entwicklungen Seminararbeit Thema: Das MapReduce-Framework Betreuer: Prof. Dr. Klaus Küspert Dipl.-Inf. Andreas Göbel Nicky Kuhnt Friedrich-Schiller-Universität

Mehr

Data Mining-Modelle und -Algorithmen

Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining-Modelle und -Algorithmen Data Mining ist ein Prozess, bei dem mehrere Komponenten i n- teragieren. Sie greifen auf Datenquellen, um diese zum Training,

Mehr

RAID Redundant Array of Independent [Inexpensive] Disks

RAID Redundant Array of Independent [Inexpensive] Disks RAID Redundant Array of Independent [Inexpensive] Disks Stefan Wexel Proseminar Algorithms and Data Structures im WS 2011/2012 Rheinisch-Westfälische Technische Hochschule Aachen Lehrstuhl für Informatik

Mehr

P2P-Netzwerke für dynamische 3D-Szenen

P2P-Netzwerke für dynamische 3D-Szenen P2P-Netzwerke für dynamische 3D-Szenen Projektgruppe im WS 2003/2004 High Performance = Innovative Computer Systems + Efficient Algorithms Jens Krokowski 1 Problemstellung hochdynamische 3D-Szene Spieler/Objekte

Mehr

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/2013. WebSphere MQ Teil 3

Enterprise Computing Einführung in das Betriebssystem z/os. Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/2013. WebSphere MQ Teil 3 UNIVERSITÄT LEIPZIG Enterprise Computing Einführung in das Betriebssystem z/os Prof. Dr. Martin Bogdan Prof. Dr.-Ing. Wilhelm G. Spruth WS2012/2013 WebSphere MQ Teil 3 Trigger el0100 Copyright W. G. Spruth,

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Software EMEA Performance Tour 2013. Berlin, Germany 17-19 June

Software EMEA Performance Tour 2013. Berlin, Germany 17-19 June Software EMEA Performance Tour 2013 Berlin, Germany 17-19 June Change & Config Management in der Praxis Daniel Barbi, Solution Architect 18.06.2013 Einführung Einführung Wer bin ich? Daniel Barbi Seit

Mehr

MapReduce. Dhyan Blum

MapReduce. Dhyan Blum MapReduce Dhyan Blum Betreuer: Dirk Haage Seminar Innovative Internettechnologien und Mobilkommunikation SS2010 Lehrstuhl Netzarchitekturen und Netzdienste Fakultät für Informatik, Technische Universität

Mehr

Xcalibur-2 Alpha. Time. Christian Rempis University of Applied Sciences Bonn-Rhein-Sieg 17. Januar 2006 1

Xcalibur-2 Alpha. Time. Christian Rempis University of Applied Sciences Bonn-Rhein-Sieg 17. Januar 2006 1 Time Christian Rempis University of Applied Sciences Bonn-Rhein-Sieg 17. Januar 2006 1 Control and Command Environment for a Robotic Experimenter R&D 1 Examination Presentation by Christian Rempis Christian

Mehr

PIWIN II. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler II. Vorlesung 2 SWS SS 08

PIWIN II. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler II. Vorlesung 2 SWS SS 08 PIWIN II Kap. 3: Verteilte Systeme & Rechnernetze 1 PIWIN II Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler II Vorlesung 2 SWS SS 08 Fakultät für Informatik Technische

Mehr

Mobile Datenbanken - Trends und Entwicklungen

Mobile Datenbanken - Trends und Entwicklungen University of Applied Sciences Brandenburg 16. Oktober 2009 Einführung Einführung - Inhalt 1 Einführung 2 Trends und Konzepte Lokale vs. Remote Zugriffe Solid State Drives Effiziente Algorithmen DBMS-Maßschneiderung

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

Grid Computing. Einführung. Marc Lechtenfeld. Seminar Grid Computing Sommersemester 2004 Universität Duisburg-Essen

Grid Computing. Einführung. Marc Lechtenfeld. Seminar Grid Computing Sommersemester 2004 Universität Duisburg-Essen * Grid Computing Einführung Marc Lechtenfeld Seminar Grid Computing Sommersemester 2004 Universität Duisburg-Essen Übersicht 1 Problematik 2 Systemanforderungen 3 Architektur 4 Implementation 5 Projekte

Mehr

Gemeinsam mehr erreichen.

Gemeinsam mehr erreichen. Gemeinsam mehr erreichen. Microservices in der Oracle SOA Suite Baden 10. September 2015 Ihr Ansprechpartner Carsten Wiesbaum Principal Consultant carsten.wiesbaum@esentri.com @CWiesbaum Schwerpunkte:

Mehr

Alias Analysis for Exceptions in Java Seminar

Alias Analysis for Exceptions in Java Seminar Alias Analysis for Exceptions in Java Seminar Michal Revucky e0225176@student.tuwien.ac.at 16. Dezember 2004 Zusammenfassung Diese Arbeit schlägt einen Alias Analysis Algorithmus für Java vor, dieser kann

Mehr

Emulation und Rapid Prototyping. Hw-Sw-Co-Design

Emulation und Rapid Prototyping. Hw-Sw-Co-Design Emulation und Rapid Prototyping Hw-Sw-Co-Design Simulation von komplexen ICs Design level Description language Primitives Simulation time (instructions/cycle) Algorithm HLL Instruction sets 10-100 Architecture

Mehr

Emulation und Rapid Prototyping

Emulation und Rapid Prototyping Emulation und Rapid Prototyping Hw-Sw-Co-Design Simulation von komplexen ICs Design level Description language Primitives Simulation time (instructions/cycle) Algorithm HLL Instruction sets 10-100 Architecture

Mehr

Grundlagen paralleler Algorithmen

Grundlagen paralleler Algorithmen Grundlagen paralleler Algorithmen Stefan Lang Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Universität Heidelberg INF 368, Raum 53 D-6910 Heidelberg phone: 061/54-864 email: Stefan.Lang@iwr.uni-heidelberg.de

Mehr

TAV Übung 3. Übung 3: Verteilte Datenhaltung

TAV Übung 3. Übung 3: Verteilte Datenhaltung Übung 3: Verteilte Datenhaltung 1. Serialisierung Konstruieren Sie Historien aus drei Transaktionen T1, T2 und T3, die folgende Merkmale aufweisen: 1. Die serielle Reihenfolge ist T1 vor T2 vor T3. 2.

Mehr

Massively Scalable Enterprise Applications. Chris Bernhardt

Massively Scalable Enterprise Applications. Chris Bernhardt Massively Scalable Enterprise Applications Chris Bernhardt Allgemein Einsatzgebiete BizTalk Server Engine Management Enterprise Single Sign-On Neuheiten und Beispiele Quellen Agenda 28.01.2010 Microsoft

Mehr

Informationsmanagement Übungsstunde 9

Informationsmanagement Übungsstunde 9 Informationsmanagement Übungsstunde 9 Univ.-Prof. Dr.-Ing. Wolfgang Maass Lehrstuhl für Betriebswirtschaftslehre, insb. Wirtschaftsinformatik im Dienstleistungsbereich (Information and Service Systems

Mehr

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse?

Ein Beispiel. Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Ein Beispiel Ein Unternehmen will Internettechnologien im Rahmen des E- Business nutzen Welche Geschäftsprozesse? Dipl.-Kfm. Claus Häberle WS 2015 /16 # 42 XML (vereinfacht) visa

Mehr

Multicast Backbone in the Cloud. Sebastian Zagaria Prof. Dr. Thomas C. Schmidt

Multicast Backbone in the Cloud. Sebastian Zagaria Prof. Dr. Thomas C. Schmidt Multicast Backbone in the Cloud Sebastian Zagaria Prof. Dr. Thomas C. Schmidt Gliederung Motivation HAMcast Project Cloud Computing Multicast Backbone in the Cloud Ausblick Motivation Probleme von IP Multicast

Mehr

Comparing Software Factories and Software Product Lines

Comparing Software Factories and Software Product Lines Comparing Software Factories and Software Product Lines Martin Kleine kleine.martin@gmx.de Betreuer: Andreas Wuebbeke Agenda Motivation Zentrale Konzepte Software Produktlinien Software Factories Vergleich

Mehr

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung

Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung Software as a Service, Cloud Computing und aktuelle Entwicklungen Seminarvorbesprechung A. Göbel, Prof. K. Küspert Friedrich-Schiller-Universität Fakultät für Mathematik und Informatik Lehrstuhl für Datenbanken

Mehr

Evaluation of Java Messaging Middleware as a Platform for Software Agent Communication

Evaluation of Java Messaging Middleware as a Platform for Software Agent Communication Evaluation of Java Messaging Middleware as a Platform for Software Agent Communication Frank Kargl Torsten Illmann Michael Weber Verteilte Systeme Universität Ulm {frank.kargl torsten.illmann weber} @informatik.uni-ulm.de

Mehr

8.4 Überblick und Vergleich weiterer ERP-Systeme. G Oracle Applications 11 G PeopleSoft 7 G J.D. Edwards One World G BaanERP

8.4 Überblick und Vergleich weiterer ERP-Systeme. G Oracle Applications 11 G PeopleSoft 7 G J.D. Edwards One World G BaanERP 8.4 Überblick und Vergleich weiterer ERP-Systeme G Oracle Applications 11 G PeopleSoft 7 G J.D. Edwards One World G BaanERP Kapitel 8: ERP-Einführung 32 Architektur von Oracle Applications 11 G Logische

Mehr

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant?

Übersicht. Nebenläufige Programmierung. Praxis und Semantik. Einleitung. Sequentielle und nebenläufige Programmierung. Warum ist. interessant? Übersicht Aktuelle Themen zu Informatik der Systeme: Nebenläufige Programmierung: Praxis und Semantik Einleitung 1 2 der nebenläufigen Programmierung WS 2011/12 Stand der Folien: 18. Oktober 2011 1 TIDS

Mehr

Abstrakt zum Vortrag im Oberseminar. Graphdatenbanken. Gero Kraus HTWK Leipzig 14. Juli 2015

Abstrakt zum Vortrag im Oberseminar. Graphdatenbanken. Gero Kraus HTWK Leipzig 14. Juli 2015 Abstrakt zum Vortrag im Oberseminar Graphdatenbanken Gero Kraus HTWK Leipzig 14. Juli 2015 1 Motivation Zur Darstellung komplexer Beziehungen bzw. Graphen sind sowohl relationale als auch NoSQL-Datenbanken

Mehr