FEM. Finite Elemente Methode. Diese Unterlagen dienen gemäß 53, 54 URG ausschließlich der Ausbildung an der Hochschule Bremen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "FEM. Finite Elemente Methode. Diese Unterlagen dienen gemäß 53, 54 URG ausschließlich der Ausbildung an der Hochschule Bremen."

Transkript

1 FEM Finite Elemente Methode Diese Unterlagen dienen gemäß 53, 54 URG ausschließlich der Ausbildung an der Hochschule Bremen.

2 Vorlesung FEM INHALT 1.Einleitung 1.1.Historischer Überblick über die Finite Elemente Methode (FEM) 1.2.Anwendungsgebiete der FEM 1.3.Grundlegende Bemerkungen zur Aussagesicherheit der FEM 2.Grundgleichungen der linearen FEM 2.1.Exkurs Matrizenrechnung 2.2.Gleichungen der Elastostatik 2.3.Weitere grundlegenden Betrachtungen aus der Mechanik Der Mohrsche Spannungskreis Beanspruchungshypothese-Vergleichsspannung 3.Ermittlung und Lösung des FE-Grundgleichungssystem 3.1.Matrix-Steifigkeitsmethode (zum Aufbau des Gleichungssystems) 3.2.Prinzip der Minimierung des Gesamtpotentials (Variationsprinzip) 3.3.Einbau der Randbedingungen und Lösen des Gleichungssystems 2

3 Vorlesung FEM INHALT 4.Durchführung einer FE-Berechnung am Beispiel eines ebenen Fachwerkes 5.Das Finite-Element und die Formfunktion 5.1.Beispiel des einseitig eingespannten und auf Zug beanspruchten Balkenelements 5.2.Beispiel des linearen Dreieck-Elements für ebene Spanungsprobleme 6.Überblick Elementenfamilien und Grundregeln zur FE-Anwendung 6.1.Element-Familien 6.2.Grundlagen zur FE-Anwendung 7.Weiterführende Literatur 3

4 Vorlesung FEM LITERATUR Bathe, K.-J.: Finite-Elemente-Methoden, Springer, Heidelberg Betten, J.: Finite Elemente für Ingenieure 1 + 2, Springer, Heidelberg Klein, B.: FEM Grundlagen und Anwendungen der Finite-Elemente- Methode, Vieweg, Braunschweig Kunow, A.: Finite-Elemente-Methode, Hüthig, Heidelberg Rieg, F.; Hackenschmidt, R.: Finite Elemente Analyse für Ingenieure, Carl Hanser, München

5 1.1 Historischer Überblick Historische Entwicklung der FEM (Quelle: Klein) 5

6 1.2 Anwendungsgebiete der FEM 6

7 weitere Anwendungsgebiete 7

8 Einige Beispiele: 8

9 9

10 10

11 11

12 12

13 1.3 Grundlegende Bemerkungen zur Aussagesicherheit der FEM Ein FE Programm rechnet alles was formal richtig erscheint Daher muss durch den ingenieurwissenschaftlichen Sachverstand überprüft werden, ob das Simulationsergebnis dem tatsächlich realen Verhalten entspricht. Die Aussagesicherheit von FE-Berechnungen hängt stark von dem Know-how des Berechnungsingenieurs ab! 13

14 Einige Beispiele für Fehlerquellen: unkorrekte Annahme von Randbedingungen (Bsp. Zugstab) korrekte Annahme inkorrekte Annahme 14

15 Zu grobe Diskretisierung um verlässliche Aussagen machen zu können (Bsp. Winkel) grobe Vernetzung feine Vernetzung 15

16 Zu stark vereinfachte Körpergeometrieverläufe (Bsp. Vernachlässigung von Kerbradien) FE-Simulationsergebnis (dargestellt: Vergleichsspannung nach v. Mises) 16

17 falsche FE Auswahl, d.h. die Reaktion des Bauteils wird von dem FE-Ansatz nur unzureichend wiedergegeben (Bsp. Balkenbiegung) CST-El. = Lineares Dreieck-El. Konvergenzverhalten zwischen Balken-Elementen und Dreieck- bzw. Rechteck-Scheibenelementen 17

18 falsche FE Auswahl (gewählte Ansatzfunktion bei vorgegebener Diskretisierungsdichte) Vernetzung eines Winkels mit Tetraeder-Elementen mit a) linearem und b) quadratischem Verschiebungsansatz. FE-Simulationsergebnis (dargestellt: Vergleichsspannung nach v. Mises) 18

19 Resümee: Unter der Voraussetzung, dass alle Annahmen (Randbedingungen, Materialparameter, Körpergeometrieverlauf) stimmen, so kann die Aussagesicherheit (Genauigkeit) eines FE-Ergebnisses verbessert werden durch: 1.) Erhöhung der Diskretisierunsdichte 2.) Wahl eines höheren Elementansatz Ergebnisvarable (z.b. ε, σ). Die Funktion Genauigkeit über Elementanzahl (bzw. Freiheitsgrade FHG s) konvergiert monoton gegen das exakte Ergebnis. exaktes Ergebnis (FHG's) Elementanzahl 19

20 Beispiele für verschiedene Finite-Elemente und ihre Ordnung: 2 2' a) b) 2 2' 5 1 1' 3 3' ' Linearer (a) und quadratischer (b) Verschiebungsansatz eines finiten Dreieckselementes c) d) Idealisierung einer kinematisch verträglichen (c) und einer kinematisch unverträglichen (d) Verformungen eines finiten Dreieckselementes mit quadratischem Verschiebungsansatz 20

21 21

Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren

Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren Aber es gibt bis heute kein Regelwerk oder allgemein gültige Vorschriften/Normen für die Anwendung von FEM-Analysen! Es gibt nur sehr vereinzelt

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flächentragwerke Mit 208 Abbildungen, 36 Tabellen und zahlreichen Beispielen 2., überarbeitete und erweiterte Auflage vieweg

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flachentragwerke 3., aktualisierte und erweiterte Auflage mit 305 Abbildungen und 43 Tabellen vieweg IX Inhaltsverzeichnis

Mehr

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke

Inhaltsverzeichnis 1 Matrizenrechnung 2 Grundgleichungen der Elastizitätstheorie 3 Finite-Element-Methode für Stabwerke IX Inhaltsverzeichnis 1 Matrizenrechnung... 1 1.1 Matrizen und Vektoren... 1 1.2 Matrizenalgebra... 3 1.2.1 Addition und Subtraktion... 3 1.2.2 Multiplikation... 4 1.2.3 Matrizeninversion... 6 1.3 Gleichungssysteme...

Mehr

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag Klaus Knothe Heribert Wessels Finite Elemente Eine Einführung für Ingenieure Mit 283 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Inhaltsverzeichnis

Mehr

Forschungszentrum Karlsruhe. FE-Analyse einer Patientinauflage

Forschungszentrum Karlsruhe. FE-Analyse einer Patientinauflage Forschungszentrum Karlsruhe Technik und Umwelt Wissenschaftliche Berichte FZKA 6451 FE-Analyse einer Patientinauflage H. Fischer, A. Grünhagen Institut für Medizintechnik und Biophysik Arbeitsschwerpunkt

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Hubeinrichtung. FEM-Berechnung Hubbrücke

Hubeinrichtung. FEM-Berechnung Hubbrücke Hubeinrichtung FEM-Berechnung Hubbrücke Material: S355J2G3 E = 210.000 N/mm 2 ; Rm = 490 N/mm 2 (1.0037) G = 83.000 N/mm 2 ; Re = 355 N/mm 2 ν = 0,3 ρ = 7,86 * 10-6 kg/mm 3 zul σ = Re / 1,1 = 355 / 1,1

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode Peter Steinke Finite-Elemente-Methode Rechnergestützte Einführung 3., neu bearbeitete Auflage Springer 1 Einleitung 1.1 Vorgehensweise bei der FEM 3 1.2 Verschiedene Elementtypen 5 1.3 Beispiele zur. Finite-Elemente-Methode

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen

2.1.8 Praktische Berechnung von statisch unbestimmten, homogenen Inhaltsverzeichnis 1 Einleitung... 1 1.1 Aufgaben der Elastostatik.... 1 1.2 Einige Meilensteine in der Geschichte der Elastostatik... 4 1.3 Methodisches Vorgehen zur Erarbeitung der vier Grundlastfälle...

Mehr

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Inhaltsverzeichnis Einleitung Mathematische Grundlagen Inhaltsverzeichnis 1 Einleitung 1.1 Vorgehensweise bei der FEM... 3 1.2 Verschiedene Elementtypen... 5 1.3 Beispiele zur Finite-Elemente-Methode... 10 1.3.1 Beispiel zu nichtlinearen Problemen... 10 1.3.2

Mehr

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode Prof. Dr.-Ing. Christopher Bode Finite-Elemente-Methode Kapitel 1: Einleitung BEUTH Hochschule für Technik Berlin Prof. Dr.-Ing. C. Bode 2 Was ist FEM? Die FEM ist ein mathematisches Verfahren zur Lösung

Mehr

Mathematisch-algorithmische Grundlagen für Big Data

Mathematisch-algorithmische Grundlagen für Big Data Mathematisch-algorithmische Grundlagen für Big Data Numerische Algorithmen für Datenanalyse und Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2016

Mehr

Finite Elemente in Materialwissenschaften

Finite Elemente in Materialwissenschaften Finite Elemente in Materialwissenschaften Dieter Süss Institut für Festkörperphysik (8. Stock gelb) Vienna University of Technology dieter.suess@tuwien.ac.at http:/// http:///suess/papers Outline Geschichte

Mehr

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer Klaus Knothe Heribert Wessels Finite Elemente Eine Einführung für Ingenieure Dritte, überarbeitete und erweiterte Auflage mit 344 Abbildungen Springer Inhaltsverzeichnis 1 Einleitung 1 1.1 Beispiele aus

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Formelsammlung. für die Klausur. Technische Mechanik I & II

Formelsammlung. für die Klausur. Technische Mechanik I & II Formelsammlung für die Klausur Technische Mechanik I & II Vorwort Diese Formelsammlung ist dazu gedacht, das Suchen und Herumblättern in den Büchern während der Klausur zu vermeiden und somit Zeit zu sparen.

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Band I Horst Werkle Finite Elemente in der Baustatik Band 1 Lineare Statik der Stab- und Flachentragwerke Die Deutsche Bibliothek - CIP-Einheitsaufnahme Werkle,

Mehr

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016 Strukturanalyse einer mittels Rapid-Prototyping gefertigten Pelton-Turbinenschaufel - grundlegende Festigkeitsanalysen sowie Überlegungen zu Materialkennwerten Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

Ital. Wissenschaftler, Erfinder und Künstler. * 15.04.1452 in Vinci bei Florenz (Italien)

Ital. Wissenschaftler, Erfinder und Künstler. * 15.04.1452 in Vinci bei Florenz (Italien) www.statik-lernen.de Geschichte Bedeutende Persönlichkeiten Seite 1 Leonardo da Vinci der homo universale Ital. Wissenschaftler, Erfinder und Künstler * 15.04.1452 in Vinci bei Florenz (Italien) 02.05.1519

Mehr

Mathematische Grundlagen

Mathematische Grundlagen Mathematische Grundlagen für Wirtschaftsinformatiker Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2015/16 Peter Becker (H-BRS) Mathematische Grundlagen Wintersemester

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode Finite-Elemente-Methode Rechnergestützte Einführung von Peter Steinke 1. Auflage Finite-Elemente-Methode Steinke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Springer 2012 Verlag

Mehr

FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE

FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE FINITE ELEMENTE ANALYSE für Vollzeit-Studenten des Masterstudiengangs (MSc) Fahrzeugingenieurwesen 2. HAUSAUFGABE Bekannt sind die Dimensionen des Tragwerkes in dem Bild (siehe Anlage 1): (, ), sein Elastizitätsmodul

Mehr

Operations Research II

Operations Research II Operations Research II Einführung in die kombinatorische Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Wintersemester 2015/16 Peter Becker (H-BRS) Operations Research

Mehr

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode

Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode K.Bräuer: Computersimulation physikalischer Phänomene mit der Finiten-Elemente-Methode 1 Computersimulation physikalischer Phänomene mit der Finite- Elemente-Methode Kurt Bräuer Privatdozent am Institut

Mehr

4. Der Berechnungsprozess

4. Der Berechnungsprozess Idealisierung Bauteil / Entwurf Preprocessor Mathematisches Modell Diskretisierung Finite-Elemente- Modell Solver Rechnung Ergebnisse Postprocessor Bewertung Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-1

Mehr

Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS. Sven D. Simeitis

Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS. Sven D. Simeitis Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS Sven D. Simeitis 04/2011 Gliederung Einleitung Art um Umfang der Berechnungen MECHANICA (p-methode) ANSYS (h-methode) Berechnungsbeispiele Rundstab

Mehr

Modellierung stabartiger Bauteile bei Flächentragwerken

Modellierung stabartiger Bauteile bei Flächentragwerken Modellierung stabartiger Bauteile bei Flächentragwerken Horst Werkle und Fabian Gerold, Fachhochschule Konstanz ZUAMMENFAUNG Als Modelle zum Anschluss biegebeanspruchter tabelemente an cheiben- und Plattenelemente

Mehr

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften

Brückenkurs Mathematik Mathe: Das 1x1 der Ingenieurwissenschaften Brückenkurs Mathematik Mathe: Das x der Ingenieurwissenschaften Gewöhnliche Differentialgleichungen, lineare Algebra oder Integralrechnung vertiefte Kenntnisse der Mathematik sind Voraussetzung für den

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft.

Was ist Mathematik? Eine Strukturwissenschaft, eine Geisteswissenschaft, aber keine Naturwissenschaft. Vorlesung 1 Einführung 1.1 Praktisches Zeiten: 10:00-12:00 Uhr Vorlesung 12:00-13:00 Uhr Mittagspause 13:00-14:30 Uhr Präsenzübung 14:30-16:00 Uhr Übungsgruppen Material: Papier und Stift wacher Verstand

Mehr

Analysis I. Einige Bemerkungen zum Beginn... R. Haller-Dintelmann Analysis I

Analysis I. Einige Bemerkungen zum Beginn... R. Haller-Dintelmann Analysis I Analysis I Einige Bemerkungen zum Beginn... Termine Vorlesung Di., 09:50 11:30 S2 07/109 Do., 09:50 11:30 S2 17/103 Übung Mi., 08:00 09:40 S1 02/36 Mi., 09:50 11:30 S1 03/313 Mi., 09:50 11:30 S1 02/34

Mehr

FKPE, 11. Workshop. Geomechanische. Andreas Henk. Albert-Ludwigs-Universität Freiburg henk@uni-freiburg.de

FKPE, 11. Workshop. Geomechanische. Andreas Henk. Albert-Ludwigs-Universität Freiburg henk@uni-freiburg.de FKPE, 11. Workshop Hannover, 6. + 7. Oktober 2011 Geomechanische Lagerstättenmodelle Methoden und Prognosepotential Andreas Henk Institut t für Geowissenschaften Geologie Albert-Ludwigs-Universität Freiburg

Mehr

Repetitionsaufgaben Wurzelgleichungen

Repetitionsaufgaben Wurzelgleichungen Repetitionsaufgaben Wurzelgleichungen Inhaltsverzeichnis A) Vorbemerkungen B) Lernziele C) Theorie mit Aufgaben D) Aufgaben mit Musterlösungen 4 A) Vorbemerkungen Bitte beachten Sie: Bei Wurzelgleichungen

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Optimierung. Florian Jarre Josef Stoer. Springer

Optimierung. Florian Jarre Josef Stoer. Springer 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Florian Jarre Josef Stoer Optimierung Springer Inhaltsverzeichnis

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

Eine statische Analyse des Wilson-Elements

Eine statische Analyse des Wilson-Elements Prof. Dr.-Ing. Friedel Hartmann Fachgebiet Baustatik Fachbereich 14 Bauingenieurwesen Diplomarbeit 1 Eine statische Analyse des Wilson-Elements von Oliver Carl Bearbeitungszeit: 17. Dezember 2002 bis 12.

Mehr

We+n^rG. Faix Jens Mergentrraier

We+n^rG. Faix Jens Mergentrraier We+n^rG. Faix Jens Mergentrraier Über die Entwicklung (zu) einer schöpferischen Persönlichkeit als grundlegende Bedingung für Innovationen und den unternehmerischen Erfolg. Erläutert am Bildungsmodell

Mehr

4 Vorlesung: 21.11. 2005 Matrix und Determinante

4 Vorlesung: 21.11. 2005 Matrix und Determinante 4 Vorlesung: 2111 2005 Matrix und Determinante 41 Matrix und Determinante Zur Lösung von m Gleichungen mit n Unbekannten kann man alle Parameter der Gleichungen in einem rechteckigen Zahlenschema, einer

Mehr

Untersuchung der Auswahl der Hauptfreiheitsgrade zum Import eines Modells von ANSYS nach SIMPACK

Untersuchung der Auswahl der Hauptfreiheitsgrade zum Import eines Modells von ANSYS nach SIMPACK IMW - Institutsmitteilung Nr. 35 (2010) 103 Untersuchung der Auswahl der Hauptfreiheitsgrade zum Import eines Modells von ANSYS nach SIMPACK M. Leng; Z. Liang Die Auswahl der Hauptfreiheitsgrade spielt

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM)

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

8. Quadratische Reste. Reziprozitätsgesetz

8. Quadratische Reste. Reziprozitätsgesetz O Forster: Prizahlen 8 Quadratische Reste Rezirozitätsgesetz 81 Definition Sei eine natürliche Zahl 2 Eine ganze Zahl a heißt uadratischer Rest odulo (Abkürzung QR, falls die Kongruenz x 2 a od eine Lösung

Mehr

Refinement of π-calculus Processes. Manuel Gieseking. Carl von Ossietzky Universität Oldenburg Entwicklung korrekter Systeme

Refinement of π-calculus Processes. Manuel Gieseking. Carl von Ossietzky Universität Oldenburg Entwicklung korrekter Systeme Refinement of π-calculus Processes Manuel Gieseking Carl von Ossietzky Universität Oldenburg Entwicklung korrekter Systeme Absolventenfeier 2015 Motivation Manuel Gieseking Refinement of π-calculus Processes

Mehr

Die neue Online-Wissensplattform für Kunststofftechnik. Projektbegleitung:

Die neue Online-Wissensplattform für Kunststofftechnik. Projektbegleitung: MIT WISSEN ZUM ERFOLG plastics nline.info Die neue Online-Wissensplattform für Kunststofftechnik Ein Projekt von: Projektbegleitung: Gefördert durch: Gefördert durch das Bundesministerium für Wirtschaft

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

5. Versuchsvorbereitung

5. Versuchsvorbereitung 5. Versuchsvorbereitung 5.1. Welche charakteristischen Merkmale besitzen Folien-DMS im Vergleich zu anderen DMS? Folien-DMS bestehen aus sehr dünn gewalzten Metallfolien (häufig Konstantan oder eine Ni-Cr-Legierung

Mehr

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Fraunhofer ITWM Kaiserslautern, 4..009 Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Ralf Korn (TU Kaiserslautern & Fraunhofer ITWM) 0. Einige praktische Probleme

Mehr

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung

Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati. René Descartes Meditationen Erste Untersuchung Seminar Klassische Texte der Neuzeit und der Gegenwart Prof. Dr. Gianfranco Soldati René Descartes Meditationen Erste Untersuchung INHALTSVERZEICHNIS 1 EINLEITUNG 3 1.1 PROBLEMSTELLUNG 3 1.2 ZIELSETZUNG

Mehr

Methode der f initen Elemente

Methode der f initen Elemente r Methode der f initen Elemente Eine Einführung unter besonderer Berücksichtigung der Rechenpraxis Von Dr. sc. math. Hans Rudolf Schwarz ord. Professor an der Universität Zürich 3., neubearbeitete Auflage

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Aufgabe: Versuche eine Lösung zu den folgenden Zahlenrätseln zu finden:.) Verdoppelt man das Quadrat einer Zahl und addiert, so erhält man 00..) Addiert man zum Quadrat einer Zahl

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

Ideen entwickeln und bewerten Kreativität in der Produktion speziell Gruppenfertigung

Ideen entwickeln und bewerten Kreativität in der Produktion speziell Gruppenfertigung Ideen entwickeln und bewerten Kreativität in der Produktion speziell Gruppenfertigung Dipl.-Psych. Sandra Ohly Institut f. Psychologie TU Braunschweig Was ist Kreativität? Die Die Erzeugung von neuen und

Mehr

Test 2: Universitäts- oder Fachhochschulstudium? 24 Auswertung: Universitäts- oder Fachhochschulstudium? 27

Test 2: Universitäts- oder Fachhochschulstudium? 24 Auswertung: Universitäts- oder Fachhochschulstudium? 27 Inhalt Einleitung 7 Erläuterungen zu den Tests 9 Test 1: Berufliche Ausbildung oder Studium? 10 Ausbildungsmöglichkeiten nach dem Abitur oder der Fachhochschulreife 10 Auswertung: Berufliche Ausbildung

Mehr

Einführung in die Geometrie SS 2007. Prof.Dr.R.Deissler

Einführung in die Geometrie SS 2007. Prof.Dr.R.Deissler Einführung in die Geometrie SS 2007 Prof.Dr.R.Deissler Titelblatt Literatur Krauter, Siegfried Erlebnis Elementargeometrie Ein Arbeitsbuch zum selbstständigen und aktiven Entdecken Spektrum Akad.Verlag,

Mehr

Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit

Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit Die Finite-Elemente-Methode Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM

Mehr

Simulationen mit NX4, Buchvorstellung und Neuigkeiten in Motion und FEM

Simulationen mit NX4, Buchvorstellung und Neuigkeiten in Motion und FEM Simulationen mit NX4, Buchvorstellung und Neuigkeiten in Motion und FEM Peter Binde Dr. Binde Beratende Ingenieure GmbH 04.05.2006 Inhalt Unternehmen und Autoren Konzepte des Buchs Zielgruppen und Lernziele

Mehr

Einführung in die Numerik mit VBA

Einführung in die Numerik mit VBA Stefan Kolling Einführung in die Numerik mit VBA 2005 Fachhochschulverlag DER VERLAG FÜR ANGEWANDTE WISSENSCHAFTEN Inhaltsverzeichnis 1 Einführung 1 1.1 Einige Grundbegriffe aus der EDV 2 1.1.1 Darstellung

Mehr

Theorie und Empirie der Kaufkraftparität (23.5.)

Theorie und Empirie der Kaufkraftparität (23.5.) Theorie und Empirie der Kaufkraftparität (23.5.) Text: Taylor, A., Taylor M. (2004): The Purchasing Power Debate, NBER Working Paper No. 10607 (June 2004) Fragen: 1. Beschreiben Sie in ein, zwei Sätzen,

Mehr

19/13 17. Mai 2013 Amtliches Mitteilungsblatt

19/13 17. Mai 2013 Amtliches Mitteilungsblatt Nr. 19/13 Amtliches Mitteilungsblatt der HTW Berlin Seite 293 19/13 17. Mai 2013 Amtliches Mitteilungsblatt Seite Erste Ordnung zur Änderung der Ordnung über die praktische Vorbildung für den Bachelorstudiengang

Mehr

ZAHNIMPLANTATE MADE IN GERMANY

ZAHNIMPLANTATE MADE IN GERMANY Maybachstr. 5 71299 Wimsheim www.altatec.de ZAHNIMPLANTATE MADE IN GERMANY AUSBILDUNG MIT ZUKUNFT Bachelor Studiengänge bei ALTATEC AUSBILDUNG MIT ZUKUNFT Maschinenbau CAMLOG Zahnimplantate Made in Germany

Mehr

Günter M. Gramlich. Mathematik-Studienhilfen. Eine Einführung. Lineare Algebra. 2., aktualisierte Auflage

Günter M. Gramlich. Mathematik-Studienhilfen. Eine Einführung. Lineare Algebra. 2., aktualisierte Auflage Günter M. Gramlich Mathematik-Studienhilfen Lineare Algebra Eine Einführung 2., aktualisierte Auflage Günter M. Gramlich Lineare Algebra Mathematik - Studienhilfen Herausgegeben von Prof. Dr. Bernd Engelmann

Mehr

4 Anwendung der FEM zur Untersuchung der Strukturstabilität

4 Anwendung der FEM zur Untersuchung der Strukturstabilität 4 Anwendung der FEM zur Untersuchung der Strukturstabilität Bei beweglichen Konstruktionen wie Fahrzeugen aller Art (Kraftfahrzeuge, Schiffe, Flugzeuge) ist es notwendig das Eigengewicht soweit wie möglich

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Parametrische Optimierung mariner Planktonschalen für bionischen Strukturleichtbau

Parametrische Optimierung mariner Planktonschalen für bionischen Strukturleichtbau Parametrische Optimierung mariner Planktonschalen für bionischen Leichtbau Allgemeiner Hintergrund Marine Planktonorganismen Diatomeen / Radiolarien Leichtbaupotential Methoden 6. Altair Hyperworks Anwendertreffen

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 06.0.206 Zusammenfassung 8. Vorlesung. Schiefwinklige Scheibenelemente Numerischer

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

FEM-Simulation mit NX-Nastran, CATIA, FEMAP und CATOPO für Konstrukteure und Berechner

FEM-Simulation mit NX-Nastran, CATIA, FEMAP und CATOPO für Konstrukteure und Berechner FEM-Simulation mit NX-Nastran, CATIA, FEMAP und CATOPO für Konstrukteure und Berechner Konzepte für Schulung, Einführung und Projektarbeit Dr. Thorsten Kraft, CES-Eckard GmbH, 70565 Stuttgart Datum: 22.

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

Systems für den HDS 4500

Systems für den HDS 4500 Entwicklung eines remote-monitoring monitoring Systems für den HDS 4500 Jens-André Paffenholz, Ingo Neumann und Hansjörg Kutterer Geodätisches Institut Leibniz Universität Hannover Session: Laserscanning

Mehr

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik

Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Fakultät Maschinenbau, Verfahrens- und Energietechnik Institut für Mechanik und Fluiddynamik Praktikum Messmethoden der Mechanik Versuch: Spannungsoptik 1. Spannungsoptik eine Einleitung Spannungsoptik

Mehr

Software Engineering. Sommersemester 2012, Dr. Andreas Metzger

Software Engineering. Sommersemester 2012, Dr. Andreas Metzger Software Engineering (Übungsblatt 2) Sommersemester 2012, Dr. Andreas Metzger Übungsblatt-Themen: Prinzip, Technik, Methode und Werkzeug; Arten von Wartung; Modularität (Kohäsion/ Kopplung); Inkrementelle

Mehr

Finite Element Analyse (FEA) (Solver & Post-Processing)

Finite Element Analyse (FEA) (Solver & Post-Processing) Finite Element Analyse (FEA) (Solver & Post-Processing) Vortrag im Rahmen des 3D Druck ProSeminars 2016 Lars Lamberti Gliederung Solver Zuverlässigkeit und Genauigkeit Genauigkeitssteigerung Post-Processing

Mehr

Hochschule Wismar. Fakultät für Wirtschaftswissenschaften. Arbeitskonzept zur Projektarbeit Softwarequalität und Softwarealterung

Hochschule Wismar. Fakultät für Wirtschaftswissenschaften. Arbeitskonzept zur Projektarbeit Softwarequalität und Softwarealterung Hochschule Wismar Fakultät für Wirtschaftswissenschaften Arbeitskonzept zur Projektarbeit Softwarequalität und Softwarealterung Verfasst von: Anne Moormann, Benedikt Scholz, Michael Herbener - 1 - Einleitung

Mehr

FEM - Zusammenfassung

FEM - Zusammenfassung FEM - Zusammenfassung home/lehre/vl-mhs-1-e/deckblatt.tex. p.1/12 Inhaltsverzeichnis 1. Bedingungen an die Ansatzfunktion 2. Randbedingungen (Allgemeines) 3. FEM - Randbedingungen home/lehre/vl-mhs-1-e/deckblatt.tex.

Mehr

Finite Elemente I Konvergenzaussagen

Finite Elemente I Konvergenzaussagen Finite Elemente I 195 5 onvergenzaussagen 5 onvergenzaussagen TU Bergakademie Freiberg, SoS 2006 Finite Elemente I 196 5.1 Interpolation in Sobolev-Räumen Wesentlicher Baustein der FE-onvergenzanalyse

Mehr

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne

Versuchsplanung. Inhalt. Grundlagen. Faktor-Effekt. Allgemeine faktorielle Versuchspläne. Zweiwertige faktorielle Versuchspläne Inhalt Versuchsplanung Faktorielle Versuchspläne Dr. Tobias Kiesling Allgemeine faktorielle Versuchspläne Faktorielle Versuchspläne mit zwei Faktoren Erweiterungen Zweiwertige

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Betreuer: Lars Grüne. Dornbirn, 12. März 2015

Betreuer: Lars Grüne. Dornbirn, 12. März 2015 Betreuer: Lars Grüne Universität Bayreuth Dornbirn, 12. März 2015 Motivation Hedging im diskretisierten Black-Scholes-Modell: Portfolio (solid), Bank (dashed) 110 120 130 140 150 160 170 Portfolio (solid),

Mehr

Inhaltsverzeichnis. 4 Lagrange-Funktion und Dualität... 63 4.1 Lagrange-FunktionmitGleichheitsrestriktionen... 63

Inhaltsverzeichnis. 4 Lagrange-Funktion und Dualität... 63 4.1 Lagrange-FunktionmitGleichheitsrestriktionen... 63 1 Einleitung... 1 1.1 Optimierungstypen.............................................. 3 1.2 Motivation und Grundbegriffe der Optimierung........................... 4 1.3 Allgemeine Form des Optimierungsproblems............................

Mehr

Theorie und Praxis zur FMEA-Methode im Maschinenbau

Theorie und Praxis zur FMEA-Methode im Maschinenbau Theorie und Praxis zur FMEA-Methode im Maschinenbau Dr.-Ing. Michael Eisfeld MSc, Kassel, www.e3p.de Kurze Einleitung Methodisches Vorgehen Zusammenfassung Copyright Eisfeld Ingenieure 9. Fachtagung der

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Eigenspannungen berechnen mit Hilfe der Schweißsimulation

Eigenspannungen berechnen mit Hilfe der Schweißsimulation Herdweg 13, D-75045 Wössingen Lkr. Karlsruhe Courriel: loose@tl-ing.de Web: www.tl-ing.de, www.loose.at Mobil: +49 (0) 176 6126 8671 Tel: +49 (0) 7203 329 023 Fax: +49 (0) 7203 329 025 Eigenspannungen

Mehr

Stahlbau Grundlagen. Der plastische Grenzzustand: Plastische Gelenke und Querschnittstragfähigkeit. Prof. Dr.-Ing. Uwe E. Dorka

Stahlbau Grundlagen. Der plastische Grenzzustand: Plastische Gelenke und Querschnittstragfähigkeit. Prof. Dr.-Ing. Uwe E. Dorka Stahlbau Grundlagen Der plastische Grenzzustand: Plastische Gelenke und Querschnittstragfähigkeit Prof. Dr.-Ing. Uwe E. Dorka Einführungsbeispiel: Pfette der Stahlhalle Pfetten stützen die Dachhaut und

Mehr

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen. Fakultät Informatik, Institut für Angewandte Informatik, Professur für Technische Informationssysteme Approximationsverfahren zur Überführung nichtäquidistanter Messwertfolgen in äquidistante Zeitreihen.

Mehr

Anmerkungen zur Entwicklung ingenieur- und naturwissenschaftlicher Bachelor- und Masterstudiengänge

Anmerkungen zur Entwicklung ingenieur- und naturwissenschaftlicher Bachelor- und Masterstudiengänge Anmerkungen zur Entwicklung ingenieur- und naturwissenschaftlicher Bachelor- und Masterstudiengänge Arnd Poetzsch-Heffter FB Informatik TU Kaiserslautern 0. Vorbemerkungen 1. Die neuen Strukturen 2. Module

Mehr

Prof. Dr.-Ing. Holger Voos M.Sc. Suparchoek Wangmanaopituk. Hochschule Ravensburg-Weingarten Labor für mobile Robotik und Mechatronik

Prof. Dr.-Ing. Holger Voos M.Sc. Suparchoek Wangmanaopituk. Hochschule Ravensburg-Weingarten Labor für mobile Robotik und Mechatronik Agent-based Automation of a flexible Microproduction System including Teams of Mobile Robots Prof. Dr.-Ing. Holger Voos M.Sc. Suparchoek Wangmanaopituk Hochschule Labor für mobile Robotik und Mechatronik

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

CAE. Inhalt der Vorlesung CAE. Kap. 2.1 Das Prinzip der FEM

CAE. Inhalt der Vorlesung CAE. Kap. 2.1 Das Prinzip der FEM 1 Einleitung und Übersicht 1.1 Begrüßung 1.2 Aktuelle Marktstudie PLM-, CAD-, -Systeme 1.3 Übersicht (Computerunterstützte Produktentwicklung) 1 2 Die Finite Elemente Methode 2.1 2.2 Linear elastisches

Mehr

Bernd Klein STUDIUM/ TEUBNER

Bernd Klein STUDIUM/ TEUBNER Bernd Klein FE Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau: ' 8., verbesserte und erweiterte Auflage Mit 230Abbildungen, 12 Fallstudien und 20 Übungsaufgaben.. /,

Mehr