Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join"

Transkript

1 Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans Maßnahmen zur log Optimierung: - Ändern der Operator-Reihenfolge - Zusammenfassen von Operatoren - Unnötigen Operatoren entfernen IPD, Forschungsbereich Systeme der Informationsverwaltung IWM: Optimierung und Relationale Algebra 2 deklarative Anfragesprachen (zb SQL): Datenunabhängigkeit vom DBMS optimierbar (keine Aussagen, wie Anfrage bearbeitet werden soll) Wir betrachten in diesem Kapitel relationale Algebra: einfacher, erlaubt Aussagen zur Ausführungsreihenfolge Basis für die Anfrageoptimierung Mathematik Algebra definiert durch Wertebereich und auf diesem definierte Operatoren Für Datenbankanfragen Inhalte der Datenbank sind Werte, und Operatoren definieren Funktionen zum Berechnen von Anfrageergebnissen IWM: Optimierung und Relationale Algebra 3 IWM: Optimierung und Relationale Algebra 4 Als Term π[name]([titel='dr No']( )) Als Operatorbaum (oft anschaulicher) π[name] INVNR NAME 1201 Schulz [Titel='Dr No'] INVNR TITEL ISBN 0007 Dr No Objektbanken Datenbanken Datenbanken PASCAL IWM: Optimierung und Relationale Algebra 5 IWM: Optimierung und Relationale Algebra 6 1

2 Beispiel 1: auf ein Attribut π[name]() ergibt als Ergebnisrelation eine Menge: NAME Meyer Schulz Müller zum Vergleich: select Name from ergibt als Ergebnisrelation eine Multimenge: NAME Meyer Schulz Müller Meyer IPD, Forschungsbereich Systeme der Informationsverwaltung IWM: Optimierung und Relationale Algebra 8 Beispiel 2: auf Attributmenge π[invnr, ISBN]() ergibt INVNR ISBN Optimierungsregel: Bei vielen en hintereinander reicht die zuletzt ausgeführte auch allein π[invnr](π[invnr, ISBN]()) ergibt optimiert π[invnr]() Grafische Darstellung oft hilfreich Wieso sind derartige Optimierungen wichtig? Für Anfrageausführung Alternativen sind zwar äquivalent, aber unterschiedlich teuer in der Ausführung Optimierung nutzt Äquivalenz aus, um günstige Ausführung zu finden IWM: Optimierung und Relationale Algebra 9 IWM: Optimierung und Relationale Algebra 10 create view bk as select Titel, Name from left outer join using (INVNR) select Titel from bk Wie kann uns hier die Optimierungsregel zur helfen? Anmerkung: Ersetzung von π[invnr](π[invnr, ISBN]()) durch π[invnr]() ist immer vorteilhaft Bei anderen Transformationen hängt Vorteilhaftigkeit vom Datenbankzustand ab, z B Vertauschung von en IWM: Optimierung und Relationale Algebra 11 IWM: Optimierung und Relationale Algebra 12 2

3 IWM: Optimierung und Relationale Algebra 13 Beispiel σ[name < 'N']() ergibt INVNR NAME sbedingungen: F Konstanten- Attribut θ Konstante boolesches Prädikat θ ist = oder, bei linear geordneten Wertebereichen auch <, <, > oder > F Attribut- Attribut1 θ Attribut2 F logische Verknüpfung mehrerer Konstantenoder Attribut-en mit, oder (Wird gleich diskutiert) IWM: Optimierung und Relationale Algebra 14 Einfache Optimierungsregeln: en lassen sich in der Reihenfolge beliebig vertauschen, σ Invnr=4711 (σ Name 'N' ( )) = σ Name 'N' (σ Invnr=4711 ( )) Manchmal lassen sich und vertauschen; Ist πinvnr (σ Name 'N' ()) = σ Name 'N' (π Invnr ())? Voraussetzung für Vertauschbarkeit: sattribute kommen in der sliste vor π Name (σ Name 'N' ()) Überprüfung der Vertauschbarkeit setzt Analyse der sbedingung voraus IWM: Optimierung und Relationale Algebra 15 IWM: Optimierung und Relationale Algebra 16 sbedingungen: F Konstanten- Attribut θ Konstante F Attribut- Attribut1 θ Attribut2 F logische Verknüpfung mehrerer Konstantenoder Attribut-en mit, oder Jedoch: Analyse aufwendig zt redundant Syntax des (natürlichen) Verbundes (englisch: natural join) Relation1 Relation2 Verbund verknüpft Tabellen über gleichbenannten Spalten bei gleichen Attributwerten Natural : Verbund nur über gleich benannte Attribute -Attribut taucht in der Ergebnisrelation nur als eine Spalte auf Negation problembehaftet Sicherheit der Anfrage?!? IWM: Optimierung und Relationale Algebra 17 IWM: Optimierung und Relationale Algebra 18 3

4 IWM: Optimierung und Relationale Algebra 19 INVNR NAME 1201 Schulz INVNR TITEL ISBN 0007 Dr No Objektbanken Datenbanken Datenbanken PASCAL ergibt NAME INVNR TITEL ISBN Müller 0007 Dr No Schulz 1201 Objektbanken Meyer 4711 Datenbanken Meyer 4712 Datenbanken Nicht ausgeliehenes Pascal- verschwindet: Tupel, die keinen Partner finden (dangling tuples), werden eliminiert In SQL: outer join der dangling tuples übernimmt IWM: Optimierung und Relationale Algebra 20 π[autor]() π[invnr]() keine gemeinsamen Attribute Verbund entartet zu kartesischem Produkt π[autor]() π[invnr]() INVNR IWM: Optimierung und Relationale Algebra 21 Verbund ist kommutativ: r1 r 2 = r 2 r 1 Verbund ist assoziativ: (r1 r 2 ) r 3 = r 1 (r 2 r 3 ) r i p Daher erlaubt: i=1 Beispiel dafür, daß -Reihenfolge wichtig ist: B B C B D b a c 1 a d 1 a c a d Anmerkung: wenn r 1 und r 3 keine gemeinsamen Attribute haben, ist das Zwischenergebnis das Kreuzprodukt teurer geht nicht! IWM: Optimierung und Relationale Algebra 22 und Umbenennung (1) gute -Reihenfolge ist wichtig! abhängig von den Daten in den Relationen schwierig zu erkennen Mengenoperationen der relationalen Algebra setzen gleiches Schema voraus Problem: physische Datenunabhängigkeit Keine Festlegung der -Reihenfolge in SQL möglich guter Optimierer im DBMS ist wichtig! IWM: Optimierung und Relationale Algebra 23 IWM: Optimierung und Relationale Algebra 24 4

5 IWM: Optimierung und Relationale Algebra 25 Umbenennung und Umbenennung (2) ß[neu alt](relation) (bzw ß neu alt (relation)) 2 ändert Attributnamen von alt in neu ß[Autor1 Autor2](2) Durch Umbenennung nun Vereinigung, Differenz und Durchschnitt möglich relation1 relation2 1 β[autor1 Autor2](2) IWM: Optimierung und Relationale Algebra 26 relation1 relation2 1 β[autor1 Autor2](2) relation1 relation2 1 ß[Autor1 Autor2] (2) IWM: Optimierung und Relationale Algebra 27 IWM: Optimierung und Relationale Algebra 28 Umbenennung ermöglicht Verbunde, wo bisher kartesische Produkte ausgeführt wurden (unterschiedliche Attribute werden gleich benannt), kartesische Produkte, wo bisher Verbunde ausgeführt wurden (gleiche Attribute werden unterschiedlich genannt), Mengenoperationen IWM: Optimierung und Relationale Algebra 29 Attribut umbenannt Illustration des ersten Bullets der vorangegangenen Folie: INVNR NAME 1201 Schulz I-NR TITEL ISBN 0007 Dr No Objektbanken Datenbanken Datenbanken PASCAL IWM: Optimierung und Relationale Algebra 30 5

6 IWM: Optimierung und Relationale Algebra 31 Was ist der Natural dieser Relationen ohne Umbenennung? Wir wollen Paare bilden (, ), (, ),, (, ), Vorgehen: Umbenennung und Natural IWM: Optimierung und Relationale Algebra 32 Mengenoperationen sind kommutativ: r 1 r 2 = r 2 r 1 Mengenoperationen sind assoziativ: (r 1 r 2 ) r 3 = r 1 (r 2 r 3 ) das gilt auch für (und ) kann mit Vereinigung vertauscht werden π x (r 1 r 2) = π x (r 2 ) π x (r 1 ) warum nicht auch mit? und Kreuzprodukt können zum Verbund zusammengefasst werden, wenn sbedingung eine -Bedingung ist Beispiel Equi- RA = SB (R S) = R RA = SB S Umformungsbedingungen aus der Logik gelten Operatoren ohne Auswirkungen aufs Ergebnise entfernen (Operationen auf leerer Menge, Konjunktionen von Selektrionsbedingungen mit Überschneidungen etc) IWM: Optimierung und Relationale Algebra 33 IWM: Optimierung und Relationale Algebra 34 IPD, Forschungsbereich Systeme der Informationsverwaltung IWM: Optimierung und Relationale Algebra 36 Anfragen (in Anfragesprache) werden i Allg abgebildet auf Folge von Algebra-Operatoren Anforderungen an diese Algebra: Optimierbarkeit: Bestehend aus wenigen Operationen, für die es Optimierungsregeln gibt Effizienz: Jede Operation ist effizient ausführbar Im Relationenmodell hat jede Operation eine Komplexität O(n 2 ) Mengenorientiertheit: Jede Operation soll auf Mengen von Daten gleichzeitig arbeiten, nicht navigierend nur auf einzelnen Elementen (one-tuple-at-a-time) 6

7 IWM: Optimierung und Relationale Algebra 37 Minimale Relationenalgebra: Ω = π, σ,,β, und Relationale Vollständigkeit: Jede andere Menge von Operationen, genauso mächtig wie Ω Strenge relationale Vollständigkeit: Zu jedem Ausdruck mit Operatoren aus Ω gibt es einen Ausdruck auch mit der anderen Menge von Operationen, also ohne Sprachkonstrukte wie zb ;, while Ω ist unabhängig: Kein Operator kann weggelassen werden, ohne Vollständigkeit zu verlieren Andere unabhängige Menge: durch ersetzen Warum wichtig? Redundanzfreiheit für formale Überlegungen vorteilhaft Minimalität bequemer, wenn es darum geht, Vollständigkeit nachzuweisen IWM: Optimierung und Relationale Algebra 38 Verbund kann über karthesisches Produkt hergeleitet werden: R:={a 1,, a i, r 1,, r n } S:={a 1,, a i, s 1,, s m } R S = π[r 1,, r n, a 1,,a i, s 1,, s m ] ([Ra 1 =Sa 1 Ra i =Sa i ](R S)) Was war Gegenstand dieses Kapitels? Grundlage: Relationale Algebra, Optimierungs-/Transformationsregeln für Algebraausdrücke Anfrageoptimierung, erhebliche Unterschiede zwischen äquivalenten Ausdrücken, Zusammenhang zu physischer Datenunabhängigkeit IWM: Optimierung und Relationale Algebra 39 IWM: Optimierung und Relationale Algebra 40 7

Kapitel 3: Relationale Algebra

Kapitel 3: Relationale Algebra Kapitel 3: Relationale Algebra Algebra Motivation (1) Wir wollen aus Relationen für uns interessante Informationen extrahieren, Tabellen modifizieren und neue Tabellen aus alten generieren Datenbankeinsatz:

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Agenda: Grundlagen von Datenbanken SS 2010 3. Relationale Algebra Prof. Dr. Stefan Böttcher Universität Paderborn mit Material von Prof. Dr. Gregor Engels Grundlagen von Datenbanken - SS 2010 - Prof. Dr.

Mehr

9. Einführung in Datenbanken

9. Einführung in Datenbanken 9. Einführung in Datenbanken 9.1 Motivation und einführendes Beispiel 9.2 Modellierungskonzepte der realen Welt 9.3 Anfragesprachen (Query Languages) 9.1 Motivation und einführendes Beispiel Datenbanken

Mehr

Architektur eines DBMS Logische Optimierung

Architektur eines DBMS Logische Optimierung Vorlesung Datenbanksysteme vom 16.11.2015 Anfragebearbeitung 1 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Architektur eines DBMS SW-Komponenten der Anfragebearbeitung

Mehr

Grundlagen: Datenbanken WS 15/16

Grundlagen: Datenbanken WS 15/16 Grundlagen: Datenbanken WS 15/16 2. Zentralübung / Wiederholung / Fragestunde Harald Lang gdb@in.tum.de Diese Folien finden Sie online. Die Mitschrift erhalten Sie im Anschluss. Termine Klausur 24.02.2016,

Mehr

Anfrageoptimierung Logische Optimierung

Anfrageoptimierung Logische Optimierung Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Logische Optimierung Dr. Thomas Gottron Wintersemester 2012/13 Ablauf der Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer

Mehr

Informatik II Datenorganisation Datenbanken

Informatik II Datenorganisation Datenbanken Informatik II Datenorganisation Datenbanken Studiengang Wirtschaftsingenieurwesen (2. Semester) Prof. Dr. Sabine Kühn Tel. (0351) 462 2490 Fachbereich Informatik/Mathematik skuehn@informatik.htw-dresden.de

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

Datenbanksysteme I Relationale Algebra. Felix Naumann 11.5.2011

Datenbanksysteme I Relationale Algebra. Felix Naumann 11.5.2011 Datenbanksysteme I Relationale Algebra Felix Naumann 11.5.2011 Überblick 2 Einführung Basisoperatoren Operatoren auf Multimengen Erweiterte Operatoren Einführung 3 Bisher Relationenschemata mit Basisrelationen,

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Query Languages (QL) Relationale Abfragesprachen/Relational

Query Languages (QL) Relationale Abfragesprachen/Relational Relationale Algebra Relationale Abfragesprachen/Relational Query Languages (QL) Abfragesprachen: Daten aus einer Datenbank zu manipulieren und abzufragen (retrieve information) Das relationalle Modell

Mehr

Kapitel DB:V. V. Grundlagen relationaler Anfragesprachen

Kapitel DB:V. V. Grundlagen relationaler Anfragesprachen Kapitel DB:V V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-1 Relational Algebra & Calculus

Mehr

Teil III. Relationale Datenbanken Daten als Tabellen

Teil III. Relationale Datenbanken Daten als Tabellen Teil III Relationale Datenbanken Daten als Tabellen Relationale Datenbanken Daten als Tabellen 1 Relationen für tabellarische Daten 2 SQL-Datendefinition 3 Grundoperationen: Die Relationenalgebra 4 SQL

Mehr

Anfragebearbeitung. Kapitel 7. Anfragebearbeitung 285 / 520

Anfragebearbeitung. Kapitel 7. Anfragebearbeitung 285 / 520 Kapitel 7 Anfragebearbeitung 285 / 520 Übersicht Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis 286 / 520 Übersetzung Übersetzung SQL ist deklarativ, irgendwann muß Anfrage aber für Laufzeitsystem

Mehr

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle)

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) Kapitel 6 Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) 1 Datenmanipulationssprache (DML) SQL Einfügen: Insert-Statement Ändern: Update-Statement Löschen:

Mehr

3. Grundlagen relationaler Datenbanksysteme

3. Grundlagen relationaler Datenbanksysteme 3. Grundlagen relationaler Datenbanksysteme Hier nur kurze Rekapitulation, bei Bedarf nachlesen 3.1 Basiskonzepte des Relationenmodells 1 Darstellung der Miniwelt in Tabellenform (DB = Menge von Relationen

Mehr

Datenbankentwurf. 4.2 Logischer Entwurf. Kapitel 4. ER-Modell. Umsetzung. Entwurfsdokumentation. relationales Modell. Verbesserung

Datenbankentwurf. 4.2 Logischer Entwurf. Kapitel 4. ER-Modell. Umsetzung. Entwurfsdokumentation. relationales Modell. Verbesserung 4.2 Logischer Entwurf Datenbankentwurf 4.2 Logischer Entwurf 2002 Prof. Dr. Rainer Manthey Informationssysteme Logischer Entwurf: Einordnung Entwurfsdokumentation logische Strukturen "auf dem Papier" konzeptueller

Mehr

Raumbezogene Datenbanken (Spatial Databases)

Raumbezogene Datenbanken (Spatial Databases) Raumbezogene Datenbanken (Spatial Databases) Ein Vortrag von Dominik Trinter Alexander Christian 1 Inhalte Was ist ein raumbezogenes DBMS? Modellierung Abfragen Werkzeuge zur Implementierung Systemarchitektur

Mehr

Relationale Kalküle. Grundlagen der Datenbanken. Dr. Jérôme Kunegis Wintersemester 2013/14

Relationale Kalküle. Grundlagen der Datenbanken. Dr. Jérôme Kunegis Wintersemester 2013/14 Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 2013/14 Lernziele Grundideen des Domänen-Relationenkalküls (DRK) und des Tupel-Relationenkalküls

Mehr

Datenbankeinsatz. Kapitel 1: Einleitung. Vorlesung. Klemens Böhm. Inhalt dieses Kapitels. Universität Karlsruhe (TH)

Datenbankeinsatz. Kapitel 1: Einleitung. Vorlesung. Klemens Böhm. Inhalt dieses Kapitels. Universität Karlsruhe (TH) Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: 1 Datenbank-Einsatz: 2 Inhalt dieses Kapitels Kapitel 1: Motivation wann ist Verwendung von Datenbank-Technologie

Mehr

Das Relationale Modell

Das Relationale Modell Kapitel 3 Das Relationale Modell 1 / 50 Generelle Anmerkungen Wurde in den Siebzigern von E.F.Codd entwickelt (er bekam den Turing Award dafür) Im Moment das am weitesten verbreitete Datenmodell Hat die

Mehr

Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) Klemens Böhm klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: Einleitung 1 Klemens Böhm

Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) Klemens Böhm klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: Einleitung 1 Klemens Böhm Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: 1 Datenbank-Einsatz: 2 Kapitel 1: Datenbank-Einsatz: 3 Inhalt dieses Kapitels Motivation wann

Mehr

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung Logische Optimierung Höhere, nichtprozedurale Abfragesprachen (SQL, QBE,...) verlangen keine Kenntnisse des Benutzers über die Implementierung, müssen aber in prozedurale Form (z. B. Relationenalgebra)

Mehr

Das relationale Modell

Das relationale Modell Das relationale Modell Das relationale Modell VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Das relationale Modell 1. Überblick Überblick

Mehr

Teil II Relationale Datenbanken Daten als Tabellen

Teil II Relationale Datenbanken Daten als Tabellen Teil II Relationale Datenbanken Daten als Tabellen Relationale Datenbanken Daten als Tabellen 1 Relationen für tabellarische Daten 2 SQL-Datendefinition 3 Grundoperationen: Die Relationenalgebra 4 SQL

Mehr

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005 Webbasierte Informationssysteme SS 2005 8. SQL-Vertiefung Prof. Dr. Stefan Böttcher Universität Paderborn Datenbanksprache SQL Structured Query Language (SQL) - am IBM San Jose Research Laboratory entwickelt

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Einführung in Datenbanken Vorlesungsmanuskript Dr. Josef Templ Universität Salzburg SS 2006 http://www.cs.uni-salzburg.at/~josef.templ/ (c) Copyright Josef Templ, 2003-2006; Alle Rechte vorbehalten. Teil

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL als Anfrage- und Datenmanipulationssprache (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL als DQL und DML M. Lange, S. Weise Folie #8-1 Themen

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme Relationale Datenbanken Vorlesung Datenbankmanagementsysteme Relationale Datenbanken M. Lange, S. Weise Folie #4-1 Relationale Datenbanken Wiederholung - Datenbankmodelle,

Mehr

Datenbanken Wintersemester 11/12. Prof. Dr. W. May

Datenbanken Wintersemester 11/12. Prof. Dr. W. May AG Datenbanken und Informationssysteme Institut für Informatik Universität Göttingen Datenbanken Wintersemester 11/12 Prof. Dr. W. May 3. Übungsblatt: SQL Besprechung voraussichtlich am 20/21.12.2011 Aufgabe

Mehr

Relationale Datenbanken

Relationale Datenbanken Datenbanksysteme Relationale Datenbanken Relationales Datenmodell Deklarationen Anfragen! Entwurf, z.b. mit Entity Relationship Model! Deklaration! Speichern der Daten! Hauptspeicher, Cache, virtueller

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

SQL Teil 2. SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Komplexer SELECT-Ausdruck

SQL Teil 2. SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Komplexer SELECT-Ausdruck SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Fahren fort mit SQL Befehlen. Bilden Relationenalgebra auf SQL ab. So Umsetzung von Anfragen an die DB (bzw. Tabellen) möglich. SELECT

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Wiederholung: Relationale Algebra

Wiederholung: Relationale Algebra Vorlesung Datenbanksysteme vom 1.11.016 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D1, D,,

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Grundlagen von Datenbanken SS 2010 5. Bereichskalkül (=Domänenkalkül) Agenda: Prof. Dr. Stefan Böttcher Universität Paderborn mit Material von Prof. Dr. Gregor Engels Grundlagen von Datenbanken - SS 2010

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD Vorwort zur vierten Auflage 11 Vorwort zur dritten Auflage 13 Vorwort zur zweiten Auflage 15 Vorwort zur ersten Auflage 17 Hinweise zur CD 19 1 Datenbanken und Datenbanksysteme 21 1.1 Zentralisierung der

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Datenbanksysteme I Übung: Relationale Algebra. Jana Bauckmann

Datenbanksysteme I Übung: Relationale Algebra. Jana Bauckmann Datenbanksysteme I Übung: Relationale Algebra Jana Bauckmann Anfragen der relationalen Algebra 2 model number processor speed [MHz] size of hard disk [GB] speed and type of removeable disk (CD, DVD) screen

Mehr

Einführung in die Wirtschaftsinformatik Kapitel 4: Relationale Datenbanksprachen: SQL

Einführung in die Wirtschaftsinformatik Kapitel 4: Relationale Datenbanksprachen: SQL Einführung in die Wirtschaftsinformatik Kapitel 4: Relationale Datenbanksprachen: SQL Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence

Mehr

2.1 Überblick. 2 Das Relationale Datenmodell

2.1 Überblick. 2 Das Relationale Datenmodell c M. Scholl, 2005/06 Informationssysteme: 2. Das Relationale Datenmodell 2-1 2 Das Relationale Datenmodell 2.1 Überblick Ende der 60er Jahre: Grundlagenforschung am IBM-Forschungslabor San Jose, CA., mit

Mehr

Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement

Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement Anfrageformulierung: Allgemeines Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement nkmanagement- systeme ist die Unterstützung einer (oder mehrerer) Anfragesprachen. Eine Anfrage ist

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Kommunikation und Datenhaltung

Kommunikation und Datenhaltung Kommunikation und Datenhaltung Relationale Datenbanksprachen (SQL Structured Query Language) Überblick über den Datenhaltungsteil Motivation und Grundlagen Architektur von Datenbanksystemen Datenbankanfragen

Mehr

7. Grundlagen von Anfragen. Einführung. Kriterien für Anfragesprachen. Einführung II

7. Grundlagen von Anfragen. Einführung. Kriterien für Anfragesprachen. Einführung II 7. Grundlagen von Anfragen Einführung Kriterien für Anfragesprachen Anfragealgebren Anfrage-Kalküle Änderungsoperationen bisher Relationenschemata mit Basisrelationen, die in der Datenbank gespeichert

Mehr

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken

Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Rückblick Structured Query Language (SQL) als standardisierte Anfragesprache für relationale Datenbanken Data Definition Language zur Schemadefinition (z.b. CREATE TABLE zum Anlegen von Tabellen) Data

Mehr

Grober Überblick zu Datendefinitionsanweisungen in SQL

Grober Überblick zu Datendefinitionsanweisungen in SQL 5.2 Datendefinition mit SQL (DDL) Grober Überblick zu Datendefinitionsanweisungen in SQL Konzeptuelle Ebene - CREATE TABLE, ALTER TABLE, DROP TABLE - CREATE DOMAIN, ALTER DOMAIN, DROP DOMAIN -... Interne

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Datenbanksysteme Kapitel 5: SQL Data Manipulation Language

Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni

Mehr

SQL als Zugriffssprache

SQL als Zugriffssprache SQL als Zugriffssprache Der Select Befehl: Aufbau Select- und From-Klausel Where-Klausel Group-By- und Having-Klausel Union Join-Verbindung Order-By-Klausel Der Update-Befehl Der Delete-Befehl Der Insert-Befehl

Mehr

Software-Engineering Einführung

Software-Engineering Einführung Software-Engineering Einführung 7. Übung (04.12.2014) Dr. Gergely Varró, gergely.varro@es.tu-darmstadt.de Erhan Leblebici, erhan.leblebici@es.tu-darmstadt.de Tel.+49 6151 16 4388 ES Real-Time Systems Lab

Mehr

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN Joins 1 IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN Literatur Priti Mishara, Maragaret H. Eich, Join Processing in Relational Databases, ACM Computing Surveys, Vol. 24, No. 1, March 1992 Goetz Graefe,

Mehr

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis.

SQL. Ziele. Grundlagen von SQL. Beziehung zur relationalen Algebra SELECT, FROM, WHERE. Joins ORDER BY. Aggregatfunktionen. dbis. SQL Lehr- und Forschungseinheit Datenbanken und Informationssysteme Ziele Grundlagen von SQL Beziehung zur relationalen Algebra SELECT, FROM, WHERE Joins ORDER BY Aggregatfunktionen Lehr- und Forschungseinheit

Mehr

Datenbanksysteme SS 2007

Datenbanksysteme SS 2007 Datenbanksysteme SS 2007 Frank Köster (Oliver Vornberger) Institut für Informatik Universität Osnabrück Kapitel 6b: Das relationale Modell Das Relationale Modell (vgl. Lerneinheit 6a) Wertebereiche (Domänen):

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Ein Beispiel: Tabelle DICHTER

Ein Beispiel: Tabelle DICHTER Datenbanken Eine Datenbank ist eine Sammlung von Daten, die aus der Sicht des Benutzers zusammen gehören. Ein Datenbankverwaltungssystem (DBMS) ist ein informatisches System zur Verwaltung einer Datenbank.

Mehr

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15

Inhaltsverzeichnis. Vorwort Kapitel 1 Einleitung... 15 Vorwort..................................................... 13 Kapitel 1 Einleitung.......................................... 15 Kapitel 2 SQL der Standard relationaler Datenbanken... 19 2.1 Die Geschichte................................

Mehr

Kapitel DB:V (Fortsetzung)

Kapitel DB:V (Fortsetzung) Kapitel DB:V (Fortsetzung) V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-67 Relational Algebra

Mehr

cs241: Datenbanken mit Übungen HS 2011

cs241: Datenbanken mit Übungen HS 2011 UNIVERSITÄT BASEL Prof. Dr. Heiko Schuldt MSc. Nenad Stojnić BSc. Ivan Giangreco BSc. Florian Lindörfer cs241: Datenbanken mit Übungen HS 2011 Übung 5 Abgabe bis: 4.11.2011 Hinweise: Modalitäten der Abgabe:

Mehr

Mengenlehre. Jörg Witte

Mengenlehre. Jörg Witte Mengenlehre Jörg Witte 25.10.2007 1 Grbegriffe Die Menegenlehre ist heute für die Mathematik grlegend. Sie spielt aber auch in der Informatik eine entscheidende Rolle. Insbesondere fußt die Theorie der

Mehr

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann

Datenbanksysteme I Anfragebearbeitung und -optimierung. 27.6.2011 Felix Naumann Datenbanksysteme I Anfragebearbeitung und -optimierung 27.6.2011 Felix Naumann Anfragebearbeitung Grundproblem 2 Anfragen sind deklarativ. SQL, Relationale Algebra Anfragen müssen in ausführbare (prozedurale)

Mehr

Ohne Datenbanken: Datenredundanz II. Software-Schichten. Ohne Datenbanken: Datenredundanz. 1. Grundlegende Konzepte. Individual-Software

Ohne Datenbanken: Datenredundanz II. Software-Schichten. Ohne Datenbanken: Datenredundanz. 1. Grundlegende Konzepte. Individual-Software Software-Schichten Individual-Software Anwendungs-Software Basis-Software System-Software Betriebssystem Ohne Datenbanken: Datenredundanz II Andere Software-Systeme (auch Programmiersprachen, Tabellenkalkulation,

Mehr

Tabellenausdrücke. Bedingungen

Tabellenausdrücke. Bedingungen Anfragetypen in SQL zwei Typen von SQL-Ausdrücken: Resultat: abgeleitete Tabelle ( derived table ) Tabellenausdrücke DB Bedingungen Problem (?): Nur Tabellenausdrücke dürfen direkt vom Benutzer als Anfrage

Mehr

Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz.

Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz. 4.1 4.2 4.1 4.2 NICOLE SCHWEIKARDT, ISOLDE ADLER GOETHE-UNIVERSITÄT FRANKFURT VORLESUNG LOGIK UND DATENBANKEN KAPITEL 4, SEITE 1 Grenzen der Ausdrucksstärke konjunktiver Anfragen Wir haben gesehen: konjunktive

Mehr

Suche in Multimedia-Datenbanken

Suche in Multimedia-Datenbanken Suche in Multimedia-Datenbanken Ingo Schmitt 20. April 2005 Gliederung 1. Motivation 2. Ähnlichkeitssuche in einem MMDBS 3. Semantische Lücke 4. Ähnlichkeitsanfragesprachen 5. Effiziente Ergebnisberechnung

Mehr

Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz.

Relationale Algebra. Relationale Algebra. Grenzen der Ausdrucksstärke konjunktiver Anfragen. Vereinigung und Differenz. 3.1 3.2 3.1 3.2 NICOLE SCHWEIKARDT GOETHE-UNIVERSITÄT FRANKFURT VORLESUNG LOGIK UND DATENBANKEN KAPITEL 3, SEITE 1 NICOLE SCHWEIKARDT GOETHE-UNIVERSITÄT FRANKFURT VORLESUNG LOGIK UND DATENBANKEN KAPITEL

Mehr

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13

Auf einen Blick. Abfrage und Bearbeitung. Erstellen einer Datenbank. Komplexe Abfragen. Vorwort 13 Auf einen Blick Vorwort 13 Teil 1 Vorbereitung Kapitel 1 Einleitung 17 Kapitel 2 SQL - der Standard relationaler Datenbanken 21 Kapitel 3 Die Beispieldatenbanken 39 Teil 2 Abfrage und Bearbeitung Kapitel

Mehr

FachPraktikum 1590 Erweiterbare Datenbanksysteme. Aufgaben Phase 1

FachPraktikum 1590 Erweiterbare Datenbanksysteme. Aufgaben Phase 1 FachPraktikum 1590 Erweiterbare Datenbanksysteme Aufgaben Phase 1 Wintersemester 2004/2005 Ralf Hartmut Güting, Dirk Ansorge, Thomas Behr, Markus Spiekermann Praktische Informatik IV, Fernuniversität Hagen

Mehr

Datenbanken Unit 4: Das Relationale Modell & Datenintegrität

Datenbanken Unit 4: Das Relationale Modell & Datenintegrität Datenbanken Unit 4: Das Relationale Modell & Datenintegrität 15. III. 2016 Outline 1 Organisatorisches 2 SQL 3 Relationale Algebra Notation 4 Datenintegrität Organisatorisches Erster Zwischentest: nach

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2008 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2009 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 6 Vertiefung Relationale Algebra Anzeigen von Daten aus mehreren Tabellen Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 22

Mehr

Relationale Datenbanken: Relationale Algebra

Relationale Datenbanken: Relationale Algebra Relationale Datenbanken: Relationale Algebra Natürlicher Verbund (Natural Join, ): Zwei Relationen werden tupelweise bezüglich Übereinstimmung der Daten in einem gleichbenannten Attribut vereinigt. Das

Mehr

Crashkurs: Relationale Datenbanksysteme

Crashkurs: Relationale Datenbanksysteme Crashkurs: Relationale Datenbanksysteme 3.0.2004 Felix Naumann Überblick Vormittag Motivation Warum sind RDBMS und XML Systeme für die Informationsintegration wichtig? RDBMS Relational Database Management

Mehr

Datenbankmodelle 2. Das relationale Modell

Datenbankmodelle 2. Das relationale Modell Datenbankmodelle 2 Das relationale Modell Datenbankmodelle ER-Modell Netzwerkmodell hierarchisches Modell relationales Modell objektorientierte Modelle Relationales Modell - 2 relationales Modell basiert

Mehr

Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren?

Fragen zum Nachdenken: Wie könnte man das Fehlen eines Attribut-Wertes interpretieren? Attribut-Werte-Paare Eine Eigenschaft kann beschrieben werden durch ein Paar [a,w]. Dabei bezeichnet a das Attribut und w den konkreten Wert aus dem Wertebereich W a des Attributs. Die Eigenschaften eines

Mehr

Datenbankpraxis mit Microsoft Access. Datenbankpraxis mit Microsoft Access

Datenbankpraxis mit Microsoft Access. Datenbankpraxis mit Microsoft Access Datenbankpraxis mit Microsoft Access Grundlegende Konzepte und ihre Umsetzung in Microsoft Access Vorlesung 3. Januar 006 Ingo Scholtes Was wir bereits wissen (/3) Datenbankdesign Flache Datenbanken sind

Mehr

Datenbanken. Lernziele. Inhalt. Organisatorisches. Datenbank und Datenbanksystem. 1. Grundlagen Datenbanken. Wie entwerfe ich eine Datenbank?

Datenbanken. Lernziele. Inhalt. Organisatorisches. Datenbank und Datenbanksystem. 1. Grundlagen Datenbanken. Wie entwerfe ich eine Datenbank? SELECT s., s., sum(k.dauer) FROM s, a, Kurs k WHERE s.=a. AND a.=k. GROUP BY s. Lernziele Datenbanken ditact 2003 Salzburg Wie entwerfe ich eine Datenbank? Wie kann ich Daten einfügen, bearbeiten oder

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

Datenbanksysteme. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2015/16. smichel@cs.uni-kl.de

Datenbanksysteme. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2015/16. smichel@cs.uni-kl.de Datenbanksysteme Wintersemester 2015/16 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Verschachtelte (Engl. Nested) Anfragen Wieso und wo gibt es verschachtelte Anfragen? ˆ Unteranfragen

Mehr

Einleitung create table Integritätsbed. alter/ drop table Index ODL. Einleitung. create table. alter/ drop table Index ODL. Einleitung.

Einleitung create table Integritätsbed. alter/ drop table Index ODL. Einleitung. create table. alter/ drop table Index ODL. Einleitung. Thema dieser Vorlesung (im wesentlichen): Relationale Datenbanken zugrundeliegende Struktur sind Relationen. Es gibt auch andere Arten von Datenbanken, z. B. objektorientierte Datenbanken. Objekte anstelle

Mehr

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung

Mehr

Relationales Datenmodell

Relationales Datenmodell Relationales Datenmodell Ein Datenmodell hat zwei Bestandteile: Eine mathematische Notation zur Darstellung von Daten und Beziehungen. Operationen auf den Daten, um Abfragen und andere Manipulationen zu

Mehr

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Bei der Klausur sind keine Hilfsmittel (Skripten,

Mehr

Kapitel 2: Einstieg in SQL

Kapitel 2: Einstieg in SQL Kapitel 2: Einstieg in SQL 2. Einstieg in SQL 2. SQL (Structured Query Language) ist die in der Praxis am weitesten verbreitete Datenbanksprache für relationale Datenbanken. Die Historie von SQL geht zurück

Mehr

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Moderne Datenbanksysteme sind nach der 3-Ebenen-Architektur gebaut: Anwendung 1 Web-Anwendung Anwendung 2 Java-Programm... Anwendung n Applikation

Mehr

Speicherung von XML in (objekt-)relationalen Datenbanken. Burkhard Schäfer

Speicherung von XML in (objekt-)relationalen Datenbanken. Burkhard Schäfer Speicherung von XML in (objekt-)relationalen Datenbanken Burkhard Schäfer Übersicht Motivation Anforderungen Ansätze modellorientiert strukturorientiert Zusammenfassung Motivation Warum XML in Datenbanken

Mehr

5. Das relationale Daten(bank)modell

5. Das relationale Daten(bank)modell 5. Das relationale Daten(bank)modell 5.1 Vorbemerkungen, Einordnung, Historie 5.2 Begriffe und Eigenschaften des relationalen Modells; Abbildung E/R relational 5.3 Sprachen für das relationale Modell:

Mehr

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik

Das SQL-Schlüsselwort ALL entspricht dem Allquantor der Prädikatenlogik Beispielaufgaben Informationssysteme erstellt von Fabian Rump zur IS Vorlesung 2009/10 1 Multiple Choice Aussage richtig falsch Eine SQL-Abfrage beginnt immer mit dem Schlüsselwort SELECT Eine Datenbank

Mehr