Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join"

Transkript

1 Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans Maßnahmen zur log Optimierung: - Ändern der Operator-Reihenfolge - Zusammenfassen von Operatoren - Unnötigen Operatoren entfernen IPD, Forschungsbereich Systeme der Informationsverwaltung IWM: Optimierung und Relationale Algebra 2 deklarative Anfragesprachen (zb SQL): Datenunabhängigkeit vom DBMS optimierbar (keine Aussagen, wie Anfrage bearbeitet werden soll) Wir betrachten in diesem Kapitel relationale Algebra: einfacher, erlaubt Aussagen zur Ausführungsreihenfolge Basis für die Anfrageoptimierung Mathematik Algebra definiert durch Wertebereich und auf diesem definierte Operatoren Für Datenbankanfragen Inhalte der Datenbank sind Werte, und Operatoren definieren Funktionen zum Berechnen von Anfrageergebnissen IWM: Optimierung und Relationale Algebra 3 IWM: Optimierung und Relationale Algebra 4 Als Term π[name]([titel='dr No']( )) Als Operatorbaum (oft anschaulicher) π[name] INVNR NAME 1201 Schulz [Titel='Dr No'] INVNR TITEL ISBN 0007 Dr No Objektbanken Datenbanken Datenbanken PASCAL IWM: Optimierung und Relationale Algebra 5 IWM: Optimierung und Relationale Algebra 6 1

2 Beispiel 1: auf ein Attribut π[name]() ergibt als Ergebnisrelation eine Menge: NAME Meyer Schulz Müller zum Vergleich: select Name from ergibt als Ergebnisrelation eine Multimenge: NAME Meyer Schulz Müller Meyer IPD, Forschungsbereich Systeme der Informationsverwaltung IWM: Optimierung und Relationale Algebra 8 Beispiel 2: auf Attributmenge π[invnr, ISBN]() ergibt INVNR ISBN Optimierungsregel: Bei vielen en hintereinander reicht die zuletzt ausgeführte auch allein π[invnr](π[invnr, ISBN]()) ergibt optimiert π[invnr]() Grafische Darstellung oft hilfreich Wieso sind derartige Optimierungen wichtig? Für Anfrageausführung Alternativen sind zwar äquivalent, aber unterschiedlich teuer in der Ausführung Optimierung nutzt Äquivalenz aus, um günstige Ausführung zu finden IWM: Optimierung und Relationale Algebra 9 IWM: Optimierung und Relationale Algebra 10 create view bk as select Titel, Name from left outer join using (INVNR) select Titel from bk Wie kann uns hier die Optimierungsregel zur helfen? Anmerkung: Ersetzung von π[invnr](π[invnr, ISBN]()) durch π[invnr]() ist immer vorteilhaft Bei anderen Transformationen hängt Vorteilhaftigkeit vom Datenbankzustand ab, z B Vertauschung von en IWM: Optimierung und Relationale Algebra 11 IWM: Optimierung und Relationale Algebra 12 2

3 IWM: Optimierung und Relationale Algebra 13 Beispiel σ[name < 'N']() ergibt INVNR NAME sbedingungen: F Konstanten- Attribut θ Konstante boolesches Prädikat θ ist = oder, bei linear geordneten Wertebereichen auch <, <, > oder > F Attribut- Attribut1 θ Attribut2 F logische Verknüpfung mehrerer Konstantenoder Attribut-en mit, oder (Wird gleich diskutiert) IWM: Optimierung und Relationale Algebra 14 Einfache Optimierungsregeln: en lassen sich in der Reihenfolge beliebig vertauschen, σ Invnr=4711 (σ Name 'N' ( )) = σ Name 'N' (σ Invnr=4711 ( )) Manchmal lassen sich und vertauschen; Ist πinvnr (σ Name 'N' ()) = σ Name 'N' (π Invnr ())? Voraussetzung für Vertauschbarkeit: sattribute kommen in der sliste vor π Name (σ Name 'N' ()) Überprüfung der Vertauschbarkeit setzt Analyse der sbedingung voraus IWM: Optimierung und Relationale Algebra 15 IWM: Optimierung und Relationale Algebra 16 sbedingungen: F Konstanten- Attribut θ Konstante F Attribut- Attribut1 θ Attribut2 F logische Verknüpfung mehrerer Konstantenoder Attribut-en mit, oder Jedoch: Analyse aufwendig zt redundant Syntax des (natürlichen) Verbundes (englisch: natural join) Relation1 Relation2 Verbund verknüpft Tabellen über gleichbenannten Spalten bei gleichen Attributwerten Natural : Verbund nur über gleich benannte Attribute -Attribut taucht in der Ergebnisrelation nur als eine Spalte auf Negation problembehaftet Sicherheit der Anfrage?!? IWM: Optimierung und Relationale Algebra 17 IWM: Optimierung und Relationale Algebra 18 3

4 IWM: Optimierung und Relationale Algebra 19 INVNR NAME 1201 Schulz INVNR TITEL ISBN 0007 Dr No Objektbanken Datenbanken Datenbanken PASCAL ergibt NAME INVNR TITEL ISBN Müller 0007 Dr No Schulz 1201 Objektbanken Meyer 4711 Datenbanken Meyer 4712 Datenbanken Nicht ausgeliehenes Pascal- verschwindet: Tupel, die keinen Partner finden (dangling tuples), werden eliminiert In SQL: outer join der dangling tuples übernimmt IWM: Optimierung und Relationale Algebra 20 π[autor]() π[invnr]() keine gemeinsamen Attribute Verbund entartet zu kartesischem Produkt π[autor]() π[invnr]() INVNR IWM: Optimierung und Relationale Algebra 21 Verbund ist kommutativ: r1 r 2 = r 2 r 1 Verbund ist assoziativ: (r1 r 2 ) r 3 = r 1 (r 2 r 3 ) r i p Daher erlaubt: i=1 Beispiel dafür, daß -Reihenfolge wichtig ist: B B C B D b a c 1 a d 1 a c a d Anmerkung: wenn r 1 und r 3 keine gemeinsamen Attribute haben, ist das Zwischenergebnis das Kreuzprodukt teurer geht nicht! IWM: Optimierung und Relationale Algebra 22 und Umbenennung (1) gute -Reihenfolge ist wichtig! abhängig von den Daten in den Relationen schwierig zu erkennen Mengenoperationen der relationalen Algebra setzen gleiches Schema voraus Problem: physische Datenunabhängigkeit Keine Festlegung der -Reihenfolge in SQL möglich guter Optimierer im DBMS ist wichtig! IWM: Optimierung und Relationale Algebra 23 IWM: Optimierung und Relationale Algebra 24 4

5 IWM: Optimierung und Relationale Algebra 25 Umbenennung und Umbenennung (2) ß[neu alt](relation) (bzw ß neu alt (relation)) 2 ändert Attributnamen von alt in neu ß[Autor1 Autor2](2) Durch Umbenennung nun Vereinigung, Differenz und Durchschnitt möglich relation1 relation2 1 β[autor1 Autor2](2) IWM: Optimierung und Relationale Algebra 26 relation1 relation2 1 β[autor1 Autor2](2) relation1 relation2 1 ß[Autor1 Autor2] (2) IWM: Optimierung und Relationale Algebra 27 IWM: Optimierung und Relationale Algebra 28 Umbenennung ermöglicht Verbunde, wo bisher kartesische Produkte ausgeführt wurden (unterschiedliche Attribute werden gleich benannt), kartesische Produkte, wo bisher Verbunde ausgeführt wurden (gleiche Attribute werden unterschiedlich genannt), Mengenoperationen IWM: Optimierung und Relationale Algebra 29 Attribut umbenannt Illustration des ersten Bullets der vorangegangenen Folie: INVNR NAME 1201 Schulz I-NR TITEL ISBN 0007 Dr No Objektbanken Datenbanken Datenbanken PASCAL IWM: Optimierung und Relationale Algebra 30 5

6 IWM: Optimierung und Relationale Algebra 31 Was ist der Natural dieser Relationen ohne Umbenennung? Wir wollen Paare bilden (, ), (, ),, (, ), Vorgehen: Umbenennung und Natural IWM: Optimierung und Relationale Algebra 32 Mengenoperationen sind kommutativ: r 1 r 2 = r 2 r 1 Mengenoperationen sind assoziativ: (r 1 r 2 ) r 3 = r 1 (r 2 r 3 ) das gilt auch für (und ) kann mit Vereinigung vertauscht werden π x (r 1 r 2) = π x (r 2 ) π x (r 1 ) warum nicht auch mit? und Kreuzprodukt können zum Verbund zusammengefasst werden, wenn sbedingung eine -Bedingung ist Beispiel Equi- RA = SB (R S) = R RA = SB S Umformungsbedingungen aus der Logik gelten Operatoren ohne Auswirkungen aufs Ergebnise entfernen (Operationen auf leerer Menge, Konjunktionen von Selektrionsbedingungen mit Überschneidungen etc) IWM: Optimierung und Relationale Algebra 33 IWM: Optimierung und Relationale Algebra 34 IPD, Forschungsbereich Systeme der Informationsverwaltung IWM: Optimierung und Relationale Algebra 36 Anfragen (in Anfragesprache) werden i Allg abgebildet auf Folge von Algebra-Operatoren Anforderungen an diese Algebra: Optimierbarkeit: Bestehend aus wenigen Operationen, für die es Optimierungsregeln gibt Effizienz: Jede Operation ist effizient ausführbar Im Relationenmodell hat jede Operation eine Komplexität O(n 2 ) Mengenorientiertheit: Jede Operation soll auf Mengen von Daten gleichzeitig arbeiten, nicht navigierend nur auf einzelnen Elementen (one-tuple-at-a-time) 6

7 IWM: Optimierung und Relationale Algebra 37 Minimale Relationenalgebra: Ω = π, σ,,β, und Relationale Vollständigkeit: Jede andere Menge von Operationen, genauso mächtig wie Ω Strenge relationale Vollständigkeit: Zu jedem Ausdruck mit Operatoren aus Ω gibt es einen Ausdruck auch mit der anderen Menge von Operationen, also ohne Sprachkonstrukte wie zb ;, while Ω ist unabhängig: Kein Operator kann weggelassen werden, ohne Vollständigkeit zu verlieren Andere unabhängige Menge: durch ersetzen Warum wichtig? Redundanzfreiheit für formale Überlegungen vorteilhaft Minimalität bequemer, wenn es darum geht, Vollständigkeit nachzuweisen IWM: Optimierung und Relationale Algebra 38 Verbund kann über karthesisches Produkt hergeleitet werden: R:={a 1,, a i, r 1,, r n } S:={a 1,, a i, s 1,, s m } R S = π[r 1,, r n, a 1,,a i, s 1,, s m ] ([Ra 1 =Sa 1 Ra i =Sa i ](R S)) Was war Gegenstand dieses Kapitels? Grundlage: Relationale Algebra, Optimierungs-/Transformationsregeln für Algebraausdrücke Anfrageoptimierung, erhebliche Unterschiede zwischen äquivalenten Ausdrücken, Zusammenhang zu physischer Datenunabhängigkeit IWM: Optimierung und Relationale Algebra 39 IWM: Optimierung und Relationale Algebra 40 7

Kapitel 3: Relationale Algebra

Kapitel 3: Relationale Algebra Kapitel 3: Relationale Algebra Algebra Motivation (1) Wir wollen aus Relationen für uns interessante Informationen extrahieren, Tabellen modifizieren und neue Tabellen aus alten generieren Datenbankeinsatz:

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Agenda: Grundlagen von Datenbanken SS 2010 3. Relationale Algebra Prof. Dr. Stefan Böttcher Universität Paderborn mit Material von Prof. Dr. Gregor Engels Grundlagen von Datenbanken - SS 2010 - Prof. Dr.

Mehr

Relationale Algebra. Thomas Heimrich. Rel. Algebra. Grundlagen. Beispielrelationen. rel. Algebra. Definition der rel. Algebra.

Relationale Algebra. Thomas Heimrich. Rel. Algebra. Grundlagen. Beispielrelationen. rel. Algebra. Definition der rel. Algebra. 1 / 17 Rel. Relationale Thomas Heimrich rel. Formale Sprachen Rel. relationale Die relationale ist prozedural orientiert. Sie beinhaltet implizit einen Abarbeitungsplan für die Anfrage. Die rel. ist wichtig

Mehr

9. Einführung in Datenbanken

9. Einführung in Datenbanken 9. Einführung in Datenbanken 9.1 Motivation und einführendes Beispiel 9.2 Modellierungskonzepte der realen Welt 9.3 Anfragesprachen (Query Languages) 9.1 Motivation und einführendes Beispiel Datenbanken

Mehr

Grundlagen: Datenbanken WS 15/16

Grundlagen: Datenbanken WS 15/16 Grundlagen: Datenbanken WS 15/16 2. Zentralübung / Wiederholung / Fragestunde Harald Lang gdb@in.tum.de Diese Folien finden Sie online. Die Mitschrift erhalten Sie im Anschluss. Termine Klausur 24.02.2016,

Mehr

Architektur eines DBMS Logische Optimierung

Architektur eines DBMS Logische Optimierung Vorlesung Datenbanksysteme vom 16.11.2015 Anfragebearbeitung 1 Architektur eines DBMS Logische Optimierung Physische Optimierung Kostenmodelle + Tuning Architektur eines DBMS SW-Komponenten der Anfragebearbeitung

Mehr

Relationen-Algebra. Prof. Dr. T. Kudraß 1

Relationen-Algebra. Prof. Dr. T. Kudraß 1 Relationen-Algebra Prof. Dr. T. Kudraß 1 Relationale Anfragesprachen Query Language (QL): Manipulation und Retrieval von Daten einer Datenbank Relationenmodell erlaubt einfache, mächtige Anfragesprachen

Mehr

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird.

Dieser Foliensatz darf frei verwendet werden unter der Bedingung, dass diese Titelfolie nicht entfernt wird. Thomas Studer Relationale Datenbanken: Von den theoretischen Grundlagen zu Anwendungen mit PostgreSQL Springer, 2016 ISBN 978-3-662-46570-7 Dieser Foliensatz darf frei verwendet werden unter der Bedingung,

Mehr

Rückblick: Relationales Modell

Rückblick: Relationales Modell Rückblick: Relationales Modell Relationales Modell als vorherrschendes Datenmodell Relationen (Tabellen) besitzen Attribute (Spalten) mit Wertebereichen und beinhalten Tupel (Zeilen) Umsetzung eines konzeptuellen

Mehr

Anfrageoptimierung Logische Optimierung

Anfrageoptimierung Logische Optimierung Institute for Web Science & Technologies WeST Grundlagen der Datenbanken Logische Optimierung Dr. Thomas Gottron Wintersemester 2012/13 Ablauf der Deklarative Anfrage Scanner Parser Sichtenauflösung Algebraischer

Mehr

Query Languages (QL) Relationale Abfragesprachen/Relational

Query Languages (QL) Relationale Abfragesprachen/Relational Relationale Algebra Relationale Abfragesprachen/Relational Query Languages (QL) Abfragesprachen: Daten aus einer Datenbank zu manipulieren und abzufragen (retrieve information) Das relationalle Modell

Mehr

Query Languages (QL) Relationale Abfragesprachen/Relational

Query Languages (QL) Relationale Abfragesprachen/Relational Relationale Algebra Relationale Abfragesprachen/Relational Query Languages (QL) Abfragesprachen: Daten aus einer Datenbank zu manipulieren und abzufragen (retrieve information) Das relationalle Modell

Mehr

Informatik II Datenorganisation Datenbanken

Informatik II Datenorganisation Datenbanken Informatik II Datenorganisation Datenbanken Studiengang Wirtschaftsingenieurwesen (2. Semester) Prof. Dr. Sabine Kühn Tel. (0351) 462 2490 Fachbereich Informatik/Mathematik skuehn@informatik.htw-dresden.de

Mehr

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL

Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell. Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) Bisher: Realwelt -> ERM -> Relationen-Modell -> normalisiertes Relationen-Modell Jetzt: -> Formulierung in DDL Daten-Definitionssprache (DDL) DDL ist Teil von SQL (Structured

Mehr

5.3 Datenänderung/-zugriff mit SQL (DML)

5.3 Datenänderung/-zugriff mit SQL (DML) 5.3 Datenänderung/-zugriff mit SQL (DML) Hinweis: - DML-Anweisungen sind mengenorientiert - Mit einer Anweisungen kann mehr als ein Tupel eingefügt, geändert, gelöscht oder gelesen werden Benutzungs- und

Mehr

Datenbankentwurf. 4.2 Logischer Entwurf. Kapitel 4. ER-Modell. Umsetzung. Entwurfsdokumentation. relationales Modell. Verbesserung

Datenbankentwurf. 4.2 Logischer Entwurf. Kapitel 4. ER-Modell. Umsetzung. Entwurfsdokumentation. relationales Modell. Verbesserung 4.2 Logischer Entwurf Datenbankentwurf 4.2 Logischer Entwurf 2002 Prof. Dr. Rainer Manthey Informationssysteme Logischer Entwurf: Einordnung Entwurfsdokumentation logische Strukturen "auf dem Papier" konzeptueller

Mehr

Relationale Kalküle. Grundlagen der Datenbanken. Dr. Jérôme Kunegis Wintersemester 2013/14

Relationale Kalküle. Grundlagen der Datenbanken. Dr. Jérôme Kunegis Wintersemester 2013/14 Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Dr. Jérôme Kunegis Wintersemester 2013/14 Lernziele Grundideen des Domänen-Relationenkalküls (DRK) und des Tupel-Relationenkalküls

Mehr

Kapitel DB:V. V. Grundlagen relationaler Anfragesprachen

Kapitel DB:V. V. Grundlagen relationaler Anfragesprachen Kapitel DB:V V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-1 Relational Algebra & Calculus

Mehr

Kapitel DB:V. V. Grundlagen relationaler Anfragesprachen

Kapitel DB:V. V. Grundlagen relationaler Anfragesprachen Kapitel DB:V V. Grundlagen relationaler Anfragesprachen Anfragen und Änderungen Relationale Algebra Anfragekalküle Relationaler Tupelkalkül Relationaler Domänenkalkül DB:V-1 Relational Algebra & Calculus

Mehr

Raumbezogene Datenbanken (Spatial Databases)

Raumbezogene Datenbanken (Spatial Databases) Raumbezogene Datenbanken (Spatial Databases) Ein Vortrag von Dominik Trinter Alexander Christian 1 Inhalte Was ist ein raumbezogenes DBMS? Modellierung Abfragen Werkzeuge zur Implementierung Systemarchitektur

Mehr

Datenbanksysteme I Relationale Algebra. Felix Naumann 11.5.2011

Datenbanksysteme I Relationale Algebra. Felix Naumann 11.5.2011 Datenbanksysteme I Relationale Algebra Felix Naumann 11.5.2011 Überblick 2 Einführung Basisoperatoren Operatoren auf Multimengen Erweiterte Operatoren Einführung 3 Bisher Relationenschemata mit Basisrelationen,

Mehr

Anwendung Informatik Daten verwalten (2) Ursprüngliche Information Logische Verknüpfungen als Grundlage für die Informationsgewinnung

Anwendung Informatik Daten verwalten (2) Ursprüngliche Information Logische Verknüpfungen als Grundlage für die Informationsgewinnung Agenda für heute, 20. November 2009 Daten verwalten (2): Drei Stufen der Datenverwaltung Logische Verknüpfungen als Grundlage für die Informationsgewinnung Werte von Aussagen: Wahrheitstabellen Anwendung

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

Teil III. Relationale Datenbanken Daten als Tabellen

Teil III. Relationale Datenbanken Daten als Tabellen Teil III Relationale Datenbanken Daten als Tabellen Relationale Datenbanken Daten als Tabellen 1 Relationen für tabellarische Daten 2 SQL-Datendefinition 3 Grundoperationen: Die Relationenalgebra 4 SQL

Mehr

Kap. 3 Relationenmodell mit relationaler Algebra

Kap. 3 Relationenmodell mit relationaler Algebra Kap. 3 Relationenmodell mit relationaler Algebra Kap. 3.1. Trägermenge Seien D 1, D 2,..., D k Domänen: (Typen, Arten, Sorten, Wertmengen) z.b. string integer real Boolean DateTime BLOB, TIFF-image, HTML-Doc,

Mehr

SQL Teil 2. SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Komplexer SELECT-Ausdruck

SQL Teil 2. SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Komplexer SELECT-Ausdruck SELECT Projektion Selektion Vereinigung, Schnitt, Differenz Verbund Fahren fort mit SQL Befehlen. Bilden Relationenalgebra auf SQL ab. So Umsetzung von Anfragen an die DB (bzw. Tabellen) möglich. SELECT

Mehr

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle)

Kapitel 6. Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) Kapitel 6 Datenmalipulation (DML) d. h. insert, update, delete, select im Relationenmodell (in Oracle) 1 Datenmanipulationssprache (DML) SQL Einfügen: Insert-Statement Ändern: Update-Statement Löschen:

Mehr

Anfragebearbeitung. Kapitel 7. Anfragebearbeitung 285 / 520

Anfragebearbeitung. Kapitel 7. Anfragebearbeitung 285 / 520 Kapitel 7 Anfragebearbeitung 285 / 520 Übersicht Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis 286 / 520 Übersetzung Übersetzung SQL ist deklarativ, irgendwann muß Anfrage aber für Laufzeitsystem

Mehr

Relationale Algebra Datenbanken I (Systemorientierte Informatik IV) Sommersemester Mengenoperationen

Relationale Algebra Datenbanken I (Systemorientierte Informatik IV) Sommersemester Mengenoperationen Concept Content.. Information Topic Relationale Algebra Datenbanken I (Systemorientierte Informatik IV) Sommersemester 2007 Gunar Fiedler (fiedler@is.informatik.uni-kiel.de) Institut für Informatik Arbeitsgruppe

Mehr

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen

Zusammenfassung. Satz. 1 Seien F, G Boolesche Ausdrücke (in den Variablen x 1,..., x n ) 2 Seien f : B n B, g : B n B ihre Booleschen Funktionen Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 6 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 Satz 1 Seien F, G Boolesche Ausdrücke

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 6. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 11. Juni 2007 Aufgabe 1: Rekursion Betrachten Sie die folgende Tabelle

Mehr

Kommunikation und Datenhaltung

Kommunikation und Datenhaltung Kommunikation und Datenhaltung Relationenmodell und Relationenalgebra Überblick über den Datenhaltungsteil Motivation und Grundlagen Architektur von Datenbanksystemen Datenbankanfragen Relationenmodell

Mehr

3. Grundlagen relationaler Datenbanksysteme

3. Grundlagen relationaler Datenbanksysteme 3. Grundlagen relationaler Datenbanksysteme Hier nur kurze Rekapitulation, bei Bedarf nachlesen 3.1 Basiskonzepte des Relationenmodells 1 Darstellung der Miniwelt in Tabellenform (DB = Menge von Relationen

Mehr

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung

Logische Optimierung. Im Allgemeinen wird keine optimale Lösung erzielt, sondern nur eine Verbesserung. Logische Optimierung Logische Optimierung Höhere, nichtprozedurale Abfragesprachen (SQL, QBE,...) verlangen keine Kenntnisse des Benutzers über die Implementierung, müssen aber in prozedurale Form (z. B. Relationenalgebra)

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 22. Constraint-Satisfaction-Probleme: Kantenkonsistenz Malte Helmert Universität Basel 14. April 2014 Constraint-Satisfaction-Probleme: Überblick Kapitelüberblick

Mehr

3. Das Relationale Datenmodell

3. Das Relationale Datenmodell 3. Das Relationale Datenmodell Das Relationale Datenmodell geht zurück auf Codd (1970): E. F. Codd: A Relational Model of Data for Large Shared Data Banks. Comm. of the ACM 13(6): 377-387(1970) DBMS wie

Mehr

Datenbankeinsatz. Kapitel 1: Einleitung. Vorlesung. Klemens Böhm. Inhalt dieses Kapitels. Universität Karlsruhe (TH)

Datenbankeinsatz. Kapitel 1: Einleitung. Vorlesung. Klemens Böhm. Inhalt dieses Kapitels. Universität Karlsruhe (TH) Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: 1 Datenbank-Einsatz: 2 Inhalt dieses Kapitels Kapitel 1: Motivation wann ist Verwendung von Datenbank-Technologie

Mehr

Informations- und Wissensmanagement

Informations- und Wissensmanagement Übung zur Vorlesung Informations- und Wissensmanagement (Übung 1) Frank Eichinger IPD, Lehrstuhl für Systeme der Informationsverwaltung Zur Person Beruflicher Hintergrund Studium an der TU Braunschweig

Mehr

Datenbanksysteme I Übung: Relationale Algebra. Jana Bauckmann

Datenbanksysteme I Übung: Relationale Algebra. Jana Bauckmann Datenbanksysteme I Übung: Relationale Algebra Jana Bauckmann Anfragen der relationalen Algebra 2 model number processor speed [MHz] size of hard disk [GB] speed and type of removeable disk (CD, DVD) screen

Mehr

Das Relationale Modell

Das Relationale Modell Kapitel 3 Das Relationale Modell 1 / 50 Generelle Anmerkungen Wurde in den Siebzigern von E.F.Codd entwickelt (er bekam den Turing Award dafür) Im Moment das am weitesten verbreitete Datenmodell Hat die

Mehr

Relationales Datenmodell Relationale Algebra

Relationales Datenmodell Relationale Algebra Web Science & Technologies University of Koblenz Landau, Germany Grundlagen der Datenbanken Relationale Algebra Dr. Gerd Gröner Wintersemester 2013/14 Lernziele Grundbegriffe des Relationalen Modells Abbildung

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de

ISU 1. Ue_08/02_Datenbanken/SQL. 08 Datenbanken. Übung. SQL Einführung. Eckbert Jankowski. www.iit.tu-cottbus.de 08 Datenbanken Übung SQL Einführung Eckbert Jankowski www.iit.tu-cottbus.de Datenmodell (Wiederholung, Zusammenfassung) Objekte und deren Eigenschaften definieren Beziehungen zwischen den Objekten erkennen/definieren

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005

Datenbanksprache SQL. Datenbanksprache SQL. 5.1 Anfragesprache SQL-DQL. from-klausel SS 2005 Webbasierte Informationssysteme SS 2005 8. SQL-Vertiefung Prof. Dr. Stefan Böttcher Universität Paderborn Datenbanksprache SQL Structured Query Language (SQL) - am IBM San Jose Research Laboratory entwickelt

Mehr

Verbunde (Joins) und mengentheoretische Operationen in SQL

Verbunde (Joins) und mengentheoretische Operationen in SQL Verbunde (Joins) und mengentheoretische Operationen in SQL Ein Verbund (Join) verbindet zwei Tabellen Typischerweise wird die Verbindung durch Attribute hergestellt, die in beiden Tabellen existieren Mengentheoretische

Mehr

cs241: Datenbanken mit Übungen HS 2011

cs241: Datenbanken mit Übungen HS 2011 UNIVERSITÄT BASEL Prof. Dr. Heiko Schuldt MSc. Nenad Stojnić BSc. Ivan Giangreco BSc. Florian Lindörfer cs241: Datenbanken mit Übungen HS 2011 Übung 5 Abgabe bis: 4.11.2011 Hinweise: Modalitäten der Abgabe:

Mehr

Verbunde (Joins) und mengentheoretische Operationen in SQL

Verbunde (Joins) und mengentheoretische Operationen in SQL Verbunde (Joins) und mengentheoretische Operationen in SQL Ein Verbund (Join) verbindet zwei Tabellen Typischerweise wird die Verbindung durch Attribute hergestellt, die in beiden Tabellen existieren Mengentheoretische

Mehr

Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement

Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement Anfrageformulierung: Allgemeines Ein wesentliches, charakteristisches Merkmal aller Datenbankmanagement nkmanagement- systeme ist die Unterstützung einer (oder mehrerer) Anfragesprachen. Eine Anfrage ist

Mehr

Datenbanken Wintersemester 11/12. Prof. Dr. W. May

Datenbanken Wintersemester 11/12. Prof. Dr. W. May AG Datenbanken und Informationssysteme Institut für Informatik Universität Göttingen Datenbanken Wintersemester 11/12 Prof. Dr. W. May 3. Übungsblatt: SQL Besprechung voraussichtlich am 20/21.12.2011 Aufgabe

Mehr

Software-Engineering Einführung

Software-Engineering Einführung Software-Engineering Einführung 7. Übung (04.12.2014) Dr. Gergely Varró, gergely.varro@es.tu-darmstadt.de Erhan Leblebici, erhan.leblebici@es.tu-darmstadt.de Tel.+49 6151 16 4388 ES Real-Time Systems Lab

Mehr

Teil II Relationale Datenbanken Daten als Tabellen

Teil II Relationale Datenbanken Daten als Tabellen Teil II Relationale Datenbanken Daten als Tabellen Relationale Datenbanken Daten als Tabellen 1 Relationen für tabellarische Daten 2 SQL-Datendefinition 3 Grundoperationen: Die Relationenalgebra 4 SQL

Mehr

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler))

mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 σ KID= 11a (Schüler) π S Name (σ KID= 11a (Schüler)) 3. Übung zur Vorlesung Datenbanken im Sommersemester 2007 mit Musterlösungen Prof. Dr. Gerd Stumme, Dipl.-Inform. Christoph Schmitz 14. Mai 2007 Hinweis: Wir schlagen vor, die Aufgaben in der Reihenfolge

Mehr

Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) Klemens Böhm klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: Einleitung 1 Klemens Böhm

Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) Klemens Böhm klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: Einleitung 1 Klemens Böhm Vorlesung Datenbankeinsatz Universität Karlsruhe (TH) klemens.boehm@ipd.uni-karlsruhe.de Datenbank-Einsatz: 1 Datenbank-Einsatz: 2 Kapitel 1: Datenbank-Einsatz: 3 Inhalt dieses Kapitels Motivation wann

Mehr

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien

Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien Vielen Dank an Dennis Riehle für die Bereitstellung dieser Folien 1.1 Definition Datenbank Ein Datenbanksystem (DBS) ist ein System zur elektronischen Datenverwaltung. Die wesentliche Aufgabe eines DBS

Mehr

(Von der Nähe zur Distanz zum User geordnet)

(Von der Nähe zur Distanz zum User geordnet) Datebanken Was ist eigentlich eine Datenbank? Datenbanken, Datenhaltungsschicht und Datenbankensysteme (hier als Synonyme zu verstehen) finden viele unterschiedliche Anwendungsbereiche. Datenbanken kann

Mehr

Das relationale Modell

Das relationale Modell Das relationale Modell Das relationale Modell VO Datenmodellierung Katrin Seyr Institut für Informationssysteme Technische Universität Wien Katrin Seyr Seite 1 Das relationale Modell 1. Überblick Überblick

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

2.1 Überblick. 2 Das Relationale Datenmodell

2.1 Überblick. 2 Das Relationale Datenmodell c M. Scholl, 2005/06 Informationssysteme: 2. Das Relationale Datenmodell 2-1 2 Das Relationale Datenmodell 2.1 Überblick Ende der 60er Jahre: Grundlagenforschung am IBM-Forschungslabor San Jose, CA., mit

Mehr

Relationale Datenbanken

Relationale Datenbanken Datenbanksysteme Relationale Datenbanken Relationales Datenmodell Deklarationen Anfragen! Entwurf, z.b. mit Entity Relationship Model! Deklaration! Speichern der Daten! Hauptspeicher, Cache, virtueller

Mehr

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln

Mai 2006. Hauptseminar: Nichtrelationale Datenbanken Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Hauptseminar: Nichtrelationale Historisch-Kulturwissenschaftliche Informationsverarbeitung Universität zu Köln Mai 2006 Was ist eine Datenbank? Erweiterung relationaler um eine Deduktionskomponente Diese

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Grundlagen von Datenbanken SS 2010 5. Bereichskalkül (=Domänenkalkül) Agenda: Prof. Dr. Stefan Böttcher Universität Paderborn mit Material von Prof. Dr. Gregor Engels Grundlagen von Datenbanken - SS 2010

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY.

Details zu den Ausdrücken nach FROM, WHERE, GROUP BY und HAVING finden Sie in den Abschnitten über JOIN, WHERE und GROUP BY. SELECT - Der Grundbefehl zur Auswahl von Daten Die SELECT-Anweisung fragt Daten aus einer Datenbank ab und stellt diese in einer virtuellen Tabelle zur Verfügung. Diese virtuelle Tabelle, eine Menge von

Mehr

Aggregatfunktionen in der Relationenalgebra?

Aggregatfunktionen in der Relationenalgebra? Aggregatfunktionen in der Relationenalgebra? Dieter Sosna Aggregatfunktionen in der Relationenalgebra p.1/23 Gliederung Motivation Begriffe Definitionen Anwendungen Zusammenfassung Aggregatfunktionen in

Mehr

Einführung in Datenbanken

Einführung in Datenbanken Einführung in Datenbanken Vorlesungsmanuskript Dr. Josef Templ Universität Salzburg SS 2006 http://www.cs.uni-salzburg.at/~josef.templ/ (c) Copyright Josef Templ, 2003-2006; Alle Rechte vorbehalten. Teil

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL als Anfrage- und Datenmanipulationssprache (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL als DQL und DML M. Lange, S. Weise Folie #8-1 Themen

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme Relationale Datenbanken Vorlesung Datenbankmanagementsysteme Relationale Datenbanken M. Lange, S. Weise Folie #4-1 Relationale Datenbanken Wiederholung - Datenbankmodelle,

Mehr

Kapitel 2: Grundlagen von Anfragesprachen

Kapitel 2: Grundlagen von Anfragesprachen 2. Grundlagen von Anfragesprachen Seite 1 Kapitel 2: Grundlagen von Anfragesprachen Sprachparadigmen Relationenalgebra Relationenkalkül später SQL 2. Grundlagen von Anfragesprachen 2.1. Relationenalgebra

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

Motivation Anford. Anfrage- Kalküle Bereichskalkül. Sichere Anfragen Beispiele. Ausdrucksfähigkeit. Tupelkalkül. Motivation Anford.

Motivation Anford. Anfrage- Kalküle Bereichskalkül. Sichere Anfragen Beispiele. Ausdrucksfähigkeit. Tupelkalkül. Motivation Anford. Kapitel 4: Grundlagen von Grundlagen von Anforderungen an Anfragesprachen,. Datenbankeinsatz: Grundlagen von 1 Datenbankeinsatz: Grundlagen von 2 Einführung (1) Einführung (2) Anfrage: Formulierung eines

Mehr

Grober Überblick zu Datendefinitionsanweisungen in SQL

Grober Überblick zu Datendefinitionsanweisungen in SQL 5.2 Datendefinition mit SQL (DDL) Grober Überblick zu Datendefinitionsanweisungen in SQL Konzeptuelle Ebene - CREATE TABLE, ALTER TABLE, DROP TABLE - CREATE DOMAIN, ALTER DOMAIN, DROP DOMAIN -... Interne

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken

Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken Aufgaben zur fachwissenschaftlichen Prüfung Modul 3 Daten erfassen, ordnen, verarbeiten und austauschen: Schwerpunkt Datenbanken 30 Wozu dient ein Primärschlüssel? Mit dem Primärschlüssel wird ein Datenfeld

Mehr

Wiederholung: Relationale Algebra

Wiederholung: Relationale Algebra Vorlesung Datenbanksysteme vom 1.11.016 Wiederholung: Relationale Algebra Relationale Algebra Join-Operatoren Eigenschaften der relationalen Operatoren Grundlagen des relationalen Modells Seien D1, D,,

Mehr

Ein Beispiel: Tabelle DICHTER

Ein Beispiel: Tabelle DICHTER Datenbanken Eine Datenbank ist eine Sammlung von Daten, die aus der Sicht des Benutzers zusammen gehören. Ein Datenbankverwaltungssystem (DBMS) ist ein informatisches System zur Verwaltung einer Datenbank.

Mehr

4. Relationen-Algebra. Basisoperationen des relationalen Modells. Kriterien für Anfragesprachen. Operationen der Relationen-Algebra

4. Relationen-Algebra. Basisoperationen des relationalen Modells. Kriterien für Anfragesprachen. Operationen der Relationen-Algebra 4. Relationen-Algebra Basisoperationen des relationalen Modells Kriterien für Anfragesprachen Operationen der Relationen-Algebra Beispiel komplexer Algebra-Ausdrücke Übersicht zu Äquivalenz-Umformungen

Mehr

Datenbanksysteme Kapitel 5: SQL Data Manipulation Language

Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Datenbanksysteme Kapitel 5: SQL Data Manipulation Language Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence Prof. Dr. Peter Chamoni

Mehr

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD

Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur dritten Auflage Vorwort zur zweiten Auflage Vorwort zur ersten Auflage Hinweise zur CD Vorwort zur vierten Auflage 11 Vorwort zur dritten Auflage 13 Vorwort zur zweiten Auflage 15 Vorwort zur ersten Auflage 17 Hinweise zur CD 19 1 Datenbanken und Datenbanksysteme 21 1.1 Zentralisierung der

Mehr

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache

Datentypen. Agenda für heute, 4. März, 2010. Pascal ist eine streng typisierte Programmiersprache Agenda für heute, 4. März, 2010 Zusammengesetzte if-then-else-anweisungen Datentypen Pascal ist eine streng typisierte Programmiersprache Für jeden Speicherplatz muss ein Datentyp t (Datenformat) t) definiert

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Teil VIII Grundlagen von Anfragen: Algebra & Kalkül

Teil VIII Grundlagen von Anfragen: Algebra & Kalkül Teil VIII Grundlagen von Anfragen: Algebra & Kalkül Grundlagen von Anfragen: Algebra & Kalkül 1 Kriterien für Anfragesprachen 2 Anfragealgebren 3 Erweiterungen der Relationenalgebra 4 Anfragekalküle 5

Mehr

Einführung in die Wirtschaftsinformatik Kapitel 4: Relationale Datenbanksprachen: SQL

Einführung in die Wirtschaftsinformatik Kapitel 4: Relationale Datenbanksprachen: SQL Einführung in die Wirtschaftsinformatik Kapitel 4: Relationale Datenbanksprachen: SQL Prof. Dr. Peter Chamoni Mercator School of Management Lehrstuhl für Wirtschaftsinformatik, insb. Business Intelligence

Mehr

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN

IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN Joins 1 IMPLEMENTIERUNG VON OPERATIONEN AUF RELATIONEN Literatur Priti Mishara, Maragaret H. Eich, Join Processing in Relational Databases, ACM Computing Surveys, Vol. 24, No. 1, March 1992 Goetz Graefe,

Mehr

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten!

Skript und Aufgabensammlung Terme und Gleichungen Mathefritz Verlag Jörg Christmann Nur zum Privaten Gebrauch! Alle Rechte vorbehalten! Mathefritz 5 Terme und Gleichungen Meine Mathe-Seite im Internet kostenlose Matheaufgaben, Skripte, Mathebücher Lernspiele, Lerntipps, Quiz und noch viel mehr http:// www.mathefritz.de Seite 1 Copyright

Mehr

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1

Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 Kapitel 4 Die Datenbank Kuchenbestellung Seite 1 4 Die Datenbank Kuchenbestellung In diesem Kapitel werde ich die Theorie aus Kapitel 2 Die Datenbank Buchausleihe an Hand einer weiteren Datenbank Kuchenbestellung

Mehr

Datenbanktheorie. Teil A: Einleitung 1: Grundbegriffe. Sommersemester Thomas Schwentick. Version von: 4. April 2012 (11:50)

Datenbanktheorie. Teil A: Einleitung 1: Grundbegriffe. Sommersemester Thomas Schwentick. Version von: 4. April 2012 (11:50) Datenbanktheorie Sommersemester 2012 - Thomas Schwentick Teil A: Einleitung 1: Grundbegriffe Version von: 4. April 2012 (11:50) Inhalt 1.1 Das relationale Datenmodell 1.2 Anfragen an relationale Datenbanken

Mehr

Suche in Multimedia-Datenbanken

Suche in Multimedia-Datenbanken Suche in Multimedia-Datenbanken Ingo Schmitt 20. April 2005 Gliederung 1. Motivation 2. Ähnlichkeitssuche in einem MMDBS 3. Semantische Lücke 4. Ähnlichkeitsanfragesprachen 5. Effiziente Ergebnisberechnung

Mehr

FachPraktikum 1590 Erweiterbare Datenbanksysteme. Aufgaben Phase 1

FachPraktikum 1590 Erweiterbare Datenbanksysteme. Aufgaben Phase 1 FachPraktikum 1590 Erweiterbare Datenbanksysteme Aufgaben Phase 1 Wintersemester 2004/2005 Ralf Hartmut Güting, Dirk Ansorge, Thomas Behr, Markus Spiekermann Praktische Informatik IV, Fernuniversität Hagen

Mehr

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Grundlagen Theoretischer Informatik I SoSe 2011 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Grundlagen Theoretischer Informatik I SoSe 2011 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Grundlagen Theoretischer Informatik I Gesamtübersicht Organisatorisches; Einführung Logik

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen

Access [basics] Gruppierungen in Abfragen. Beispieldatenbank. Abfragen gruppieren. Artikel pro Kategorie zählen Abfragen lassen sich längst nicht nur dazu benutzen, die gewünschten Felder oder Datensätze einer oder mehrerer Tabellen darzustellen. Sie können Daten auch nach bestimmten Kriterien zu Gruppen zusammenfassen

Mehr

7. Grundlagen von Anfragen. Einführung. Kriterien für Anfragesprachen. Einführung II

7. Grundlagen von Anfragen. Einführung. Kriterien für Anfragesprachen. Einführung II 7. Grundlagen von Anfragen Einführung Kriterien für Anfragesprachen Anfragealgebren Anfrage-Kalküle Änderungsoperationen bisher Relationenschemata mit Basisrelationen, die in der Datenbank gespeichert

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

1 PIVOT TABELLEN. 1.1 Das Ziel: Basisdaten strukturiert darzustellen. 1.2 Wozu können Sie eine Pivot-Tabelle einsetzen?

1 PIVOT TABELLEN. 1.1 Das Ziel: Basisdaten strukturiert darzustellen. 1.2 Wozu können Sie eine Pivot-Tabelle einsetzen? Pivot Tabellen PIVOT TABELLEN. Das Ziel: Basisdaten strukturiert darzustellen Jeden Tag erhalten wir umfangreiche Informationen. Aber trotzdem haben wir oft das Gefühl, Entscheidungen noch nicht treffen

Mehr