Über Kleines und Großes in Mathematik und Informatik

Größe: px
Ab Seite anzeigen:

Download "Über Kleines und Großes in Mathematik und Informatik"

Transkript

1 Über Kleines und Großes in Mathematik und Informatik Thomas Risse Institut für Informatik & Automation, IIA FB E&I, Hochschule Bremen, HSB kleine und große (natürliche) Zahlen auf das Größenverhältnis kommt es an (Wachstum von) Aufwand messen Je mehr Prozessoren desto mehr Leistung? das Große im Kleinen, das Kleine im Großen geht s noch größer?... c 24. Oktober 2006 Einführungsveranstaltung

2 Th. Risse, HSB Kleines und Großes 2 1. zum Hintergrund disclaimer subjektiv, Schlaglicht-artig, assoziativ,... mein Hintergrund Mathematik, Computer-Architektur, Kryptographie, generative Computer-Graphik, digitale Bildverarbeitung... Ihr Hintergrund Interesse an Informatik, Mathematik-Vorbereitungskurs...

3 Th. Risse, HSB Kleines und Großes 3 2. Zählen 1,2,3,... N = {1, 2, 3,...}, Pythagoräer, GF(2) 0-dimensional: Punkte 1-dimensional: Strecken, Kurven 2-dimensional: Ebenen, Flächen 3-dimensional: Körper im Raum, Volumina 4-dimensional: Objekte im Raum-Zeit-Kontinuum (Cinema4D) 10 Finger M = {e 1, e 2,..., e n } Kardinalität card(m) = n Die Menge P(M) aller Teilmengen einer Menge M heißt Potenz- Menge von M. Es gilt card ( P(M) ) = 2 card(m)

4 Th. Risse, HSB Kleines und Großes 4 3. große Zahlen mit 16 bit kann man die 2 16 = natürlichen Zahlen 0, 1, 2,..., = darstellen mit 32 bit kann man die 2 32 natürlichen Zahlen 0, 1, 2,..., = 4(2 10 ) 3 1 > 4(10 3 ) 3 = darstellen Schulden des Landes Bremen z.zt. ca 13 Mrd e = e, s. Schulden-Uhr, laut WK angeblich +33 e/sec??? Schulden des Bundes z.zt. ca 1.5 Billionen e = e zeitreihen.. bu1131, ) Anzahl der Atome eines Menschen , der Erde , der Sonne 10 57, der Milchstrasse 10 68, des Universums gibt es größere natürliche Zahlen als n?

5 Th. Risse, HSB Kleines und Großes 5 4. kleine (und große) Zahlen 0 < 1, 1 < 0 usw. Z = {0, ±1, ±2,...} Wie steht s mit kleinen positiven Zahlen? Q = {Brüche} Rechner können (normalerweise) nur Brüche darstellen: nämlich als Gleitpunkt-Zahlen: numerische Überraschungen: Mantisse Basis Exponent 1 + ɛ = 1 es gibt ɛ, a, b, c mit (a + b) + c a + (b + c) angenommen Mantisse = x.yz mit x 0 a = = 1 b = c = ˆ= ˆ= hier kommt s also auf das Verhältnis von groß zu klein an...

6 Th. Risse, HSB Kleines und Großes 6 5. (Wachstum von) Aufwand messen Wie aufwändig ist ein bestimmtes Verfahren? (Das Aufwandsmaß soll unabhängig vom eingesetzten Rechner sein!) Z.B. Sortieren von Objekten ihrer Größe nach Personen, Skat-Karten, Telefon-Buch, invertiertes Telefon-Buch Der Aufwand hängt ab von der Anzahl n der zu sortierenden Objekte. naives Verfahren: Aufwand ist proportional zu n 2 bessere Verfahren: Aufwand ist proportional zu n log n für z.b. n = 1000 viele weitere Beispiele: Strassen- n 2.8 n ld 7 statt n 3 für naive Matrix-Multiplikation FFT in der Nachrichten-Technik, Bildverarbeitung etc. Algorithmen zum Knacken z.b. der RSA-Verschlüsselung

7 Th. Risse, HSB Kleines und Großes 7 6. Wieviele Prozessoren? dual/multiple core wird gerade Mode: p = 2, : DAP (Distributed Array Processor), ICL: p = top of top500: IBM Blue Gene/L: p = = Was ist zu erwarten, wenn p Prozessoren zur Lösung eines Problems zur Verfügung stehen? Laufzeit für Monoprozessor Beschleunigungsfaktor β = Laufzeit für Multiprozessor p Z.B. p = 2 m Prozessoren (P i ) i=0,1,...,p 1 stehen zur Verfügung, um p = 2 m Zahlen (a i ) i=0,1,...,p 1 aufzusummieren: 1. Runde: P 2i berechnet Zwischensumme s 2i = a 2i + a 2i+1 2. Runde: P 4i berechnet Zwischensumme s 4i = s 4i + s 4i+2 usw. β = (p 1)/ldp = (2 m 1)/m < p = 2 m linear speed up wird i.a. nicht erreicht!

8 Th. Risse, HSB Kleines und Großes 8 7. das Große im Kleinen, das Kleine im Großen Farn Granat Farn Fluorit Silhouette einer Linde sieht aus wie ein Linden-Blatt. Basalt-Säulen sehen aus wie Basalt-Kristalle. Wolken sehen im Großen aus wie im Kleinen... Benoit Mandelbrot: Die Natur ist fraktal! Erzeugung von natürlich aussehenden Objekten (Bäume, Berge, Seen,... ), fraktale Kompression

9 Th. Risse, HSB Kleines und Großes 9 8. Größer geht s nimmer? card(2n) < card(n) < card(z) inuitiv vermutet leider zu Unrecht ins vollbesetzte Hilbert-Hotel passt immer noch ein weiterer Gast ins vollbesetzte Hilbert-Hotel passen immer noch n weitere Gäste ins vollbesetzte Hilbert-Hotel passen immer noch weitere Gäste card(2n) = card(n) = card(z) Georg Cantor: card(n) = card(q) Es gilt card(p(m)) > card(m) auch für unendliche Mengen : Angenommen f : M P(M) surjektiv. Sei T = {m M : m f(m)}. Laut Voraussetzung gibt es m o mit T = f(m o ). Dann gilt m o T = f(m o ) m o f(m o ) Widerspruch! { 1 falls n T N T (a n ) n mit a n = 0 falls n T x = 0.a 1a 2 a 3... [0, 1] R folgt R P(N) also card(r) card ( P(N) ) > card(n).

Eine mathematische Reise ins Unendliche. Peter Koepke Universität Bonn

Eine mathematische Reise ins Unendliche. Peter Koepke Universität Bonn Eine mathematische Reise ins Unendliche Peter Koepke Universität Bonn Treffen sich die Schienen im Unendlichen? Gibt es unendlich ferne Punkte? Gibt es unendliche Zahlen? 1 Antwort: Nein! , so prostestire

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a

Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20a Master Informatik / Medizininformatik Numerische Mathematik Folie 20b Master Informatik / Medizininformatik Numerische Mathematik Folie

Mehr

Stichpunktezettel fürs Tutorium

Stichpunktezettel fürs Tutorium Stichpunktezettel fürs Tutorium Moritz und Dorian 11. November 009 1 Kleiner Fermat Behauptung. Seien a, b N relativ prim und b eine Primzahl. Dann ist a b 1 = 1. Beweis. Wir definieren die Funktion f

Mehr

FiM Fit in Mathematik ein Fitness-Programm

FiM Fit in Mathematik ein Fitness-Programm FiM Fit in Mathematik ein Fitness-Programm Institut für Informatik & Automation, IIA FB E&I, Hochschule Bremen, HSB BNMC, 8. Februar im Jahr der Mathematik 2008 im CeVis Agenda 1 bestimmung 2 Gegenstand

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund

Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund Hochleistungsrechnen für Wissenschaft und Wirtschaft im internationalen Verbund Prof. Dr. rer. nat. Christian Schröder Dipl.-Ing. Thomas Hilbig, Dipl.-Ing. Gerhard Hartmann Fachbereich Elektrotechnik und

Mehr

Grundstrukturen: Speicherorganisation und Zahlenmengen

Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

Exponentielles Wachstum

Exponentielles Wachstum Mathematik I für Biologen, Geowissenschaftler und Geoökologen 28. Oktober 2013 Fibonacci-Zahlen Kaninchenvermehrung Fibonacci-Folge Geometrisches Mittel vs. arithmetisches Mittel Beispiele Kaninchenvermehrung

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Methoden zum Lösen von Rekursionsgleichungen

Methoden zum Lösen von Rekursionsgleichungen Rekursionsgleichungen... Slide 1 Methoden zum Lösen von Rekursionsgleichungen Bisher wurde Expandieren der Rekursion + Raten der Gesetzmäßigkeit benutzt, um einfache Rekursionsgleichungen zu lösen. Zum

Mehr

Approximationsalgorithmen

Approximationsalgorithmen Makespan-Scheduling Kapitel 4: Approximationsalgorithmen (dritter Teil) (weitere Beispiele und Illustrationen an der Tafel) Hilfreiche Literatur: Vazarani: Approximation Algorithms, Springer Verlag, 2001.

Mehr

Erfüllbarkeit und Allgemeingültigkeit

Erfüllbarkeit und Allgemeingültigkeit Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 3.3 Aussagenlogik Erfüllbarkeit 44 Erfüllbarkeit und Allgemeingültigkeit Def.: eine Formel ϕ heißt erfüllbar, wennesein I gibt, so dass I = ϕ

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71)

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71) Zahlensysteme Formale Methoden der Informatik WiSe / Folie (von 7) Teil I: Zahlensysteme. Einführung und Zahlensysteme. Zahlensysteme / Algorithmik. Zahlendarstellung im Rechner. Gleitkommazahlen / Fließpunktzahlen

Mehr

Graphen: Datenstrukturen und Algorithmen

Graphen: Datenstrukturen und Algorithmen Graphen: Datenstrukturen und Algorithmen Ein Graph G = (V, E) wird durch die Knotenmenge V und die Kantenmenge E repräsentiert. G ist ungerichtet, wenn wir keinen Start- und Zielpunkt der Kanten auszeichnen.

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

Fachbereich Elektrotechnik & Informatik

Fachbereich Elektrotechnik & Informatik Fachbereich Elektrotechnik & Informatik Fachbereichsgeschichte 1929 (damals noch fünfsemestriges Studium) 1963 Umzug in den neuen E-Trakt 1965 Studiengang Nachrichtentechnik 1974 Studienrichtung Automatisierungstechnik

Mehr

4 Algorithmen und Datenstrukturen

4 Algorithmen und Datenstrukturen 4 Algorithmen und Datenstrukturen Algorithmen sind Verfahren zur schrittweisen Lösung von Problemen. Sie können abstrakt, d.h. unabhängig von konkreten Rechnern oder Programmiersprachen, beschrieben werden.

Mehr

1 Das RSA-Verfahren und seine algorithmischen Grundlagen

1 Das RSA-Verfahren und seine algorithmischen Grundlagen 1 Das RSA-Verfahren und seine algorithmischen Grundlagen Das wichtigste d. h., am weitesten verbreitete und am meisten analysierte asymmetrische Verfahren ist das RSA-Verfahren, benannt nach seinen Erfindern

Mehr

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20.

Übersicht. Datenstrukturen und Algorithmen Vorlesung 5: Rekursionsgleichungen (K4) Übersicht. Binäre Suche. Joost-Pieter Katoen. 20. Übersicht Datenstrukturen und Algorithmen Vorlesung 5: (K4) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.informatik.rwth-aachen.de/i2/dsal12/ 20.

Mehr

Äquivalenztabelle der Studienleistungen

Äquivalenztabelle der Studienleistungen Äquivalenztabelle der Studienleistungen Bachelorstudium Angewandte Informatik 2008 Bakkalaureatsstudium alt (14.5.2003) Fachgebiet Lehrveranstaltung LV Lehrveranstaltung LV SSt Art ECTS SSt Art ECTS (1)

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Was bisher geschah: Formale Sprachen

Was bisher geschah: Formale Sprachen Was isher geschah: Formale Sprachen Alphaet, Wort, Sprache Operationen und Relationen auf Wörtern und Sprachen reguläre Ausdrücke: Syntax, Semantik, Äquivalenz Wortersetzungssysteme Wortersetzungsregeln

Mehr

Facharbeit Informatik

Facharbeit Informatik GK 12.2 (ht) ACHTUNG: Die folgende Liste soll NUR Anregungen liefern. Bei fast allen Themen wird eine konkrete - meist einschränkende - Ausformulierung des Themas notwendig sein! 1 Programmieren und Algoritmik

Mehr

Das Mathematik-Abitur im Saarland

Das Mathematik-Abitur im Saarland Informationen zum Abitur Das Mathematik-Abitur im Saarland Sie können Mathematik im Abitur entweder als grundlegenden Kurs (G-Kurs) oder als erhöhten Kurs (E-Kurs) wählen. Die Bearbeitungszeit für die

Mehr

Einführung in die Systemprogrammierung

Einführung in die Systemprogrammierung Einführung in die Systemprogrammierung Speedup: Grundlagen der Performanz Prof. Dr. Christoph Reichenbach Fachbereich 12 / Institut für Informatik 30. April 2015 Eine Aufgabe aus der Praxis Gegeben ein

Mehr

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung

IT-Sicherheitsmanagement. Teil 12: Asymmetrische Verschlüsselung IT-Sicherheitsmanagement Teil 12: Asymmetrische Verschlüsselung 10.12.15 1 Literatur [12-1] Beutelspacher, A.; Schwenk, J.; Wolfenstetter, K.-D.: Moderne Verfahren der Kryptographie. 4. Auflage, Vieweg

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Fraktale Geometrie: Julia Mengen

Fraktale Geometrie: Julia Mengen Fraktale Geometrie: Julia Mengen Gunnar Völkel 1. Februar 007 Zusammenfassung Diese Ausarbeitung ist als Stoffsammlung für das Seminar Fraktale Geometrie im Wintersemester 006/007 an der Universität Ulm

Mehr

1. Stellenwerte im Dualsystem

1. Stellenwerte im Dualsystem 1. a) Definitionen Stellenwertsystem Ein Zahlensystem bei dem der Wert einer Ziffer innerhalb einer Ziffernfolge von ihrer Stelle abhängt, wird Stellenwertsystem genannt. Die Stellenwerte sind also ganzzahlige

Mehr

Mathematisch-algorithmische Grundlagen für Big Data

Mathematisch-algorithmische Grundlagen für Big Data Mathematisch-algorithmische Grundlagen für Big Data Numerische Algorithmen für Datenanalyse und Optimierung Prof. Dr. Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg Sommersemester 2016

Mehr

Gibt es verschiedene Arten unendlich? Dieter Wolke

Gibt es verschiedene Arten unendlich? Dieter Wolke Gibt es verschiedene Arten unendlich? Dieter Wolke 1 Zuerst zum Gebrauch des Wortes unendlich Es wird in der Mathematik in zwei unterschiedlichen Bedeutungen benutzt Erstens im Zusammenhang mit Funktionen

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

Gleichungen Aufgaben und Lösungen

Gleichungen Aufgaben und Lösungen Gleichungen Aufgaben und Lösungen http://www.fersch.de Klemens Fersch 6. Januar 3 Inhaltsverzeichnis Lineare Gleichung. a x + b = c....................................................... Aufgaben....................................................

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen 7/7/06 lausthal Erinnerung: Dynamische Programmierung Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

2. Fraktale Geometrie

2. Fraktale Geometrie 2. Fraktale Geometrie Komplexe Systeme ohne charakteristische Längenskala z.b. Risse in festen Materialien, Küstenlinien, Flussläufe und anderes.. Skaleninvariante Systeme Gebrochene Dimensionen Fraktale

Mehr

Ideen der Informatik. Eine Vorlesung für Hörer aller Fakultäten

Ideen der Informatik. Eine Vorlesung für Hörer aller Fakultäten Ideen der Informatik Eine Vorlesung für Hörer aller Fakultäten Kurt Mehlhorn und Adrian Neumann Max-Planck-Institut für Informatik und Universität des Saarlandes Unsere drei Ziele Grundbegriffe der Informatik:

Mehr

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar?

MATHEMATISCHER FITNESSTEST - LÖSUNGEN. (2) Welche Menge stellt die schraerte Fläche dar? MATHEMATISCHER FITNESSTEST - LÖSUNGEN DR. ROGER ROBYR Die Aufgaben sollten alle ohne Unterlagen und ohne programmierbare oder graphikfähige Rechner gelöst werden können. Lösung. ) Gegeben sind die Mengen

Mehr

Bachelor-Studiengang Angewandte Informatik mit einem Fachanteil von 100%

Bachelor-Studiengang Angewandte Informatik mit einem Fachanteil von 100% Bachelor-Studiengang Angewandte Informatik mit einem Fachanteil von 100% an der Ruprecht-Karls-Universität Heidelberg http://www.informatik.uni-heidelberg.de/ Oktober 2015 Einige Begriffe Das Studium besteht

Mehr

Sozio- Technische Systeme

Sozio- Technische Systeme Soziotechnische Informationssysteme 7. Skalierbarkeit 2013 757 Millionen melden sich täglich an (12/2013) 802 DAUs laut FB (1 Quartal 2014) 1.23 Milliarden Nutzer im Monat (12/2013) 556 Millionen täglich

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 2.3 One-Time Pads und Perfekte Sicherheit 1. Perfekte Geheimhaltung 2. One-Time Pads 3. Strombasierte Verschlüsselung Wie sicher kann ein Verfahren werden? Ziel ist

Mehr

Systemvoraussetzungen: DOMUS NAVI für DOMUS 1000 Stand 09/15

Systemvoraussetzungen: DOMUS NAVI für DOMUS 1000 Stand 09/15 Systemvoraussetzungen: DOMUS NAVI für DOMUS 1000 Stand 09/15 Benötigen Sie Unterstützung* oder haben essentielle Fragen? Kundenbetreuung Tel.: +49 [0] 89 66086-230 Fax: +49 [0] 89 66086-235 e-mail: domusnavi@domus-software.de

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

Vorkurs Mathematik für Informatiker 3 Logarithmen

Vorkurs Mathematik für Informatiker 3 Logarithmen 3 Logarithmen Michael Bader, Thomas Huckle, Stefan Zimmer 1. 9. Oktober 2008 Kap. 3: Logarithmen 1 Logarithmen: Definition Definition: Zu x > 0 und b > 0, b 1 sei der Logarithmus von x zur Basis b folgende

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

Musterlösung zu Serie 14

Musterlösung zu Serie 14 Dr. Lukas Meier Statistik und Wahrscheinlichkeitsrechnung FS 21 Musterlösung zu Serie 14 1. Der Datensatz von Forbes zeigt Messungen von Siedepunkt (in F) und Luftdruck (in inches of mercury) an verschiedenen

Mehr

Vorlesung 2. Tilman Bauer. 6. September 2007

Vorlesung 2. Tilman Bauer. 6. September 2007 Vorlesung 2 Universität Münster 6. September 2007 Organisatorisches Meine Koordinaten: Sprechstunden: Di 13:30-14:30 Do 9:00-10:00 tbauer@uni-muenster.de Zimmer 504, Einsteinstr. 62 (Hochhaus) für alle

Mehr

Studien- und Prüfungsordnung für Bachelor-Studiengänge der Hochschule Aalen - Technik und Wirtschaft vom 15. Dezember 2005

Studien- und Prüfungsordnung für Bachelor-Studiengänge der Hochschule Aalen - Technik und Wirtschaft vom 15. Dezember 2005 Studien- und Prüfungsordnung für Bachelor-Studiengänge der Hochschule Aalen - Technik und Wirtschaft vom 15. Dezember 2005 Auf Grund von 8 Abs. 5 in Verbindung mit 34 Abs. 1 des Gesetzes über die Hochschulen

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Luisenburg-Gymnasium Wunsiedel

Luisenburg-Gymnasium Wunsiedel Luisenurg-Gymnasium Wunsiedel Grundwissen für das Fach Mathematik Jahrgangsstufe 0 KREIS und KUGEL Bogenlänge rπα = 80 Das Verhältnis r πα = 80 heißt Bogenmaß, ist nur vom Mittelpunktswinkel α ahängig

Mehr

Schulmathematik und Algorithmen der Computeralgebra

Schulmathematik und Algorithmen der Computeralgebra Schulmathematik und Algorithmen der Computeralgebra Prof. Dr. Wolfram Koepf Universität Kassel http://www.mathematik.uni-kassel.de/~koepf Tag der Mathematik 13. Dezember 2008 Universität Passau Überblick

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

HÖRERVERSAMMLUNG 2014! SOFTWAREENTWICKLUNG - WIRTSCHAFT! INFORMATIK! COMPUTER SCIENCE

HÖRERVERSAMMLUNG 2014! SOFTWAREENTWICKLUNG - WIRTSCHAFT! INFORMATIK! COMPUTER SCIENCE HÖRERVERSAMMLUNG 2014! SOFTWAREENTWICKLUNG - WIRTSCHAFT! INFORMATIK! COMPUTER SCIENCE!! Peter Pranter, Michael Krisper! Basisgruppe Informatik & Softwareentwicklung! INHALT HEUTE Studienplan Bachelor Softwareentwicklung

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 32 Einstieg in die Informatik mit Java Effizienz Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 32 1 Überblick: was ist Effizienz? 2 Landau-Symbole 3 Eier im Korb 4

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

tf/idf computation Florian Thomas, Christian Reß Map/Reduce Algorithms on Hadoop 6. Juli 2009

tf/idf computation Florian Thomas, Christian Reß Map/Reduce Algorithms on Hadoop 6. Juli 2009 tf/idf computation Florian Thomas, Christian Reß Map/Reduce Algorithms on Hadoop 6. Juli 2009 1 tf/idf computation Was ist tf/idf? Verschiedene Implementierungen Map/Reduce-Aufbau Implementierungsbesonderheiten

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner

Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Summenregel. Allgemeiner Kombinatorik: Abzählverfahren (Teschl/Teschl 7) Fragestellung: Wie viele verschiedene Möglichkeiten gibt es, Elemente auszuwählen, z. B. Anzahl verschiedener möglicher Passwörter, IPAdressen, Zahlenkombinationen

Mehr

Übergang vom Diplom zum Bachelor

Übergang vom Diplom zum Bachelor Übergang vom Diplom zum Bachelor Da die Fächer des Bachelorstudienganges größtenteils aus Fächern des Diplomstudiengangs hervorgegangen sind, können sich die Studierenden diese Fächer aus dem Diplom für

Mehr

Was darf das Grid kosten?

Was darf das Grid kosten? Was darf das Grid kosten? Dr. Marcel Kunze Steinbuch Centre for Computing Abteilung Integration und Virtualisierung Die Kooperation von Darf das Grid was kosten? Infrastruktur: Geschäftsmodell oder Sponsoring?

Mehr

Bildverarbeitung für die automatisierte Verpackungstechnik

Bildverarbeitung für die automatisierte Verpackungstechnik Bildverarbeitung für die automatisierte Verpackungstechnik Markus Hüttel 6. Juli 2011 Übersicht Unsere Arbeitsschwerpunkte - Thermographie - NIR-Spektroskopie - Texturanalyse - Fehlerdetektion - 3D Bild-

Mehr

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie

Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie Anhang I zur Vorlesung Kryptologie: Elementare Zahlentheorie von Peter Hellekalek Fakultät für Mathematik, Universität Wien, und Fachbereich Mathematik, Universität Salzburg Tel: +43-(0)662-8044-5310 Fax:

Mehr

Grundlagen der Verschlüsselung und Authentifizierung (2)

Grundlagen der Verschlüsselung und Authentifizierung (2) Grundlagen der Verschlüsselung und Authentifizierung (2) Benjamin Klink Friedrich-Alexander Universität Erlangen-Nürnberg Benjamin.Klink@informatik.stud.uni-erlangen.de Proseminar Konzepte von Betriebssystem-Komponenten

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Vorkurs Mathematik 2014

Vorkurs Mathematik 2014 Dr. Mario Helm et al. Institut für Numerische Mathematik und Optimierung Fakultät für Mathematik und Informatik Vorkurs Mathematik 4 Winkelmessung und trigonometrische Funktionen 6.-..4 Winkel und Winkelmessung

Mehr

Primzahlzertifikat von Pratt

Primzahlzertifikat von Pratt Primzahlzertifikat von Pratt Daniela Steidl TU München 17. 04. 2008 Primzahltests in der Informatik "Dass das Problem, die Primzahlen von den Zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Mining top-k frequent itemsets from data streams

Mining top-k frequent itemsets from data streams Seminar: Maschinelles Lernen Mining top-k frequent itemsets from data streams R.C.-W. Wong A.W.-C. Fu 1 Gliederung 1. Einleitung 2. Chernoff-basierter Algorithmus 3. top-k lossy counting Algorithmus 4.

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1

Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 Praktikum Diskrete Optimierung (Teil 11) 17.07.2006 1 1 Primzahltest 1.1 Motivation Primzahlen spielen bei zahlreichen Algorithmen, die Methoden aus der Zahlen-Theorie verwenden, eine zentrale Rolle. Hierzu

Mehr

6.2 Scan-Konvertierung (Scan Conversion)

6.2 Scan-Konvertierung (Scan Conversion) 6.2 Scan-Konvertierung (Scan Conversion) Scan-Konvertierung ist die Rasterung von einfachen Objekten (Geraden, Kreisen, Kurven). Als Ausgabemedium dient meist der Bildschirm, der aus einem Pixelraster

Mehr

In beiden Fällen auf Datenauthentizität und -integrität extra achten.

In beiden Fällen auf Datenauthentizität und -integrität extra achten. Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige

Mehr

Informatik II Greedy-Algorithmen

Informatik II Greedy-Algorithmen lausthal Informatik II reedy-algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Erinnerung: Dynamische Programmierung Zusammenfassung der grundlegenden Idee: Optimale Sub-Struktur:

Mehr

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu

One of the few resources increasing faster than the speed of computer hardware is the amount of data to be processed. Bin Hu Bin Hu Algorithmen und Datenstrukturen 2 Arbeitsbereich fr Algorithmen und Datenstrukturen Institut fr Computergraphik und Algorithmen Technische Universität Wien One of the few resources increasing faster

Mehr

Vermessung und Verständnis von FFT Bildern

Vermessung und Verständnis von FFT Bildern Vermessung und Verständnis von FFT Bildern Viele Auswertungen basieren auf der "Fast Fourier Transformation" FFT um die (ungewünschten) Regelmäßigkeiten im Schliffbild darzustellen. Die Fourier-Transformation

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Beispiel: Fibonacci-Zahlen

Beispiel: Fibonacci-Zahlen Beispiel: Fibonacci-Zahlen Unendliche Reihe: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,... Fibonacci-Kaninchen: L. P. Fibonacci (1170-1250) G. Zachmann Informatik 1 - WS 05/06 Rekursion 23 Fibonacci Zahlen in der

Mehr

Randomisierte Primzahltests Paul Gamper

Randomisierte Primzahltests Paul Gamper Randomisierte Primzahltests Paul Gamper Seminar im Wintersemester 2006/07 Probability and Randomization in Computer Science 07.02.2007, Aachen 1 Abstract Nach einer Einführung, in der ich kurz auf die

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Pixel oder Vektor? Die Vor- und Nachteile der verschiedenen Dateiformate. Langner Marketing Unternehmensplanung Metzgerstraße 59 72764 Reutlingen

Pixel oder Vektor? Die Vor- und Nachteile der verschiedenen Dateiformate. Langner Marketing Unternehmensplanung Metzgerstraße 59 72764 Reutlingen Die Vor- und Nachteile der verschiedenen Dateiformate Stand April 2016 Langner Marketing Unternehmensplanung Metzgerstraße 59 72764 Reutlingen T 0 71 21 / 2 03 89-0 F 0 71 21 / 2 03 89-20 www.langner-beratung.de

Mehr

Sichere Hashfunktionen

Sichere Hashfunktionen Sichere Hashfunktionen Prof. Dr.-Ing. Damian Weber Hochschule für Technik und Wirtschaft des Saarlandes Was tut eine Hashfunktion? Hashfunktionen (Definition) h: U V U = Universum, V = Hashwerte, V < Urbilder

Mehr

Wir können auch unkompliziert Ihre eigenen Zeichen, Logos, etc. in bestehende oder neue Schriftsätze integrieren. Kontakt: piktogramme@creadrom.

Wir können auch unkompliziert Ihre eigenen Zeichen, Logos, etc. in bestehende oder neue Schriftsätze integrieren. Kontakt: piktogramme@creadrom. . ü ü ü ü ü ü,, Ü ü,,, ä. ö,, ( 000, ). () - ä. ü,., ä ü, ü. ü ä. ö,,. ä. : @. ) ) -. >.. ) ü ä. ü. _ 0 _ (-) Ω ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) ) * * 5%... ä. ä ü ( ). Ω = Ω 0 4 5 6 0 4 5 6,,,, ü ö é ü.

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung

Mehr