Finanzwirtschaftliche Formeln

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Finanzwirtschaftliche Formeln"

Transkript

1 Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage, wieviel ei heutiger Wert i Jahre wert ist. We Sie z. B. heute eie Betrag zum geate Zis auf ei Koto alege, wieviel habe Sie i Jahre? Dazu multipliziere Sie de heutige Betrag mit dem Aufzisugsfaktor. AbF Abzisugsfaktor 1 (1 + i) Zist eie zuküftige Wert uter Berücksichtigug vo Zis ud Ziseszis auf de heutige Wert ab, hilft also bei der Frage, wieviel eie i Jahre fällige Zahlug heute wert ist. Welche Betrag müsste die heute zum geate Zis alege, damit Sie i Jahre de zuküftige Betrag erreiche? Dazu multipliziere Sie de zuküftige Betrag mit dem Abzisugsfaktor. RVF Restwertverteilugsfaktor i ( 1+ i) 1 Verteilt eie ach Jahre fällige Zahlug uter Berücksichtigug vo Zis ud Ziseszis auf die Laufzeit vo Jahre, sodass sich jährlich der gleiche Betrag ergibt. Dies lässt sich mit eiem Erbokel plausibel mache, der Ihe abietet, etweder i zeh Jahre eie Gesamterbschaft auszuzahle oder eie jährlich gleichbleibede Betrag über zeh Jahre hiweg. Multipliziere Sie de zuküftige Betrag mit dem Restwertverteilugsfaktor, ud sie erhalte die jährliche Zahlug. KWF Kapitalwiedergewiugsfaktor i (1 + i) (1 + i) 1 Wird auch als Verretugsfaktor oder Auitätefaktor bezeichet; verteilt eie heutige Wert i gleiche Auitäte uter Berücksichtigug vo Zis ud Ziseszis auf Jahre. Ei gutes Beispiel ist hier der Lottogewi als Eimalausschüttug oder Rete. Multipliziere Sie de heutige Betrag mit dem Auitätefaktor, ud sie erhalte die jährlich gleichbleibede Zahlug über Jahre. EWF Edwertfaktor ( 1+ i) 1 i Wird auch als Aufzisugssummefaktor bezeichet. Zist eie Zahlugsreihe aus jährlich gleichbleibede Zahluge (Auitäte) uter Berücksichtigug vo Zis ud Ziseszis auf. Der Edwertfaktor ist das Gegestück zum Restwertverteilugsfaktor, vergleiche Sie die Formel: Zähler ud Neer sid vertauscht. BWF Diskotierugssummefaktor (1 + i) 1 i (1 + i) Wird auch als Abzisugssummefaktor, Barwertfaktor, Retebarwertfaktor oder Kapitalisierugsfaktor bezeichet; zist eie Zahlugsreihe aus jährlich gleichbleibede Zahluge (Auitäte) uter Berücksichtigug vo Zis ud Ziseszis ab. Der Diskotierugssummefaktor ist das Gegestück zum Kapitalwiedergewiugsfaktor, vergleiche Sie die Formel: Zähler ud Neer sid vertauscht. - Seite 1

2 Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft SB g~üêéeåf ^ìc ^Äc osc htc btc _tc N NIMSMMMM MIVQPPVS NIMMMMMM NIMSMMMM NIMMMMMM MIVQPPVS O NINOPSMM MIUUVVVS MIQURQPT MIRQRQPT OIMSMMMM NIUPPPVP P NINVNMNS MIUPVSNV MIPNQNNM MIPTQNNM PINUPSMM OISTPMNO Q NIOSOQTT MITVOMVQ MIOOURVN MIOUURVN QIPTQSNS PIQSRNMS R NIPPUOOS MITQTORU MINTTPVS MIOPTPVS RISPTMVP QIONOPSQ S NIQNURNV MITMQVSN MINQPPSP MIOMPPSP SIVTRPNV QIVNTPOQ T NIRMPSPM MISSRMRT MINNVNPR MINTVNPR UIPVPUPU RIRUOPUN U NIRVPUQU MISOTQNO MINMNMPS MINSNMPS VIUVTQSU SIOMVTVQ V NISUVQTV MIRVNUVU MIMUTMOO MINQTMOO NNIQVNPNS SIUMNSVO NM NITVMUQU MIRRUPVR MIMTRUSU MINPRUSU NPINUMTVR TIPSMMUT NN NIUVUOVV MIROSTUU MIMSSTVP MINOSTVP NQIVTNSQP TIUUSUTR NO OIMNONVS MIQVSVSV MIMRVOTT MINNVOTT NSIUSVVQN UIPUPUQQ NP OINPOVOU MIQSUUPV MIMROVSM MINNOVSM NUIUUONPU UIUROSUP NQ OIOSMVMQ MIQQOPMN MIMQTRUR MINMTRUR ONIMNRMSS VIOVQVUQ NR OIPVSRRU MIQNTOSR MIMQOVSP MINMOVSP OPIOTRVTM VITNOOQV TB g~üêéeåf ^ìc ^Äc osc htc btc _tc N NIMTMMMM MIVPQRTV NIMMMMMM NIMTMMMM NIMMMMMM MIVPQRTV O NINQQVMM MIUTPQPV MIQUPMVO MIRRPMVO OIMTMMMM NIUMUMNU P NIOORMQP MIUNSOVU MIPNNMRO MIPUNMRO PIONQVMM OISOQPNS Q NIPNMTVS MITSOUVR MIOOROOU MIOVROOU QIQPVVQP PIPUTONN R NIQMORRO MITNOVUS MINTPUVN MIOQPUVN RITRMTPV QINMMNVT S NIRMMTPM MISSSPQO MINPVTVS MIOMVTVS TINRPOVN QITSSRQM T NISMRTUN MISOOTRM MINNRRRP MINURRRP UISRQMON RIPUVOUV U NITNUNUS MIRUOMMV MIMVTQSU MINSTQSU NMIORVUMP RIVTNOVV V NIUPUQRV MIRQPVPQ MIMUPQUS MINRPQUS NNIVTTVUV SIRNROPO NM NIVSTNRN MIRMUPQV MIMTOPTU MINQOPTU NPIUNSQQU TIMOPRUO NN OINMQURO MIQTRMVP MIMSPPRT MINPPPRT NRITUPRVV TIQVUSTQ NO OIORONVO MIQQQMNO MIMRRVMO MINORVMO NTIUUUQRN TIVQOSUS NP OIQMVUQR MIQNQVSQ MIMQVSRN MINNVSRN OMINQMSQP UIPRTSRN NQ OIRTURPQ MIPUTUNT MIMQQPQR MINNQPQR OOIRRMQUU UITQRQSU NR OITRVMPO MIPSOQQS MIMPVTVR MINMVTVR ORINOVMOO VINMTVNQ - Seite 2

3 Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft UB g~üêéeåf ^ìc ^Äc osc htc btc _tc N NIMUMMMM MIVORVOS NIMMMMMM NIMUMMMM NIMMMMMM MIVORVOS O NINSSQMM MIURTPPV MIQUMTSV MIRSMTSV OIMUMMMM NITUPOSR P NIORVTNO MITVPUPO MIPMUMPQ MIPUUMPQ PIOQSQMM OIRTTMVT Q NIPSMQUV MITPRMPM MIOONVON MIPMNVON QIRMSNNO PIPNONOT R NIQSVPOU MISUMRUP MINTMQRS MIORMQRS RIUSSSMN PIVVOTNM S NIRUSUTQ MISPMNTM MINPSPNR MIONSPNR TIPPRVOV QISOOUUM T NITNPUOQ MIRUPQVM MINNOMTO MINVOMTO UIVOOUMP RIOMSPTM U NIURMVPM MIRQMOSV MIMVQMNR MINTQMNR NMISPSSOU RITQSSPV V NIVVVMMR MIRMMOQV MIMUMMUM MINSMMUM NOIQUTRRU SIOQSUUU NM OINRUVOR MIQSPNVP MIMSVMOV MINQVMOV NQIQUSRSO SITNMMUN NN OIPPNSPV MIQOUUUP MIMSMMTS MINQMMTS NSISQRQUT TINPUVSQ NO OIRNUNTM MIPVTNNQ MIMROSVR MINPOSVR NUIVTTNOS TIRPSMTU NP OITNVSOQ MIPSTSVU MIMQSROO MINOSROO ONIQVROVT TIVMPTTS NQ OIVPTNVQ MIPQMQSN MIMQNOVT MINONOVT OQIONQVOM UIOQQOPT NR PINTONSV MIPNROQO MIMPSUPM MINNSUPM OTINRONNQ UIRRVQTV VB g~üêéeåf ^ìc ^Äc osc htc btc _tc N NIMVMMMM MIVNTQPN NIMMMMMM NIMVMMMM NIMMMMMM MIVNTQPN O NINUUNMM MIUQNSUM MIQTUQSV MIRSUQSV OIMVMMMM NITRVNNN P NIOVRMOV MITTONUP MIPMRMRR MIPVRMRR PIOTUNMM OIRPNOVR Q NIQNNRUO MITMUQOR MIONUSSV MIPMUSSV QIRTPNOV PIOPVTOM R NIRPUSOQ MISQVVPN MINSTMVO MIORTMVO RIVUQTNN PIUUVSRN S NISTTNMM MIRVSOST MINPOVOM MIOOOVOM TIROPPPR QIQURVNV T NIUOUMPV MIRQTMPQ MINMUSVN MINVUSVN VIOMMQPR RIMPOVRP U NIVVORSP MIRMNUSS MIMVMSTQ MINUMSTQ NNIMOUQTQ RIRPQUNV V OINTNUVP MIQSMQOU MIMTSTVV MINSSTVV NPIMONMPS RIVVROQT NM OIPSTPSQ MIQOOQNN MIMSRUOM MINRRUOM NRINVOVPM SIQNTSRU NN OIRUMQOS MIPUTRPP MIMRSVQT MINQSVQT NTIRSMOVP SIUMRNVN NO OIUNOSSR MIPRRRPR MIMQVSRN MINPVSRN OMINQMTOM TINSMTOR NP PIMSRUMR MIPOSNTV MIMQPRST MINPPRST OOIVRPPUR TIQUSVMQ NQ PIPQNTOT MIOVVOQS MIMPUQPP MINOUQPP OSIMNVNUV TITUSNRM NR PISQOQUO MIOTQRPU MIMPQMRV MINOQMRV OVIPSMVNS UIMSMSUU - Seite 3

4 Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft NMB g~üêéeåf ^ìc ^Äc osc htc btc _tc N NINMMMMM MIVMVMVN NIMMMMMM NINMMMMM NIMMMMMM MIVMVMVN O NIONMMMM MIUOSQQS MIQTSNVM MIRTSNVM OINMMMMM NITPRRPT P NIPPNMMM MITRNPNR MIPMONNR MIQMONNR PIPNMMMM OIQUSURO Q NIQSQNMM MISUPMNP MIONRQTN MIPNRQTN QISQNMMM PINSVUSR R NISNMRNM MISOMVON MINSPTVT MIOSPTVT SINMRNMM PITVMTUT S NITTNRSN MIRSQQTQ MINOVSMT MIOOVSMT TITNRSNM QIPRROSN T NIVQUTNT MIRNPNRU MINMRQMR MIOMRQMR VIQUTNTN QIUSUQNV U OINQPRUV MIQSSRMT MIMUTQQQ MINUTQQQ NNIQPRUUU RIPPQVOS V OIPRTVQU MIQOQMVU MIMTPSQN MINTPSQN NPIRTVQTT RITRVMOQ NM OIRVPTQO MIPURRQP MIMSOTQR MINSOTQR NRIVPTQOR SINQQRST NN OIURPNNT MIPRMQVQ MIMRPVSP MINRPVSP NUIRPNNST SIQVRMSN NO PINPUQOU MIPNUSPN MIMQSTSP MINQSTSP ONIPUQOUQ SIUNPSVO NP PIQROOTN MIOUVSSQ MIMQMTTV MINQMTTV OQIROOTNO TINMPPRS NQ PITVTQVU MIOSPPPN MIMPRTQS MINPRTQS OTIVTQVUP TIPSSSUT NR QINTTOQUMIOPVPVOMIMPNQTQMINPNQTQPNITTOQUOTISMSMUM Übersicht Ivestitiosrechug Kostevergleich: K K f + k v x Gewivergleich: G U - K Retabilitätsvergleich: Amortisatioszeitraum: Gewi + kalkulatorische Zise durchschittlicher Aschaffugswert Aschaffugswert Gewi + AfA Kapitalwertmethode: Auitätemethode: KW A KW AF E A t t t t 0 (1 + i) (Problem der Auswahl des richtige Kalkulatioszises) Übersicht Fiazierug Außefiazierug Iefiazierug Eigefiazierug Beteiliguge Abschreibuge Fremdfiazierug Kreditaufahme Bildug vo Rückstelluge - Seite 4

5 Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Übersicht Factorig ud Zessio Factorig Forderugsverkauf, geregelt durch Kaufvertrag Eigetumsübergag durch Übergabe der Forderuge Zessio Forderugsabtretug, geregelt durch Kreditvertrag Abtretug diet der Besicherug eies Kredites kei Aspruch auf Rückübertragug Aspruch auf Rückübertragug kei Akauf vo: Forderuge mit spezielle Ausfallrisike, Forderuge a Edkude, lagfristige Forderuge i. d. R. Überdeckug: Schwudmarge, Boitätsmarge offee oder stille Zessio Matel- ud Globalzessio Übersicht Termigeschäfte bedigte Eiem Vertragsparter steht das Recht zu, zwische Erfüllug ud Aufgabe des vereibarte Geschäfts zu wähle ubedigte Beide Vertragsparter sid verpflichtet, die beim Vertragsabschluss vereibarte Leistuge zum festgelegte Zeitpukt zu erbrige. börslich außerbörslich Kauf- Optio (Call) Verkaufs- Optio (Put) Die Bediguge des Vertrags sid stadardisiert Die Bediguge des Vertrags werde frei vereibart Optio Future Forward Swap Bewegugsbilaz Mittelherkuft Aktivmiderug, z. B. Verkauf vo Alagegüter Abbau der Vorräte (z. B. durch just-i-time) Miderug der Außestäde (z. B. durch Factorig) erhöhte Abschreibuge Passivmehrug, z. B. Aufahme euer Gesellschafter Erhöhug der Gewirücklage Erhöhug vo Rückstelluge Aufahme vo Darlehe höhere Iaspruchahme vo Lieferateziele Mittelverwedug Aktivmehrug, z. B. Kauf vo Alagegüter Mehrug der Vorräte (z. B. Nutzug vo Megerabatte) Erhöhug der Forderuge (z. B. Kudekredite als Marketig-Istrumet) Passivmiderug, z. B. Kapitalherabsetzug Gewiausschüttug Auflösug vo Rückstelluge Tilgug vo Darlehe vermehrte Skoto-Nutzug bei Lieferate - Seite 5

6 Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Kapazitätserweiterugeffekt Prizip des Staffelmodells Vorgag Jahr Azahl 1. Ivestitio 2. Ivestitio 3. Ivestitio 4. Ivestitio 5. Ivestitio... Etwicklug der flüssige Mittel Kapazitätserweiterugeffekt Prizip des summarische Modells Jahr Liquide Mittel (vor Ivestitio) Zugäge i Stück Abgäge i Stück Bestad i Stück Aschaffugswert Abschreibuge icht verwedete Mittel - Seite 6

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Factoring. Alternative zur Bankfinanzierung?

Factoring. Alternative zur Bankfinanzierung? Factorig Alterative zur Bakfiazierug? Beschreibug Factorig Im Factorigverfahre schließ e Uterehme ud Factor eie Vertrag, auf desse Grudlage alle kü ftige Forderuge des Uterehmes laufed gekauft werde. Zuvor

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10.

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10. Aufgabe Der Vechtaer Esse auf Räder -Service beötigt eie eue Küche zur Zubereitug der Mahlzeite. Sie köe zwische de Modelle A ud B wähle. Die Eiahme durch die Auslieferug der Esse sid uabhägig davo, welche

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrstuhl für Fiazwirtschaft Lösuge zu Kotrollfrage Fiazwirtschaft Prof. Dr. Thorste Poddig Fachbereich 7: Wirtschaftswisseschaft 2 Forme der Fremdfiazierug (Kapitel 6) Allgemeier Überblick 89. Ma ka die

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Baugrundstück für Individualisten

Baugrundstück für Individualisten Immobilie Baugrudstück für Idividualiste Courtage: Kaufpreis: Auf Afrage 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892 Email ifo@hausudso.de

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Medienzentrum. Bibliothek. Handreichung zur Literatursuche

Medienzentrum. Bibliothek. Handreichung zur Literatursuche Mediezetrum Bibliothek Hadreichug zur Literatursuche Versio 1.6 23.09.2014 Sie schreibe Ihre Abschlussarbeit? Sie suche Literatur zu Ihrem Thema? Da hilft Ihe usere Hadreichug zur Literatursuche (icht

Mehr

Formeln. für Betriebswirtschaftslehre/Rechnungswesen. Volkswirtschaftslehre. an Beruflichen Gymnasien und Fachoberschulen

Formeln. für Betriebswirtschaftslehre/Rechnungswesen. Volkswirtschaftslehre. an Beruflichen Gymnasien und Fachoberschulen Formel für Betriebswirtschaftslehre/Rechugswese Volkswirtschaftslehre a Berufliche Gymasie ud Fachoberschule Erfurt, de 0.0.20 2 Ihaltsverzeichis Marketig 3 2 Ivestitioe 4 3 Fiazierug 6 4 Rechugswese 8

Mehr

Finanzmathematische Modelle

Finanzmathematische Modelle Fiazmathematische Modelle Zum Zeitpukt der Erstellug dieses apitels Afag 7 war das absolute Zistief. Bei Guthabezissätze i der Größeordug vo, % macht die Betrachtug vieler asoste wichtiger fiazmathematischer

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07.

Wirtschaftsingenieurwesen Wirtschaftsmathematik Prüfungsleistung WI-WMT-P12 040703. Studiengang Fach Art der Leistung Klausur-Knz. Datum 03.07. Studiegag Fach Art der Leistug Klausur-Kz. Wirtschaftsigeieurwese Wirtschaftsmathematik Prüfugsleistug WI-WMT-P 040703 Datum 03.07.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich:

Mehr

Investition und Finanzierung

Investition und Finanzierung Ivestitio ud Fiazierug - Vorlesug 11 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche - 186 - Eiheitskursfeststellug Kursfeststellug ach dem Meistausführugsprizip durch Börsemakler. Kaufaufträge Verkaufsaufträge

Mehr

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++

Das FSB Geldkonto. Einfache Abwicklung und attraktive Verzinsung. +++ Verzinsung aktuell bis zu 3,7% p.a. +++ Das FSB Geldkoto Eifache Abwicklug ud attraktive Verzisug +++ Verzisug aktuell bis zu 3,7% p.a. +++ zuverlässig servicestark bequem Kompeteter Parter für Ihr Wertpapiergeschäft Die FodsServiceBak zählt

Mehr

Mit Ideen begeistern. Mit Freude schenken.

Mit Ideen begeistern. Mit Freude schenken. Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Darlehen: Gutschrift, Zinsen und Tilgung

Darlehen: Gutschrift, Zinsen und Tilgung Darlehe: Gutschrift, Zise ud Tilgug mk:@msitstore:c:\program%20files\buhl\mei%20büro\hadbuch\fibu.chm::/darlehe.htm Seite 1 vo 7 Darlehe: Gutschrift, Zise ud Tilgug Nachdem Sie mit eiem Kreditistitut oder

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor.

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor. - 12 - Aufgabe 3: (50 Pukte) Dyamische Ivestitiosrechug 1. Ivestitiosrechug 1.1 Kalkulatioszissatz: Gewichteter Mittelwert vo Fremd- ud Eigekapitalkoste: Für das Eigekapital würde der Ivestor als alterative

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

IM OSTEN VIEL NEUES... Kaufpreis: 350.000,00 Euro 3,57% incl. 19% MwSt für den Käufer

IM OSTEN VIEL NEUES... Kaufpreis: 350.000,00 Euro 3,57% incl. 19% MwSt für den Käufer Immobilie IM OSTEN VIEL NEUES... Courtage: Kaufpreis: 350.000,00 Euro 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892 Email ifo@hausudso.de

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Allgemeine Bedingungen für Swiss Life EuropaRente 2007 die Indexpolice! (aktienindizierte Rentenversicherung) (Tranche 2007E)

Allgemeine Bedingungen für Swiss Life EuropaRente 2007 die Indexpolice! (aktienindizierte Rentenversicherung) (Tranche 2007E) Allgemeie Bediguge für Swiss Life EuropaRete 2007 die Idexpolice! (aktieidizierte Reteversicherug) (Trache 2007E) Sehr geehrte Kudi, sehr geehrter Kude, 1 Welche Leistuge werde erbracht? die folgede Bediguge

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln I. Fiazierugsetscheiduge. Kurzfristige Liquiditätspositio fiazwirtschaftliche Etscheiduge Fiazierugsetscheidug: über Beschaffug, Umschichtug ud Verwedug vo Fiazmittel auf de Bestadskote Ivestitiosetscheidug:

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1.

Preisblatt. Service. über Netzanschlüsse Erdgas, Trinkwasser, Strom und Fernwärme, Baukostenzuschüsse und sonstige Kosten. Gültig ab 1. Preisblatt über Netzaschlüsse Erdgas, Trikwasser, Strom ud Ferwärme, Baukostezuschüsse ud sostige Koste Gültig ab 1. Jui 2015 Service Preisblatt Netzaschluss ud sostige Koste zu de Ergäzede Bestimmuge

Mehr

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001

) 100. C. Zinsrechnungen Lösungen. C. Zinsrechnungen Lösungen ... Arithm. Reihe mit a 1 = 0,05 und a n = 0,05 - (n-1) 0,001 Aufgabe C/4 Eie apitalalage verzise sich im erste Jahr mit 5 %, daach immt der Zisfuß jährlich um,1 Prozetpukte ab. Nach wie viele Jahre verdoppelt sich das apital bei jährlicher Verzisug mit a eifache

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Der Wald als Vermögen. und seine finanzmathematische Darstellung

Der Wald als Vermögen. und seine finanzmathematische Darstellung Der Wald als Vermöge ud seie fiazmathematische Darstellug 1. Wald als Vermöge 2. Ziseszisrechug 3. Reterechug 4. Zusammefassug Wald als Vermöge? 1. Wälder sid Quelle vo Eikomme => Vermöge 2. Dadurch sid

Mehr

Sorgen Sie flexibel vor und sparen Sie Steuern Die 3. Säule Private Vorsorge

Sorgen Sie flexibel vor und sparen Sie Steuern Die 3. Säule Private Vorsorge Sorge Sie fexibe vor ud spare Sie Steuer Die 3. Säue Private Vorsorge Die NAB-3 Vorsorge ergäzt die staatiche ud die berufiche Vorsorge, da diese zusamme ur eie Tei Ihres etzte Eikommes vor der Pesioierug

Mehr

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum

Studiengang Betriebswirtschaft Modul. Wirtschaftsmathematik Art der Leistung Studienleistung Klausur-Knz. BB-WMT-S Datum Studiegag Betriebswirtschaft Modul Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BB-WMT-S-07060 Datum 0.06.007 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Feldeffekttransistoren in Speicherbauelementen

Feldeffekttransistoren in Speicherbauelementen Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

KUNDENPROFIL FÜR GELDANLAGEN

KUNDENPROFIL FÜR GELDANLAGEN KUNDENPROFIL FÜR GELDANLAGEN Geldalage ist icht ur eie Frage des Vertraues, soder auch das Ergebis eier eigehede Aalyse der Fiazsituatio! Um Ihre optimale Beratug zu gewährleiste, dokumetiere wir gemeisam

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Tec7 Technologiemanagement

Tec7 Technologiemanagement Tec7 Techologiemaagemet Tec 7 bietet Techologiegesellschafte professioelle Beratug ü ber die ideale Strukturierug ud Nutzug vo alterative Fiazierugsmöglichkeite. Wir greife dazu auf Möglichkeite wie Beteiligugs-,

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Formelsammlung für. Betriebswirtschaftslehre/Rechnungswesen und Volkswirtschaftslehre. Beruflichen Gymnasien und Fachoberschulen

Formelsammlung für. Betriebswirtschaftslehre/Rechnungswesen und Volkswirtschaftslehre. Beruflichen Gymnasien und Fachoberschulen 1 Formelsammlug für Betriebswirtschaftslehre/Rechugswese ud Volkswirtschaftslehre a Berufliche Gymasie ud Fachoberschule Erfurt, de 01.06.2011 2 Ihaltsverzeichis 1 Marketig 3 2 Ivestitioe 4 3 Fiazierug

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

ffiduüffiffiffi NETHTS"UI{D tr tr tr tr tr tr tr tr tr ne Unterlagen/Belege E R B H R AT U N ü bei Kindern zwischen 18 und 25 Jahren:

ffiduüffiffiffi NETHTSUI{D tr tr tr tr tr tr tr tr tr ne Unterlagen/Belege E R B H R AT U N ü bei Kindern zwischen 18 und 25 Jahren: ffiduüffiffiffi NETHTS"UI{D 5TE Al lgemei LN E R B H R AT U N ü e Uterlage/Belege Bei Neuaufahme:Agabe der ldetifikatiosummer, Telefoummer/E-Mail-Adresse Steuerbescheid des Vorjahres ud - soweit Sie das

Mehr

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung

Musteraufgaben mit Lösungen zur Zinseszins- und Rentenrechnung Musteaufgabe mit Lösuge zu Ziseszis- ud Reteechug Dieses Dokumet ethält duchgeechete Musteaufgabe zu Ziseszis- ud Reteechug mit Lösuge, die ma mit eiem hadelsübliche Schultascheeche (mit LO- ud y x -Taste

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3.

Aufgabe 4.2. (a) lim 7 + = (b) lim. ( 2n 3 6n 2 + 3n 1. (c) lim n n 2 ( 1) n n 3) = lim. (d) n n + 1. lim. (e) n n. Aufgabe 4.3. Folge Eie Folge ist eie Aordug vo reelle Zahle. Die eizele Zahle heiße Glieder der Folge. Kapitel 4 Folge ud Reihe Formal: Eie Folge ist eie Abbildug a : N R, a Folge werde mit a i i oder kurz a i bezeichet.

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten

Festverzinsliche Wertpapiere. Kurse und Renditen bei ganzzahligen Restlaufzeiten Festverzslche Wertaere Kurse ud Redte be gazzahlge Restlaufzete Glederug. Rückblck: Grudlage der Kursrechug ud Redteermttlug 2. Ausgagsstuato 3. Herletug der Formel 4. Abhäggket vom Marktzsveau 5. Übugsaufgabe

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007 QUALITÄT ZAHLT SICH AUS. 13,0 MaxiRed Cotrol 23 52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! * Effektive Redite: 9,81 % p. a. uter Berücksichtigug des Ausgabeaufschlages (Aahme: Zahlug des Bous vo 52 % am Ede

Mehr

Bau- und Wohncenter Stephansplatz

Bau- und Wohncenter Stephansplatz Viele gute Grüde, auf us zu baue Bau- ud Wohceter Stephasplatz Parter der Bak Austria Silvia Nahler Tel.: 050505 47287 Mobil: 0664 20 22 354 Silvia.ahler@cityfiace.at Fiazservice GmbH Ralph Decker Tel.:

Mehr

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58.

GIBS. Übungsaufgaben zur Vertiefung. V1. Beschriften Sie die Konstruktionen! n n n n ' ' ' ' Modul 1.5. Geometrische Optik 1 58. eometrische Optik 1 58 Übugsaufgabe zur Vertiefug V1. Beschrifte Sie die Kostruktioe! ' ' ' ' ' ' ' ' Lehrerversio eometrische Optik 1 59 V2. Bei eiem Brillekroglas tritt Licht a der Rückfläche des lases

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Heute Kapitalanlage morgen ein Zuhause

Heute Kapitalanlage morgen ein Zuhause Immobilie Heute Kapitalalage morge ei Zuhause Courtage: Kaufpreis: Preis auf Afrage 3,57% icl. 19% MwSt für de Käufer hausudso Immobilie Moltkestr. 14 77654 Offeburg Tel. 0781 9190891 Fax 0781 9190892

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Istitut für tochastik Prof. Dr. N. Bäuerle Dipl.-Math.. Urba Lösugsvorschlag 9. Übugsblatt zur Vorlesug Fiazmathematik I Aufgabe Ei euartiges Derivat) Wir sid i eiem edliche, arbitragefreie Fiazmarkt,

Mehr

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten:

Die allgemeinen Daten zur Einrichtung von md cloud Sync auf Ihrem Smartphone lauten: md cloud Syc / FAQ Häufig gestellte Frage Allgemeie Date zur Eirichtug Die allgemeie Date zur Eirichtug vo md cloud Syc auf Ihrem Smartphoe laute: Kototyp: Microsoft Exchage / ActiveSyc Server/Domai: mailsyc.freeet.de

Mehr

VWA Köln SS 2006 Unternehmensfinanzierung

VWA Köln SS 2006 Unternehmensfinanzierung SS 26 Teil C Dozet: e-mil: pvhite@wiso.ui-koel.de Gliederug C C: Fizierugsetscheiduge. Fizierugsrte 2. xtere Fizierug 2. Fizierugstitel ud Märkte 2.2 Aspekte der Fizierugsbeziehug 2.3 Beteiligugsfizierug

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005

Übersicht. über die Vorlesung Solarenergie. Vorläufige Terminplanung Vorlesung Solarenergie WS 2005/2006 Stand: 10.11.2005 Übersicht über die Vorlesug Solareergie Vorläufige Termiplaug Vorlesug Solareergie WS 2005/2006 Stad: 10.11.2005 Termi Thema Dozet Di. 25.10. Wirtschaftliche Lemmer/Heerig Aspekte/Eergiequelle Soe Fr.

Mehr

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot

Abschlussprüfung zum/zur Finanzplaner/in mit eidg. Fachausweis. Formelsammlung. Autor: Iwan Brot Abschlussprüfug zum/zur Fiazplaer/i mit eidg. Fachausweis Formelsammlug Autor: Iwa Brot Diese Formelsammlug wird a de Olie- ud a de müdliche Prüfuge abgegebe soweit erforderlich. A der schriftliche Klausur

Mehr

Wenn Sie Fragen haben, melden Sie sich bitte bei uns. Wir sind gern für Sie da.

Wenn Sie Fragen haben, melden Sie sich bitte bei uns. Wir sind gern für Sie da. ING-DiBa AG 60628 Frakfurt am Mai Mustervermittler Musterstr. 1 61234 Musterstadt ING-DiBa AG Immobiliefiazierug Theodor-Heuss-Allee 2 60486 Frakfurt am Mai Telefo 069 / 50 60 30 90 16.03.2016 Vorgagsummer:

Mehr

Das kollektive Risikomodell. 12. Mai 2009

Das kollektive Risikomodell. 12. Mai 2009 Kirill Rudik Das kollektive Risikomodell 12. Mai 2009 4.1 Eileitug Wir betrachte i diesem Kapitel die Gesamtforderuge im Laufe eies Jahres. Beim Abschluss eies Versicherugsvertrages weiß der Versicherer

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

Die OÖGKK auf einen Klick Information und e-services für Unternehmen

Die OÖGKK auf einen Klick Information und e-services für Unternehmen PARTNERIN DER WIRTSCHAFT GEMEINSAM STARTEN IHR ERSTER MITARBEITER ERSTMALS DIENSTNEHMER ANMELDEN DIE E-SERVICES DER OÖGKK BEITRAGSGRUPPE ERMITTELN ELDA DAS ELEKTRONISCHE DATENAUSTAUSCHSYSTEM KRANKENSTANDSBESCHEINIGUNG

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Die Kfz-Versicherung ist mit drei neuen Modellen am Start! Ob compact, classic oder comfort jeder Tarif ist eine Klasse für sich!

Die Kfz-Versicherung ist mit drei neuen Modellen am Start! Ob compact, classic oder comfort jeder Tarif ist eine Klasse für sich! Ge h sc ä s ft pa rt e f I r o AL _ KFZ Die Kfz-Versicherug ist mit drei eue Modelle am Start! Ob compact, classic oder comfort jeder Tarif ist eie Klasse für sich! AL_KFZ: Usere Kraftfahrtversicherug

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Südwestfale Fachhochschule Müster Hochschule Bochum Verbudstudiegag Techische Betriebswirtschaft Hochschule Bochum Hochschule für Techik ud Wirtschaft Prof. Dr. W. Hufagel Prof. Dr. W. Rimmele

Mehr

Vertragsangebot für Darlehenskonto 2004760786

Vertragsangebot für Darlehenskonto 2004760786 Für Ihre Uterlage Vertragsagebot für Darleheskoto 2004760786 Darlehesehmer Max Musterma Vorgagsummer 0840759173 (0) Ihr Darlehesatrag vom 01.06.2015 Beleihugsobjekt Musterstr. 100, 12345 Musterstadt Nutzugsart

Mehr

Skript Mathematik. Inhaltsverzeichnis

Skript Mathematik. Inhaltsverzeichnis Skript Mathematik Ihaltsverzeichis Folge ud Reihe.... Arithmetische Folge ud Reihe.... Geometrische Folge ud Reihe.... Aufgabe... Zis- ud Ziseszisrechug...4. Eifache Verzisug...4. Ziseszisrechug...5. Gemischte

Mehr