Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt"

Transkript

1 Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015

2 II

3 Inhaltsverzeichnis 5 Grundlagen Funktionen einer Variablen spezielle Funktionen Potenz- und Wurzelfunktionen Eponential- und Logarithmusfunktionen Komplee Zahlen (ohne Script) Polnome Polnome über R Hornerform Nullstellen und Faktorzerlegung Polnome über C Rationale Funktionen Definition und Eigenschaften: Polstellen, Asmptoten und Lücken Funktionen in der Wirtschaftsmathematik Angebots-Funktion Preis-Absatz-Funktion Erlös- bzw. Umsatz-Funktion Kostenfunktion Stückkostenfunktion variable Stückkosten Gewinnfunktion, Deckungsbeitrag Stückgewinnfunktion Produktionsfunktion Materialverbrauchsfunktion März 2015 III

4 Kapitel 5 Grundlagen 5.1 Funktionen einer Variablen (Version vom 2. März 2015) Funktionen: Grundbegriffe Eine Funktion f ist eindeutig bestimmt durch die Angabe der folgenden drei Größen A = D(f): Menge, Definitionsbereich von f B: Menge f(a) = b: Bildungsvorschrift, die jedem Element a A eindeutig ein Element b B zuordnet Bezeichnungen/ Schreibweisen: a A Argument von f b = f(a) Bild von a, Funktionswert von f an der Stelle a. W (f) = {f(a) a A} Wertebereich von f G f := {(, ) D(f) W (f) = f()} Graph der Funktion f. f() wird nach f() abgebildet f : A B f bildet ab von A nach B f : D(f) C B f ist eine Abbildung aus C nach B Beispiele: 1. f : R R, f() = 2 D(f) = R, W (f) = R + Bemerkung: B = R, also B W (f) 1

5 2 2 März f : D(f) R R +, f() = D(f) = R +, W (f) = R +, also f : R + R +, f() = Achtung! per Definition ist A = D(f) also nicht richtig: f : R R, f() = 3. f : D(f) R R : f() = ± 1 2 Achtung! Das ist keine Funktion. Weitere Definitionen Bijektion Beispiele: zu jedem b B gibt es genau ein a A mit f(a) = b Bezeichnung Bedeutung: smbolisch Erklärung Injektion zu jedem b B gibt es höchstens ein a A mit f(a) = b, d.h. a 1 a 2 f(a 1 ) f(a 2 ) f ist eine eineindeutige Abbildung, d.h. zu verschiedenen Argumenten gehören verschiedene Bilder f ist eine eineindeutige Abbildung auf B 1. f : R R, f() = 2 D(f) = R, W (f) = R + f() ist nicht injektiv: z.b. b = 1 B hat zwei zugehörige Argumente: f( 1) = f(1) = 1; 2. f : D(f) R R +, f() = f() ist bijektiv. 3. f : R R : f() = e (Skizze) ist nicht bijektiv, weil es b B gibt, für die kein Urbild a A eistiert, z.b. b = 1 aber f : R (0, ) : f() = e ist bijektiv Bemerkung: Falls f : A B bijektiv ist, so eistiert die inverse Abbildung g = f 1 : B A mit g(b) = a f(a) = b a A (f 1 (f(a)) = a Ermittlung der inversen Abbildung: Umstellen der Zuordnung nach, eventuell Variablentausch 1. f : D(f) R R +, = f() = = 2 mit R + und R + = D(f), also

6 2 März g : R + R +, = g() = 2 nach Variablentausch: g : R + R +, = g() = 2 2. f : R (0, ) : = f() = e = ln mit (0, ) und R, also g : (0, ) R : = g() = ln nach Variablentausch: g : (0, ) R : g() = ln Bemerkung: Der Definitionsbereich D(f) ist gleich dem Wertebereich W (g) der inversen Funktion und der Wertebereich W (f) ist gleich dem Definitionsbereich D(g) der inversen Funktion. 3 2 = f( ) = e 3 2 = f( ) = e 1-1 = f ( ) = ln = f ( ) = ln -3-3 Abbildung 5.1: Die Eponentialfunktion = f() = e und ihre Umkehrfunktion = f 1 () = ln() und rechts deren Bild = ln() nach Vertauschen der Variablen Tpen von Bildungsvorschriften: implizit gegebene Funktion F (, ) = 0 die Bildungsvorschrift ist in Form einer Gleichung gegeben, die nicht nach der abhängigen Variablen aufgelöst ist eplizit gegebene Funktion = f() die Bildungsvorschrift ist in Form einer Gleichung gegeben, die nach der abhängigen Variablen aufgelöst ist zusammengesetzte Funktion Funktion ist abschnittsweise defi < < z.b. f() = < 550 niert

7 4 2 März 2015 Beispiel: f : D(f) R + R + : = f() mit = 0 implizite Darstellung, ergibt eplizite Darstellung: f : D(f) R + R + : = f() = 1 2 Funktionen: Eigenschaften und Operationen Monotonie von Funktionen: I D(f) f monoton wachsend auf I, f streng monoton wachsend auf I, f monoton fallend auf I, f streng monoton fallend auf I, 1, 2 I gilt: aus 1 < 2 folgt f( 1 ) f( 2 ) f( 1 ) < f( 2 ) f( 1 ) f( 2 ) f( 1 ) > f( 2 ) Krümmung von Funktionen: 1 < 2, I = [ 1, 2 ] D(f) f konve, f streng konve, f konkav, f streng konkav, s [0, 1] und = s 1 +(1 s) 2, gilt: f() s f( 1 ) + (1 s) f( 2 ) f() < s f( 1 ) + (1 s) f( 2 ) f() s f( 1 ) + (1 s) f( 2 ) f() > s f( 1 ) + (1 s) f( 2 ) f konve f konkav Abbildung 5.2: Konvee und konkave Funktionen Progressiv und degressiv steigende bzw. fallende Funktionen: f progressiv steigend f monoton steigend und konve f degressiv steigend f monoton steigend und konkav f progressiv fallend f monoton fallend und konkav f degressiv fallend f monoton fallend und konve

8 2 März f progressiv wachsend f degressiv wachsend f progressiv fallend f degressiv fallend Abbildung 5.3: Wachstumseigenschaften von Funktionen Operationen: Gleichheit f = g D(f) = D(g) f() = g() D(f)) f ist Einschränkung von g D(f) D(g) f() = g() D(f)) auf D(f), g ist Erweiterung von f auf D(g) verkettete, mittelbare h = g f h() = g(f()), Funktion wobei W (f) D(g) D(h) = D(f) f heißt innere Funktion, g heißt äußere Funktion; Nullstellen von f i Lösungen der Gleichung f() = 0, ( i D(f)) Translation, Verschiebung = f( a) + b Verschiebung des Graphen von = f() um den Vektor (a, b) T Streckung = b f( ) Streckung des Graphen von = f() um a den Faktor a parallel zur -Achse und den Faktor b parallel zur -Achse Stauchung Streckung mit a < 1 und/oder b < 1 Spiegelung Streckung mit a < 0 und/oder b < 0 1. g : R R, g() = 2 f : R + R, f() = 2 also: f ist Einschränkung von g auf R + 2. f() = e, g() = f g = f(g()) = e 2 +1, g f = g(f()) = (e ) 2 + 1

9 6 2 März spezielle Funktionen Potenz- und Wurzelfunktionen Potenzfunktionen f() = n, n {2, 3,...} Wurzelfunktionen f() = n, n {2, 3,...} { R D f = R, W f = + n gerade R n ungerade D f = R +, W f = R + sind die Umkehrfunktionen zu den Potenzfunktionen, wenn bei diesen der Definitionsbereich auf R + eingeschränkt wird! (Bemerkung: Es ist nicht zwingend notwendig, die Wurzelfunktionen f() = n mit ungeradem n nur für nichtnegative zu definieren, man kann diese Funktionen auch für beliebige R definieren. Die Einschränkung auf nichtnegative Argumente bringt aber eine Reihe von wünschenswerten Eigenschaften. ) Es gilt damit: Definition: = f 1 () = 1 3, = f2 () = 2 6 = 6 2, = f 3 () = 2 6 = ( 6 ) 2 f : D(f) R R heißt gerade Funktion, sofern f() = f( ) für alle D(f) gilt. f : D(f) R R heißt ungerade Funktion, sofern f() = f( ) für alle D(f) gilt Eponential- und Logarithmusfunktionen Eponentialfunktion f() = a (a > 0) D f = R, W f = (0, ) Logarithmusfunktion f() = log a () D f = (0, ), W f = R Umkehrfunktion zur Eponentialfkt. e Funktion f() = e, e = natürlicher Logarithmus f() = ln() Umkehrfunktion zur e Funktion. Es gilt = e = ln(). Wegen log a () = ln() genügt es, sich mit der e Funktion und ihrer Umkehrfunktion zu ln(a) beschäftigen.

10 2 März = e = e 3 2 = ln 5 3 = e 1 = 1_ 3 ln = - 1_ 2 ln -2 Abbildung 5.4: Eponential- und Logarithmusfunktion Es gelten: Potenz-Gesetze: e + = e e e = e e e = (e ) Logarithmen-Gesetze: ln( ) ( ) = ln() + ln() ln = ln() ln ln( ) = ln() 5.3 Komplee Zahlen (ohne Script) - s. Vorlesung -

11 8 2 März Polnome Polnome über R Eine Funktion p : R R heißt Polnom vom Grade n, wenn es Zahlen a 0,..., a n R, a n 0 derart gibt, daß p() = a 0 + a 1 + a a n n = n a k k für alle R gilt. k=0 Bezeichnungen: a k für k = 0,..., n: Koeffizienten des Polnoms n: Grad des Polnoms Regeln: a) Addition und Subtraction n n a k k ± b k k = k=0 k=0 n (a k ± b k ) k k=0 b) Koeffizientenvergleich n a k k = k=0 n b k k a k = b k (0 k n) k=0 einfache Polnome: lineare Funktionen, quadratische Funktionen Hornerform Ziel: vereinfachte Funktionswertberechnung bisher: 2n 1 Multiplikationen, n Additionen Hornerform eines Polnoms f() = n a k k (W.G.Horner, ): k=0 f() = (... (( a } {{ } n + a n 1 ) + a n 2 ) + + a 1 ) + a 0 n 1 Beispiel: f() = Hornerschema zur Funktionswertberechnung an der Stelle = b a n a n 1 a n 2... a 1 a 0 + c n b c n 1 b... c 2 b c 1 b b c n = a n c n 1 c n 2 c 1 f(b)

12 2 März Es werden n Multiplikationen und n Additionen benötigt. weitere Anwendung: Division von f() durch b f() = ( b)(c n n 1 + c n 1 n c 2 + c 1 ) + f(b) Bemerkung: Ist b Nullstelle von f(), so gilt f() = ( b) g() R wobei g() wieder ein Polnom ist Nullstellen und Faktorzerlegung Als Nullstelle einer Funktion f : D(f) R R bezeichnet man jede Lösung der Gleichung f() = 0, D(f). Betrachten Polnom p : R R (a) b R ist Nullstelle von p() es eistiert ein Polnom h() mit p() = ( b)h(). (b) b R heißt l-fache Nullstelle von p(), sofern ein Polnom g() eistiert mit p() = ( b) l g(). (c) l heißt dann die Vielfachheit von b. reelle Faktorzerlegung: Für jedes Polnom p : R R eistiert die Faktorzerlegung p() = a n ( b 1 ) l 1... ( b r ) l r ( 2 + c 1 + d 1 ) k 1... ( 2 + c s + d s ) k s mit den reellen Nullstellen b i der Vielfachheit l i (i = 1,..., r) und den quadratischen Polnomen 2 + c i + d i der Vielfachheit k i (i = 1,..., s), die in R keine Nullstelle haben. Bemerkung: Kennt man eine Nullstelle b des Polnoms p(), so bestimmt man h() mit p() = ( b) a h(), z.b. durch wiederholte Anwendung des Hornerschemas (erweitertes Hornerschema) und versucht dann Nullstellen von h() zu ermitteln. Beispiel: p() = reelle Faktorzerlegung: p() = ( 1) 2 ( )

13 10 2 März Polnome über C Eine Funktion p : C C heißt Polnom vom Grade n, wenn es Zahlen a 0,..., a n C, a n 0 derart gibt, daß p(z) = a 0 + a 1 z + a 2 z a n z n = n a k z k für alle z C gilt. k=0 Die Regeln für Polnome über C sind analog den Regeln für Polnome über R. Beispiel: Fundamentalsatz der Algebra: Jedes komplee Polnom p(z) = n k=0 p(z) = a n (z w 1 ) l 1 (z w 2 ) l 2... (z w k ) l k a k z k besitzt die Faktorisierung mit den verschiedenen Nullstellen w i C der Vielfachheit l i (i = 1,..., k) und l 1 + l l k = n. Ein Polnom vom Grade n 1 besitzt also genau n Nullstellen in C, wobei jede Nullstelle so oft gezählt wird, wie ihre Vielfachheit angibt. Beispiel: (s.o.) p() = reelle Faktorzerlegung: p() = ( 1) 2 ( ) komplee Faktorzerlegung: p() = ( 1) 2 ( (2 + i))( (2 i)) Bemerkung: Jedes Polnom über R kann als Polnom über C aufgefaßt werden. Satz: Mit jeder Nullstelle w eines Polnoms p mit reellen Koeffizienten ist auch die konjugiert komplee Zahl w eine Nullstelle von p, d.h. die nicht reellen Nullstellen von p treten stets als konjugierte Paare w und w auf. Beispiel: p() = Rationale Funktionen Definition und Eigenschaften: Seien p() und q() Polnome über R. f() = p() heißt gebrochen rationale Funktion. q() Satz: Jede rationale Funktion f() = p() mit Zählergrad Nennergrad läßt sich q() darstellen als p() r() = h()+ mit einem Polnom h() und einem Restpolnom q() q() r() mit Grad r < Grad q (echt gebrochen rationale Funktion).

14 2 März Beispiel: p() = 3 1, q() = 1 mit und ohne Horner Bemerkung: Es gilt lim f() = lim h(), d.h. h() ist eine Asmptote für f() ± ± Abbildung 5.5: Polstellen gerader (links, ohne Vorzeichenwechsel...) und ungerader Ordnung (rechts, mit Vorzeichenwechsel in den Funktionswerten) Polstellen, Asmptoten und Lücken Eine Polstelle einer Funktion liegt vor, wenn die Beträge der Werte der Funktion in der Umgebung dieser Stelle beliebig groß werden, d.h. die Werte der Funktion streben gegen + oder. Der Graph der Funktion besitzt an dieser Stelle eine vertikale Asmptote. Für rationale Funktionen f() = p() q() gilt Nullstellen der Funktion = f() sind alle Nullstellen des Zähler-Polnoms p() im Definitionsbereich D(f) Polstellen und hebbare Unstetigkeits-Stellen der Funktion = f() sind alle Nullstellen des Nenner-Polnoms. Wenn j eine k n -fache Nullstelle des Nenner-Polnoms q() (k n > 0) und eine k z -fache Nullstelle des Zähler-Polnoms p() ist, dann gilt: k z k n = j ist eine hebbare Unstetigkeit, und k n > k z = j ist eine Polstelle (k n k z )-ter Ordnung. Beispiele: f() = 1/( 2), f() = 1/( 2) 2, f() = ( 2)2 (+1) 2 ( 2)

15 12 2 März Funktionen in der Wirtschaftsmathematik s.ab 3 s. auch Funktionen.te (Wikipedia) Angebots-Funktion Bedeutung: Eigenschaften: Beispiel: = (p), p D() = R + (gewinnmaimierende) Angebots-Menge in Abhängigkeit vom erzielbaren Preis (bei vollkommener Konkurrenz); positiv, monoton steigend, i.a. mit Sättigungswert; (p) = 10 (1 e 2 p 3 ), p D() = [2, ); s. Folie Bemerkung: ökonomisch nur sinnvoll für Preis-Absatz-Funktion Bedeutung: Eigenschaften: = (p), p D() = {p R + (p) 0} p = p(), D(p) = { R + p() 0} Absatzmenge in Abhängigkeit vom Preis bzw. erzielbarer Preis in Abhängigkeit von der abzusetzenden Menge; beide Funktionen sind monoton fallend und zueinander invers (Umkehrfunktionen); Beispiel: (p) = p p() = ; p D() = [0, 100], D(p) = [0, 250]; Erlös- bzw. Umsatz-Funktion E() = p(), E(p) = p (p), D(E()) = D(p) D(E(p)) = D() Bedeutung: Eigenschaften: Beispiel: Erlös/Umsatz in Abhängigkeit vom Absatz oder vom Preis; im monopolistischen Fall degressiv steigend bis zum Erlös- Maimum, dann progressiv fallend; im polpolistischen Fall (p konstant) linear steigend; E() = , D(E()) = [0, 250], s. Folie E(p) = 250p 2.5p 2, p D(E(p)) = [0, 100],

16 2 März E p 6000 E = E( ) = ( p) p = p( ) p Abbildung 5.6: Graph einer Angebotsfunktion (links) sowie einer Preis-Absatz- Funktion und der zugehörigen Erlösfunktion eines monopol. Unternehmens (rechts) Kostenfunktion K() = K f + K v (), D(K) = R +, K f 0 : Fikosten, K v () : variable Kosten Bedeutung: Produktionskosten in Abhängigkeit von der Produktionsmenge; Eigenschaften: positiv, monoton steigend; Eine Kostenfunktion heißt ertragsgesetzlich, wenn sie auf [0, S ] degressiv und auf [ S, ) progressiv steigend ist, S heißt dann Schwelle des Ertragsgesetzes; Beispiel: K() = , D(K) = R +, S = 100 3, K f = 800; K v () = ; s. Folie Stückkostenfunktion k() = K(), D(k) = (0, )

17 14 2 März 2015 Bedeutung: Produktionskosten je Mengeneinheit in Abhängigkeit von der Produktionsmenge; Eigenschaften: positiv, monoton fallend auf (0, o ], monoton steigend auf [ o, ), das Minimum k min = k( o ) = p o der Stückkosten wird beim Output o angenommen und heißt Betriebsoptimum, es stellt (langfristig) die untere Schranke p o für den Abgabepreis des Produktes dar, nur oberhalb dieser Schranke kann langfristig ohne Verlust produziert werden. Beispiel: k() = , D(k) = (0, ) o = , p o = k( o ) = ist langfr. Preisminimum. K k K = K( ) K = K( ) k = k( ) E = E( ) G = G( ) Abbildung 5.7: Graph einer ertragsgesetzlichen Kostenfunktion und der zugehörigen Stückkostenfunktion (links) sowie Graph einer Kostenfunktion, einer Erlösfunktion und der zugehörigen Gewinnfunktion (rechts) variable Stückkosten k v () = K v(), D(k) = (0, )

18 2 März Bedeutung: variabler Teil der Produktionskosten, bezogen auf eine Mengeneinheit des Outputs, in Abhängigkeit von der Produktionsmenge; Eigenschaften: Beispiel: positiv, monoton fallend auf (0, m ], monoton steigend auf [ m, ), das Minimum k vmin = k v ( m ) = p m der variablen Stückkosten heißt Betriebsminimum, es stellt (kurzfristig) die untere Schranke p m für den Abgabepreis des Produktes dar, nur oberhalb dieser Schranke können zumindest noch die laufenden Kosten der Produktion gedeckt werden. k v () = , D(k) = (0, ), m = 50, p m = k v ( m ) = 35 ist kurzfristiges Preisminimum, bei dem nur noch die laufenden Kosten gedeckt werden! Gewinnfunktion, Deckungsbeitrag Gewinnfunktion G() = E() K(), D(G) = D(p), Deckungsbeitrag D() = E() K v () = G() + K f, D(D) = D(p) Bedeutung: Gewinn (Deckungsbeitrag) in Abhängigkeit vom Output Eigenschaften: monoton steigend bis zum Output Gma = Dma mit maimalem Gewinn/Deckungsbeitrag, danach progressiv fallend; die Nullstellen 1 und 2 der Gewinnfunktion heißen untere/obere Gewinnschwelle, wenn gilt G() 0 [ 1, 2 ]; Beispiel: G() = , D(G) = [0, 250] Gma = , G ma = , D ma = , 1 = , 2 = , s. Folie Stückgewinnfunktion g() = G() = p() k(), D(g) = D(p) \ {0} Bedeutung: Gewinn je Mengeneinheit in Abhängigkeit vom Output Eigenschaften: monoton steigend bis zum Output gma mit mamalem Stückgewinn, danach progressiv fallend Beispiel: g() = , D(g) = (0, 250] gma = , g ma = Produktionsfunktion (r), D((r)) = (0, )

19 16 2 März 2015 Bedeutung: Output in Abhängigkeit vom Input r Eigenschaften: monoton steigend, meist bis zu einer Sättigungsgrenze ma 1 Beispiel: (r) = ( 1 1 ) 2, r (0, ), 2 +r 2 W f = (0, 4), s. Folie Materialverbrauchsfunktion Bedeutung: Eigenschaften: r(), D(r) = [0, ma ) Verbrauch des Inputfaktors r in Abhängigkeit vom Output Umkehrfunktion der Produktionsfunktion monoton steigend Beispiel: r() = 4 (2 ) 2, D(r) = (0, 4)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen .. Prüfungsaufgaben zu Eponential- und Logarithmusfunktionen Aufgabe : Funktionsanpassung bei Eponentialfunktionen () Bestimme die Gleichung der Eponentialfunktion f() = c a, deren Schaubild durch die

Mehr

2.4 Exponential - und Logarithmus - Funktionen

2.4 Exponential - und Logarithmus - Funktionen 25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4 2. Übungsaufgabe zur Untersuchung ökonomischer Funktionen Ein Unternehmen kann sein Produkt zum Preis von 12 GE / ME verkaufen. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben:

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

Formelsammlung Grundlagen der Wirtschaftsmathematik

Formelsammlung Grundlagen der Wirtschaftsmathematik Ausgabe 2007-09 Formelsammlung Grundlagen der Wirtschaftsmathematik 1 Stichwortverzeichnis (mit Seitenzahlen) Abschreibungen 14 Formelzeichen 2 Grenzerlös, Grenzumsatz 6 Grenzfunktionen, weitere 7 Grenzgewinn

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1 4 Reelle Funktionen in einer Veränderlichen 4.1 Definition Es seien M 1 und M 2 zwei Mengen reeller Zahlen. Ordnet man jedem Element 1 M 1 durch eine Zuordnungsvorschrift f genau ein Element M 2 zu, so

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polypol

Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polypol Michael Buhlmann Schülerkurs Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polpol An der Schnittstelle zwischen Wirtschaftsunternehmen und Markt (im wirtschaftswissenschaftlichen

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

15 Hauptsätze über stetige Funktionen

15 Hauptsätze über stetige Funktionen 15 Hauptsätze über stetige Funktionen 15.1 Extremalsatz von Weierstraß 15.2 Zwischenwertsatz für stetige Funktionen 15.3 Nullstellensatz von Bolzano 15.5 Stetige Funktionen sind intervalltreu 15.6 Umkehrfunktionen

Mehr

11 Logarithmus und allgemeine Potenzen

11 Logarithmus und allgemeine Potenzen Logarithmus und allgemeine Potenzen Bevor wir uns mit den Eigenschaften von Umkehrfunktionen, und insbesondere mit der Umkehrfunktion der Eponentialfunktion ep : R R + beschäftigen, erinnern wir an den

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B.

x A, x / A x ist (nicht) Element von A. A B, A B A ist (nicht) Teilmenge von B. A B, A B A ist (nicht) echte Teilmenge von B. SBP Mathe Grundkurs 1 # 0 by Clifford Wolf # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das Lernen mit Lernkarten

Mehr

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1

SBP Mathe Grundkurs 1 # 0 by Clifford Wolf. SBP Mathe Grundkurs 1 SBP Mathe Grundkurs 1 # 0 by Clifford Wolf SBP Mathe Grundkurs 1 # 0 Antwort Diese Lernkarten sind sorgfältig erstellt worden, erheben aber weder Anspruch auf Richtigkeit noch auf Vollständigkeit. Das

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 5. Juni 2016 Definition 5.21 Ist a R, a > 0 und a 1, so bezeichnet man die Umkehrfunktion der Exponentialfunktion x a x als

Mehr

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen

Kurvendiskussion Gebrochenrationale Funktion Aufgaben und Lösungen Kurvendiskussion Gebrochenrationale Funktion Aufgaben und http://www.fersch.de Klemens Fersch 7. September 0 Inhaltsverzeichnis Gebrochenrationale Funktion Gebrochen rationale Funktion Zählergrad < Nennergrad

Mehr

Differentialrechnung

Differentialrechnung Kapitel 7 Differentialrechnung Josef Leydold Mathematik für VW WS 205/6 7 Differentialrechnung / 56 Differenzenquotient Sei f : R R eine Funktion. Der Quotient f = f ( 0 + ) f ( 0 ) = f () f ( 0) 0 heißt

Mehr

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt

Mathematik M 1/Di WS 2001/02 1. Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D. Sei a D. f heißt stetig in a, falls gilt Mathematik M 1/Di WS 2001/02 1 b) Stetigkeit Sei f : D R eine Funktion mit nichtleerem Definitionsbereich D Sei a D f heißt stetig in a, falls gilt lim f() = f(a) a f heißt stetig auf D, wenn f in jedem

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

17 Logarithmus und allgemeine Potenz

17 Logarithmus und allgemeine Potenz 7 Logarithmus und allgemeine Potenz 7. Der natürliche Logarithmus 7.3 Die allgemeine Potenz 7.4 Die Exponentialfunktion zur Basis a 7.5 Die Potenzfunktion zum Exponenten b 7.6 Die Logarithmusfunktion zur

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

1 Funktionen. 1.1 Definitionen und Bezeichnungen

1 Funktionen. 1.1 Definitionen und Bezeichnungen 1 1 Funktionen 1.1 Definitionen und Bezeichnungen Eine Funktion f ist eine eindeutige Abbildung einer Menge X in eine andere Y. Ist x X, dann ist f(x) y Y das Bild des Elementes x. x heißt das Urbild des

Mehr

F u n k t i o n e n Potenzfunktionen

F u n k t i o n e n Potenzfunktionen F u n k t i o n e n Potenzfunktionen Die Kathedrale von Brasilia steht in der brasilianischen Hauptstadt Brasilia wurde von Oscar Niemeyer (*907 in Rio de Janeiro). Die Kathedrale von Brasilia besteht

Mehr

MatheBasics Teil 3 Grundlagen der Mathematik

MatheBasics Teil 3 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 3 Grundlagen der Mathematik Version vom 05.02.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f.

Stetige Funktionen. Definition. Seien (X, d) und (Y, ϱ) metrische Räume und f : X Y eine Abbildung. D(f) X sei der Definitionsbereich von f. Stetige Funktionen Abbildungen f : X Y, wobei X und Y strukturierte Mengen sind (wie z.b. Vektorräume oder metrische Räume), spielen eine zentrale Rolle in der Mathematik. In der Analysis sind Abbildungen

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Potenzen - Wurzeln - Logarithmen

Potenzen - Wurzeln - Logarithmen Potenzen - Wurzeln - Logarithmen Anna Geyer 4. Oktober 2006 1 Potenzrechnung Potenz Produkt mehrerer gleicher Faktoren 1.1 Definition (Potenz): (i) a n : a... a, n N, a R a... Basis n... Exponent od. Hochzahl

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis

Abitur - Grundkurs Mathematik. Sachsen-Anhalt 2002. Gebiet G1 - Analysis Abitur - Grundkurs Mathematik Sachsen-Anhalt Gebiet G - Analsis Aufgabe.. Der Graph einer ganzrationalen Funktion f dritten Grades mit einer Funktionsgleichung der Form f a b c d a,b,c,d, R schneidet die

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

Stetigkeit. Definitionen. Beispiele

Stetigkeit. Definitionen. Beispiele Stetigkeit Definitionen Stetigkeit Sei f : D mit D eine Funktion. f heißt stetig in a D, falls für jede Folge x n in D (d.h. x n D für alle n ) mit lim x n a gilt: lim f x n f a. Die Funktion f : D heißt

Mehr

Definitions- und Formelübersicht Mathematik

Definitions- und Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Definitions- Formelübersicht Mathematik Mengen Intervalle Eine Menge ist eine Zusammenfassung von wohlunterschiedenen Elementen zu einem Ganzen. Dabei muss entscheidbar

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Thema 4 Limiten und Stetigkeit von Funktionen

Thema 4 Limiten und Stetigkeit von Funktionen Thema 4 Limiten und Stetigkeit von Funktionen Wir betrachten jetzt Funktionen zwischen geeigneten Punktmengen. Dazu wiederholen wir einige grundlegende Begriffe und Schreibweisen aus der Mengentheorie.

Mehr

3 Funktionen und Stetigkeit

3 Funktionen und Stetigkeit . FUNKTIONEN UND STETIGKEIT Funktionen und Stetigkeit. Definitionen und Beispiele Im praktischen Leben werden volks- und betriebswirtschaftliche Daten in gewissen diskreten Abständen erhoben. Auf diese

Mehr

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs.

Inhaltsverzeichnis. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden. Mathematischer Vorkurs. Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Exponentialfunktionen und Logarithmen Inhaltsverzeichnis 1 Einführung 2 2

Mehr

Fachhochschule Bochum Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: August 2008 Bearbeitungszeit: 180 Minuten

Mehr

Beispiele für eine vollständige Kurvendiskussion

Beispiele für eine vollständige Kurvendiskussion Seite von Ganzrationale Funktionen Nur mit Ausklammern Beispiel. Diskutiere die Funktion f 8. Es handelt sich um eine ganzrationale Funktion dritten Grades.. Definitionsmenge: D.. Verhalten gegen : Da

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg

Komplexe Funktionen. für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg. Reiner Lauterbach. Universität Hamburg Komplexe Funktionen für Studierende der Ingenieurwissenschaften Technische Universität Hamburg-Harburg Reiner Lauterbach Universität Hamburg SS 2006 Reiner Lauterbach (Universität Hamburg) Komplexe Funktionen

Mehr

Funktionen. 1.1 Wiederholung

Funktionen. 1.1 Wiederholung Technische Zusammenhänge werden meist in Form von Funktionen mathematisch erfasst. Kennt man die Eigenschaften verschiedener Funktionstpen, lässt sich im Anwendungsfall das Arbeiten mit diesen erleichtern.

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt

Aufgaben für Analysis in der Oberstufe. Robert Rothhardt Aufgaben für Analysis in der Oberstufe Robert Rothhardt 14. Juni 2011 2 Inhaltsverzeichnis 1 Modellierungsaufgaben 5 1.1 Musterabitur S60................................ 5 1.2 Musterabitur 3.1.4 B / S61..........................

Mehr

Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19

Einleitung 1. 3 Beweistechniken und einige Beweise Teil I 19 Inhaltsverzeichnis Inhaltsverzeichnis iv Einleitung 1 1 Aussagen, Mengen und Quantoren 3 1.1 Aussagen und logische Verknüpfungen........................ 3 1.2 Mengen.........................................

Mehr

2.6. Lineare Funktionen

2.6. Lineare Funktionen Gleichungen, Gleichungssysteme.6. Lineare Funktionen (a) Definition Schon in einem vorangegangen Abschnitt wurde vom Zusammenhang zwischen zwei Größen gesprochen, wobei die Abhängigkeit der Größen in Form

Mehr

Exponentalfunktion und Logarithmus

Exponentalfunktion und Logarithmus A. Mentzendorff Geändert: September 2008 Eponentalfunktion und Logarithmus Inhaltsverzeichnis Wachstum und Zerfall 2 2 Der Logarithmus als Stammfunktion 4 3 Eponentialfunktionen 8 3. Die natürliche Eponentialfunktion........................

Mehr

Potenzgesetze und Logarithmengesetze im Komplexen

Potenzgesetze und Logarithmengesetze im Komplexen Potenzgesetze und Logarithmengesetze im Komplexen Man kennt die Potenzgesetze und die Logarithmengesetze gewöhnlich schon aus der Schule und ist es gewohnt, mit diesen leicht zu agieren und ohne große

Mehr

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $

$Id: stetig.tex,v /06/26 15:40:18 hk Exp $ $Id: stetig.tex,v 1.11 2012/06/26 15:40:18 hk Exp $ 9 Stetigkeit 9.1 Eigenschaften stetiger Funktionen Am Ende der letzten Sitzung hatten wir eine der Grundeigenschaften stetiger Funktionen nachgewiesen,

Mehr

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius)

Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) Wiwi-Vorkurs Mathematik (Uni Leipzig, Fabricius) 1 Grundregeln des Rechnens 1.1 Zahlbereiche......... Zahlen N {1, 2, 3,...}......... Zahlen Z {..., 2, 1, 0, 1, 2,...}......... Zahlen Q { a b a Z, b N}.........

Mehr

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben

Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben Mathematik für Wirtschaftswissenschaftler: Übungsaufgaben an der Fachhochschule Heilbronn im Wintersemester 2002/2003 Dr. Matthias Fischer Friedrich-Alexander-Universität Erlangen-Nürnberg Lehrstuhl für

Mehr

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen.

10. Klasse: Logarithmusfunktionen sind die Umkehrungen der Exponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. IV Umkehrfunktion Umkehrbarkeit 0. Klasse: Logarithmusfunktionen sind die Umkehrungen der Eponentialfunktionen. Umkehrungen beschreiben umgekehrte Zuordnungen. f f -> 2 2 -> 2 -> - - -> 2 4 -> -> 4 Graphen

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Zusammenfassung Abitursstoff Mathematik

Zusammenfassung Abitursstoff Mathematik Zusammenfassung Abitursstoff Mathematik T. Schneider, J. Wirtz, M. Blessing 2015 Inhaltsverzeichnis 1 Analysis 2 1.1 Monotonie............................................ 2 1.2 Globaler Verlauf........................................

Mehr

Analysis in der Ökonomie (Teil 1) Aufgaben

Analysis in der Ökonomie (Teil 1) Aufgaben Analysis in der Ökonomie (Teil 1) Aufgaben 1 In einer Fabrik, die Farbfernseher produziert, fallen monatlich fie Kosten in Höhe von 1 Mio an Die variablen Kosten betragen für jeden produzierten Fernseher

Mehr

KOSTEN- UND PREISTHEORIE

KOSTEN- UND PREISTHEORIE Kosten- und Preistheorie 85 KOSTEN- UND PREISTHEORIE Sowohl in den Wirtschaftswissenschaften als auch in der Wirtschaftsprais gewinnt der Einsatz mathematischer Verfahren immer mehr an Bedeutung. Wir haben

Mehr

Mathematik und Statistik für Raumplaner

Mathematik und Statistik für Raumplaner Mathematik und Statistik für Raumplaner Funktionen Wintersemester 2008/2009 Leiter und Autor: A. Prof. Dr. Wolfgang Feilmayr Fachbereich Stadt- und Regionalforschung Technische Universität Wien 1 Grundbegriffe

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Brückenkurs Mathematik 2015

Brückenkurs Mathematik 2015 Technische Universität Dresden Fachrichtung Mathematik, Institut für Analysis Dr.rer.nat.habil. Norbert Koksch Brückenkurs Mathematik 2015 1. Vorlesung Logik, Mengen und Funktionen Ich behaupte aber, dass

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

GF MA Differentialrechnung A2

GF MA Differentialrechnung A2 Kurvendiskussion Nullstellen: Für die Nullstellen x i ( i! ) einer Funktion f gilt: Steigen bzw. Fallen: f ( x i ) = 0 f '( x) > 0 im Intervall I f ist streng monoton wachsend in I f '( x) < 0 im Intervall

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

Kapitel 7 STETIGKEIT

Kapitel 7 STETIGKEIT Kapitel 7 STETIGKEIT Fassung vom 8. Juni 2002 Claude Portenier ANALYSIS 29 7. Der Begri Stetigkeit 7. Der Begri Stetigkeit DEFINITION I.a. sagt man, daßeine Abbildung von einer Menge X in K n, wobei K

Mehr

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}.

In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. N = {1,2,3,...}, p in Z,q in N}. 1 1 Grundlagen 1.1 Zahlen, Mengen und Symbole In diesem ersten Abschnitt werden die gebräuchlichsten Bezeichnungen und Symbole definiert. Zahlenmengen Die Menge N der natürlichen Zahlen ist gegeben durch

Mehr

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y

f : x 2 x f : x 1 Exponentialfunktion zur Basis a. Für alle Exponentialfunktionen gelten die Gleichungen (1) a x a y = a x+y (2) ax a y = ax y 5. Die natürliche Exponentialfunktion und natürliche Logarithmusfunktion ================================================================== 5.1 Die natürliche Exponentialfunktion f : x 2 x f : x 1 2 x

Mehr

2.3 Exponential- und Logarithmusfunktionen

2.3 Exponential- und Logarithmusfunktionen 26 2.3 Exponential- und Logarithmusfunktionen Die natürliche Exponentialfunktion f(x) = e x ist definiert durch die Potenzreihe e x = + x! + x2 2! + x3 3! + = für alle x in R. Insbesondere ist die Eulersche

Mehr

Einführung. Ablesen von einander zugeordneten Werten

Einführung. Ablesen von einander zugeordneten Werten Einführung Zusammenhänge zwischen Größen wie Temperatur, Geschwindigkeit, Lautstärke, Fahrstrecke, Preis, Einkommen, Steuer etc. werden mit beschrieben. Eine Zuordnung f, die jedem x A genau ein y B zuweist,

Mehr

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr.

Übungsklausur. Bitte wählen Sie fünf Aufgaben aus! Aufgabe 1. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Übungsklausur zu Mathematik I für BWL und VWL (WS 2008/09) PD Dr. Gert Zöller Übungsklausur Hilfsmittel: Taschenrechner, Formblatt mit Formeln. Lösungswege sind stets anzugeben. Die alleinige Angabe eines

Mehr

Übungsaufgaben zur Analysis

Übungsaufgaben zur Analysis Serie Übungsaufgaben zur Analysis. Multiplizieren Sie folgende Klammern aus: ( + 3y)( + 4a + 4b) (a b )( + 3y 4) (3 + )(7 + y) + (a + b)(3 + ). Multiplizieren Sie folgende Klammern aus: 6a( 3a + 5b c)

Mehr

Mikroökonomische Theorie: Gewinnmaximierung

Mikroökonomische Theorie: Gewinnmaximierung Mikroökonomische Theorie: Dr. Jan Heufer TU Dortmund 5. Juli 2011 Übersicht sproblem 1 / 37 Wirtschaftskreislauf sproblem Konsumgüter Nachfrage Konsumenten Haushalte Markt Angebot Produzenten Firmen Angebot

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5

Natürliche Exponential- und Logarithmusfunktion. Kapitel 5 Natürliche Eponential- und Logarithmusfunktion Kapitel . Die natürliche Eponentialfunktion und ihre Ableitung 48 Arbeitsaufträge. Individuelle Lösungen Jahr 908 90 90 930 90 960 970 990 000 00 in Sekunden

Mehr

11 Spezielle Funktionen und ihre Eigenschaften

11 Spezielle Funktionen und ihre Eigenschaften 78 II. ANALYSIS 11 Spezielle Funktionen und ihre Eigenschaften In diesem Abschnitt wollen wir wichtige Eigenschaften der allgemeinen Exponentialund Logarithmusfunktion sowie einiger trigonometrischer Funktionen

Mehr

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden.

10. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit. Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. 49. Grenzwerte von Funktionen, Stetigkeit, Differenzierbarkeit a Grenzwerte von Funktionen Der bisher intuitiv verwendete Grenzwertbegriff soll im folgenden präzisiert werden. Einführende Beispiele: Untersuche

Mehr

Vorkurs Mathematik-Physik, Teil 1 c 2016 A. Kersch

Vorkurs Mathematik-Physik, Teil 1 c 2016 A. Kersch Vorkurs Mathematik-Phsik, Teil c 6 A. Kersch Funktionen. Grundbegriffe Bei fast allen phsikalischen Vorgängen wird eine phsikalische Größe von anderen abhängen. Besipielsweise hängt die Körpergröße vom

Mehr