Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS. Prof. Dr. M. Voigt"

Transkript

1 Vorlesung Wirtschaftsmathematik II SS 2015, 3/2 SWS Prof. Dr. M. Voigt 2. März 2015

2 II

3 Inhaltsverzeichnis 5 Grundlagen Funktionen einer Variablen spezielle Funktionen Potenz- und Wurzelfunktionen Eponential- und Logarithmusfunktionen Komplee Zahlen (ohne Script) Polnome Polnome über R Hornerform Nullstellen und Faktorzerlegung Polnome über C Rationale Funktionen Definition und Eigenschaften: Polstellen, Asmptoten und Lücken Funktionen in der Wirtschaftsmathematik Angebots-Funktion Preis-Absatz-Funktion Erlös- bzw. Umsatz-Funktion Kostenfunktion Stückkostenfunktion variable Stückkosten Gewinnfunktion, Deckungsbeitrag Stückgewinnfunktion Produktionsfunktion Materialverbrauchsfunktion März 2015 III

4 Kapitel 5 Grundlagen 5.1 Funktionen einer Variablen (Version vom 2. März 2015) Funktionen: Grundbegriffe Eine Funktion f ist eindeutig bestimmt durch die Angabe der folgenden drei Größen A = D(f): Menge, Definitionsbereich von f B: Menge f(a) = b: Bildungsvorschrift, die jedem Element a A eindeutig ein Element b B zuordnet Bezeichnungen/ Schreibweisen: a A Argument von f b = f(a) Bild von a, Funktionswert von f an der Stelle a. W (f) = {f(a) a A} Wertebereich von f G f := {(, ) D(f) W (f) = f()} Graph der Funktion f. f() wird nach f() abgebildet f : A B f bildet ab von A nach B f : D(f) C B f ist eine Abbildung aus C nach B Beispiele: 1. f : R R, f() = 2 D(f) = R, W (f) = R + Bemerkung: B = R, also B W (f) 1

5 2 2 März f : D(f) R R +, f() = D(f) = R +, W (f) = R +, also f : R + R +, f() = Achtung! per Definition ist A = D(f) also nicht richtig: f : R R, f() = 3. f : D(f) R R : f() = ± 1 2 Achtung! Das ist keine Funktion. Weitere Definitionen Bijektion Beispiele: zu jedem b B gibt es genau ein a A mit f(a) = b Bezeichnung Bedeutung: smbolisch Erklärung Injektion zu jedem b B gibt es höchstens ein a A mit f(a) = b, d.h. a 1 a 2 f(a 1 ) f(a 2 ) f ist eine eineindeutige Abbildung, d.h. zu verschiedenen Argumenten gehören verschiedene Bilder f ist eine eineindeutige Abbildung auf B 1. f : R R, f() = 2 D(f) = R, W (f) = R + f() ist nicht injektiv: z.b. b = 1 B hat zwei zugehörige Argumente: f( 1) = f(1) = 1; 2. f : D(f) R R +, f() = f() ist bijektiv. 3. f : R R : f() = e (Skizze) ist nicht bijektiv, weil es b B gibt, für die kein Urbild a A eistiert, z.b. b = 1 aber f : R (0, ) : f() = e ist bijektiv Bemerkung: Falls f : A B bijektiv ist, so eistiert die inverse Abbildung g = f 1 : B A mit g(b) = a f(a) = b a A (f 1 (f(a)) = a Ermittlung der inversen Abbildung: Umstellen der Zuordnung nach, eventuell Variablentausch 1. f : D(f) R R +, = f() = = 2 mit R + und R + = D(f), also

6 2 März g : R + R +, = g() = 2 nach Variablentausch: g : R + R +, = g() = 2 2. f : R (0, ) : = f() = e = ln mit (0, ) und R, also g : (0, ) R : = g() = ln nach Variablentausch: g : (0, ) R : g() = ln Bemerkung: Der Definitionsbereich D(f) ist gleich dem Wertebereich W (g) der inversen Funktion und der Wertebereich W (f) ist gleich dem Definitionsbereich D(g) der inversen Funktion. 3 2 = f( ) = e 3 2 = f( ) = e 1-1 = f ( ) = ln = f ( ) = ln -3-3 Abbildung 5.1: Die Eponentialfunktion = f() = e und ihre Umkehrfunktion = f 1 () = ln() und rechts deren Bild = ln() nach Vertauschen der Variablen Tpen von Bildungsvorschriften: implizit gegebene Funktion F (, ) = 0 die Bildungsvorschrift ist in Form einer Gleichung gegeben, die nicht nach der abhängigen Variablen aufgelöst ist eplizit gegebene Funktion = f() die Bildungsvorschrift ist in Form einer Gleichung gegeben, die nach der abhängigen Variablen aufgelöst ist zusammengesetzte Funktion Funktion ist abschnittsweise defi < < z.b. f() = < 550 niert

7 4 2 März 2015 Beispiel: f : D(f) R + R + : = f() mit = 0 implizite Darstellung, ergibt eplizite Darstellung: f : D(f) R + R + : = f() = 1 2 Funktionen: Eigenschaften und Operationen Monotonie von Funktionen: I D(f) f monoton wachsend auf I, f streng monoton wachsend auf I, f monoton fallend auf I, f streng monoton fallend auf I, 1, 2 I gilt: aus 1 < 2 folgt f( 1 ) f( 2 ) f( 1 ) < f( 2 ) f( 1 ) f( 2 ) f( 1 ) > f( 2 ) Krümmung von Funktionen: 1 < 2, I = [ 1, 2 ] D(f) f konve, f streng konve, f konkav, f streng konkav, s [0, 1] und = s 1 +(1 s) 2, gilt: f() s f( 1 ) + (1 s) f( 2 ) f() < s f( 1 ) + (1 s) f( 2 ) f() s f( 1 ) + (1 s) f( 2 ) f() > s f( 1 ) + (1 s) f( 2 ) f konve f konkav Abbildung 5.2: Konvee und konkave Funktionen Progressiv und degressiv steigende bzw. fallende Funktionen: f progressiv steigend f monoton steigend und konve f degressiv steigend f monoton steigend und konkav f progressiv fallend f monoton fallend und konkav f degressiv fallend f monoton fallend und konve

8 2 März f progressiv wachsend f degressiv wachsend f progressiv fallend f degressiv fallend Abbildung 5.3: Wachstumseigenschaften von Funktionen Operationen: Gleichheit f = g D(f) = D(g) f() = g() D(f)) f ist Einschränkung von g D(f) D(g) f() = g() D(f)) auf D(f), g ist Erweiterung von f auf D(g) verkettete, mittelbare h = g f h() = g(f()), Funktion wobei W (f) D(g) D(h) = D(f) f heißt innere Funktion, g heißt äußere Funktion; Nullstellen von f i Lösungen der Gleichung f() = 0, ( i D(f)) Translation, Verschiebung = f( a) + b Verschiebung des Graphen von = f() um den Vektor (a, b) T Streckung = b f( ) Streckung des Graphen von = f() um a den Faktor a parallel zur -Achse und den Faktor b parallel zur -Achse Stauchung Streckung mit a < 1 und/oder b < 1 Spiegelung Streckung mit a < 0 und/oder b < 0 1. g : R R, g() = 2 f : R + R, f() = 2 also: f ist Einschränkung von g auf R + 2. f() = e, g() = f g = f(g()) = e 2 +1, g f = g(f()) = (e ) 2 + 1

9 6 2 März spezielle Funktionen Potenz- und Wurzelfunktionen Potenzfunktionen f() = n, n {2, 3,...} Wurzelfunktionen f() = n, n {2, 3,...} { R D f = R, W f = + n gerade R n ungerade D f = R +, W f = R + sind die Umkehrfunktionen zu den Potenzfunktionen, wenn bei diesen der Definitionsbereich auf R + eingeschränkt wird! (Bemerkung: Es ist nicht zwingend notwendig, die Wurzelfunktionen f() = n mit ungeradem n nur für nichtnegative zu definieren, man kann diese Funktionen auch für beliebige R definieren. Die Einschränkung auf nichtnegative Argumente bringt aber eine Reihe von wünschenswerten Eigenschaften. ) Es gilt damit: Definition: = f 1 () = 1 3, = f2 () = 2 6 = 6 2, = f 3 () = 2 6 = ( 6 ) 2 f : D(f) R R heißt gerade Funktion, sofern f() = f( ) für alle D(f) gilt. f : D(f) R R heißt ungerade Funktion, sofern f() = f( ) für alle D(f) gilt Eponential- und Logarithmusfunktionen Eponentialfunktion f() = a (a > 0) D f = R, W f = (0, ) Logarithmusfunktion f() = log a () D f = (0, ), W f = R Umkehrfunktion zur Eponentialfkt. e Funktion f() = e, e = natürlicher Logarithmus f() = ln() Umkehrfunktion zur e Funktion. Es gilt = e = ln(). Wegen log a () = ln() genügt es, sich mit der e Funktion und ihrer Umkehrfunktion zu ln(a) beschäftigen.

10 2 März = e = e 3 2 = ln 5 3 = e 1 = 1_ 3 ln = - 1_ 2 ln -2 Abbildung 5.4: Eponential- und Logarithmusfunktion Es gelten: Potenz-Gesetze: e + = e e e = e e e = (e ) Logarithmen-Gesetze: ln( ) ( ) = ln() + ln() ln = ln() ln ln( ) = ln() 5.3 Komplee Zahlen (ohne Script) - s. Vorlesung -

11 8 2 März Polnome Polnome über R Eine Funktion p : R R heißt Polnom vom Grade n, wenn es Zahlen a 0,..., a n R, a n 0 derart gibt, daß p() = a 0 + a 1 + a a n n = n a k k für alle R gilt. k=0 Bezeichnungen: a k für k = 0,..., n: Koeffizienten des Polnoms n: Grad des Polnoms Regeln: a) Addition und Subtraction n n a k k ± b k k = k=0 k=0 n (a k ± b k ) k k=0 b) Koeffizientenvergleich n a k k = k=0 n b k k a k = b k (0 k n) k=0 einfache Polnome: lineare Funktionen, quadratische Funktionen Hornerform Ziel: vereinfachte Funktionswertberechnung bisher: 2n 1 Multiplikationen, n Additionen Hornerform eines Polnoms f() = n a k k (W.G.Horner, ): k=0 f() = (... (( a } {{ } n + a n 1 ) + a n 2 ) + + a 1 ) + a 0 n 1 Beispiel: f() = Hornerschema zur Funktionswertberechnung an der Stelle = b a n a n 1 a n 2... a 1 a 0 + c n b c n 1 b... c 2 b c 1 b b c n = a n c n 1 c n 2 c 1 f(b)

12 2 März Es werden n Multiplikationen und n Additionen benötigt. weitere Anwendung: Division von f() durch b f() = ( b)(c n n 1 + c n 1 n c 2 + c 1 ) + f(b) Bemerkung: Ist b Nullstelle von f(), so gilt f() = ( b) g() R wobei g() wieder ein Polnom ist Nullstellen und Faktorzerlegung Als Nullstelle einer Funktion f : D(f) R R bezeichnet man jede Lösung der Gleichung f() = 0, D(f). Betrachten Polnom p : R R (a) b R ist Nullstelle von p() es eistiert ein Polnom h() mit p() = ( b)h(). (b) b R heißt l-fache Nullstelle von p(), sofern ein Polnom g() eistiert mit p() = ( b) l g(). (c) l heißt dann die Vielfachheit von b. reelle Faktorzerlegung: Für jedes Polnom p : R R eistiert die Faktorzerlegung p() = a n ( b 1 ) l 1... ( b r ) l r ( 2 + c 1 + d 1 ) k 1... ( 2 + c s + d s ) k s mit den reellen Nullstellen b i der Vielfachheit l i (i = 1,..., r) und den quadratischen Polnomen 2 + c i + d i der Vielfachheit k i (i = 1,..., s), die in R keine Nullstelle haben. Bemerkung: Kennt man eine Nullstelle b des Polnoms p(), so bestimmt man h() mit p() = ( b) a h(), z.b. durch wiederholte Anwendung des Hornerschemas (erweitertes Hornerschema) und versucht dann Nullstellen von h() zu ermitteln. Beispiel: p() = reelle Faktorzerlegung: p() = ( 1) 2 ( )

13 10 2 März Polnome über C Eine Funktion p : C C heißt Polnom vom Grade n, wenn es Zahlen a 0,..., a n C, a n 0 derart gibt, daß p(z) = a 0 + a 1 z + a 2 z a n z n = n a k z k für alle z C gilt. k=0 Die Regeln für Polnome über C sind analog den Regeln für Polnome über R. Beispiel: Fundamentalsatz der Algebra: Jedes komplee Polnom p(z) = n k=0 p(z) = a n (z w 1 ) l 1 (z w 2 ) l 2... (z w k ) l k a k z k besitzt die Faktorisierung mit den verschiedenen Nullstellen w i C der Vielfachheit l i (i = 1,..., k) und l 1 + l l k = n. Ein Polnom vom Grade n 1 besitzt also genau n Nullstellen in C, wobei jede Nullstelle so oft gezählt wird, wie ihre Vielfachheit angibt. Beispiel: (s.o.) p() = reelle Faktorzerlegung: p() = ( 1) 2 ( ) komplee Faktorzerlegung: p() = ( 1) 2 ( (2 + i))( (2 i)) Bemerkung: Jedes Polnom über R kann als Polnom über C aufgefaßt werden. Satz: Mit jeder Nullstelle w eines Polnoms p mit reellen Koeffizienten ist auch die konjugiert komplee Zahl w eine Nullstelle von p, d.h. die nicht reellen Nullstellen von p treten stets als konjugierte Paare w und w auf. Beispiel: p() = Rationale Funktionen Definition und Eigenschaften: Seien p() und q() Polnome über R. f() = p() heißt gebrochen rationale Funktion. q() Satz: Jede rationale Funktion f() = p() mit Zählergrad Nennergrad läßt sich q() darstellen als p() r() = h()+ mit einem Polnom h() und einem Restpolnom q() q() r() mit Grad r < Grad q (echt gebrochen rationale Funktion).

14 2 März Beispiel: p() = 3 1, q() = 1 mit und ohne Horner Bemerkung: Es gilt lim f() = lim h(), d.h. h() ist eine Asmptote für f() ± ± Abbildung 5.5: Polstellen gerader (links, ohne Vorzeichenwechsel...) und ungerader Ordnung (rechts, mit Vorzeichenwechsel in den Funktionswerten) Polstellen, Asmptoten und Lücken Eine Polstelle einer Funktion liegt vor, wenn die Beträge der Werte der Funktion in der Umgebung dieser Stelle beliebig groß werden, d.h. die Werte der Funktion streben gegen + oder. Der Graph der Funktion besitzt an dieser Stelle eine vertikale Asmptote. Für rationale Funktionen f() = p() q() gilt Nullstellen der Funktion = f() sind alle Nullstellen des Zähler-Polnoms p() im Definitionsbereich D(f) Polstellen und hebbare Unstetigkeits-Stellen der Funktion = f() sind alle Nullstellen des Nenner-Polnoms. Wenn j eine k n -fache Nullstelle des Nenner-Polnoms q() (k n > 0) und eine k z -fache Nullstelle des Zähler-Polnoms p() ist, dann gilt: k z k n = j ist eine hebbare Unstetigkeit, und k n > k z = j ist eine Polstelle (k n k z )-ter Ordnung. Beispiele: f() = 1/( 2), f() = 1/( 2) 2, f() = ( 2)2 (+1) 2 ( 2)

15 12 2 März Funktionen in der Wirtschaftsmathematik s.ab 3 s. auch Funktionen.te (Wikipedia) Angebots-Funktion Bedeutung: Eigenschaften: Beispiel: = (p), p D() = R + (gewinnmaimierende) Angebots-Menge in Abhängigkeit vom erzielbaren Preis (bei vollkommener Konkurrenz); positiv, monoton steigend, i.a. mit Sättigungswert; (p) = 10 (1 e 2 p 3 ), p D() = [2, ); s. Folie Bemerkung: ökonomisch nur sinnvoll für Preis-Absatz-Funktion Bedeutung: Eigenschaften: = (p), p D() = {p R + (p) 0} p = p(), D(p) = { R + p() 0} Absatzmenge in Abhängigkeit vom Preis bzw. erzielbarer Preis in Abhängigkeit von der abzusetzenden Menge; beide Funktionen sind monoton fallend und zueinander invers (Umkehrfunktionen); Beispiel: (p) = p p() = ; p D() = [0, 100], D(p) = [0, 250]; Erlös- bzw. Umsatz-Funktion E() = p(), E(p) = p (p), D(E()) = D(p) D(E(p)) = D() Bedeutung: Eigenschaften: Beispiel: Erlös/Umsatz in Abhängigkeit vom Absatz oder vom Preis; im monopolistischen Fall degressiv steigend bis zum Erlös- Maimum, dann progressiv fallend; im polpolistischen Fall (p konstant) linear steigend; E() = , D(E()) = [0, 250], s. Folie E(p) = 250p 2.5p 2, p D(E(p)) = [0, 100],

16 2 März E p 6000 E = E( ) = ( p) p = p( ) p Abbildung 5.6: Graph einer Angebotsfunktion (links) sowie einer Preis-Absatz- Funktion und der zugehörigen Erlösfunktion eines monopol. Unternehmens (rechts) Kostenfunktion K() = K f + K v (), D(K) = R +, K f 0 : Fikosten, K v () : variable Kosten Bedeutung: Produktionskosten in Abhängigkeit von der Produktionsmenge; Eigenschaften: positiv, monoton steigend; Eine Kostenfunktion heißt ertragsgesetzlich, wenn sie auf [0, S ] degressiv und auf [ S, ) progressiv steigend ist, S heißt dann Schwelle des Ertragsgesetzes; Beispiel: K() = , D(K) = R +, S = 100 3, K f = 800; K v () = ; s. Folie Stückkostenfunktion k() = K(), D(k) = (0, )

17 14 2 März 2015 Bedeutung: Produktionskosten je Mengeneinheit in Abhängigkeit von der Produktionsmenge; Eigenschaften: positiv, monoton fallend auf (0, o ], monoton steigend auf [ o, ), das Minimum k min = k( o ) = p o der Stückkosten wird beim Output o angenommen und heißt Betriebsoptimum, es stellt (langfristig) die untere Schranke p o für den Abgabepreis des Produktes dar, nur oberhalb dieser Schranke kann langfristig ohne Verlust produziert werden. Beispiel: k() = , D(k) = (0, ) o = , p o = k( o ) = ist langfr. Preisminimum. K k K = K( ) K = K( ) k = k( ) E = E( ) G = G( ) Abbildung 5.7: Graph einer ertragsgesetzlichen Kostenfunktion und der zugehörigen Stückkostenfunktion (links) sowie Graph einer Kostenfunktion, einer Erlösfunktion und der zugehörigen Gewinnfunktion (rechts) variable Stückkosten k v () = K v(), D(k) = (0, )

18 2 März Bedeutung: variabler Teil der Produktionskosten, bezogen auf eine Mengeneinheit des Outputs, in Abhängigkeit von der Produktionsmenge; Eigenschaften: Beispiel: positiv, monoton fallend auf (0, m ], monoton steigend auf [ m, ), das Minimum k vmin = k v ( m ) = p m der variablen Stückkosten heißt Betriebsminimum, es stellt (kurzfristig) die untere Schranke p m für den Abgabepreis des Produktes dar, nur oberhalb dieser Schranke können zumindest noch die laufenden Kosten der Produktion gedeckt werden. k v () = , D(k) = (0, ), m = 50, p m = k v ( m ) = 35 ist kurzfristiges Preisminimum, bei dem nur noch die laufenden Kosten gedeckt werden! Gewinnfunktion, Deckungsbeitrag Gewinnfunktion G() = E() K(), D(G) = D(p), Deckungsbeitrag D() = E() K v () = G() + K f, D(D) = D(p) Bedeutung: Gewinn (Deckungsbeitrag) in Abhängigkeit vom Output Eigenschaften: monoton steigend bis zum Output Gma = Dma mit maimalem Gewinn/Deckungsbeitrag, danach progressiv fallend; die Nullstellen 1 und 2 der Gewinnfunktion heißen untere/obere Gewinnschwelle, wenn gilt G() 0 [ 1, 2 ]; Beispiel: G() = , D(G) = [0, 250] Gma = , G ma = , D ma = , 1 = , 2 = , s. Folie Stückgewinnfunktion g() = G() = p() k(), D(g) = D(p) \ {0} Bedeutung: Gewinn je Mengeneinheit in Abhängigkeit vom Output Eigenschaften: monoton steigend bis zum Output gma mit mamalem Stückgewinn, danach progressiv fallend Beispiel: g() = , D(g) = (0, 250] gma = , g ma = Produktionsfunktion (r), D((r)) = (0, )

19 16 2 März 2015 Bedeutung: Output in Abhängigkeit vom Input r Eigenschaften: monoton steigend, meist bis zu einer Sättigungsgrenze ma 1 Beispiel: (r) = ( 1 1 ) 2, r (0, ), 2 +r 2 W f = (0, 4), s. Folie Materialverbrauchsfunktion Bedeutung: Eigenschaften: r(), D(r) = [0, ma ) Verbrauch des Inputfaktors r in Abhängigkeit vom Output Umkehrfunktion der Produktionsfunktion monoton steigend Beispiel: r() = 4 (2 ) 2, D(r) = (0, 4)

Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS. Prof. Dr. M. Voigt

Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS. Prof. Dr. M. Voigt Vorlesung Wirtschaftsmathematik II SS 2011, 2/2 SWS Prof. Dr. M. Voigt 28. April 2011 II Inhaltsverzeichnis 1 Funktionen einer Variablen 1 24 Februar 2011 III Kapitel 1 Funktionen einer Variablen 1.1 Eigenschaften

Mehr

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2013/14 Hochschule Augsburg : Gliederung 1 Aussagenlogik 2 Lineare Algebra 3 Lineare Programme 4 Folgen

Mehr

Kapitel II Funktionen reeller Variabler

Kapitel II Funktionen reeller Variabler Kapitel II Funktionen reeller Variabler D (Funktion) Es sei f XxY eine Abbildung Die Abbildung f heiß Funktion, falls sie eindeutig ist Man schreibt dann auch: f : X Y f ( x) = y, wobei y das (eindeutig

Mehr

1.2 Einfache Eigenschaften von Funktionen

1.2 Einfache Eigenschaften von Funktionen 1.2 Einfache Eigenschaften von Funktionen 1.2.1 Nullstellen Seien A und B Teilmengen von R und f : A B f : Df Wf eine Funktion. Eine Nullstelle der Funktion f ist ein 2 D f, für das f ( = 0 ist. (Eine

Mehr

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]}

4.4 Umkehrfunktion 77. Sei o.b.d.a. f(a) > 0 und f(b) < 0, setzen M = {y [a, b] mit f(x) > 0 für alle x [a, y]} . Umkehrfunktion 77 B e w e i s : Sei o.b.d.a. fa) > und fb) für alle [a, y] M a M), M beschränkt y b) Aiom V ξ [a, b] : ξ sup M fa) f) n.z.z. : i) fξ) ii) ξ a, b) zu i):

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen Wir haben im letzten Kapitel allgemeine Abbildungen zwischen beliebigen Mengen betrachtet. Hier wollen wir uns nun mit dem Fall beschäftigen, dass sowohl der input als auch

Mehr

2 Funktionen einer Variablen

2 Funktionen einer Variablen 2 Funktionen einer Variablen 2.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt

Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt Ist die Funktion f : R R injektiv, hat den Definitionsbereich D und den Wertebereich W, so ist f : D W bijektiv. Dann heißt f 1 : W D, y wobei D mit f() = y die Umkehrfunktion zu f. Der Graph G f 1 = {(y,

Mehr

Funktionen. Mathematik-Repetitorium

Funktionen. Mathematik-Repetitorium Funktionen 4.1 Funktionen einer reellen Veränderlichen 4.2 Eigenschaften von Funktionen 4.3 Die elementaren Funktionen 4.4 Grenzwerte von Funktionen, Stetigkeit Funktionen 1 4. Funktionen Funktionen 2

Mehr

Leseprobe. Helge Röpcke, Markus Wessler. Wirtschaftsmathematik. Methoden - Beispiele - Anwendungen. Herausgegeben von Robert Galata, Markus Wessler

Leseprobe. Helge Röpcke, Markus Wessler. Wirtschaftsmathematik. Methoden - Beispiele - Anwendungen. Herausgegeben von Robert Galata, Markus Wessler Leseprobe Helge Röpcke, Markus Wessler Wirtschaftsmathematik Methoden - Beispiele - Anwendungen Herausgegeben von Robert Galata, Markus Wessler ISBN (Buch): 978-3-446-43256-7 ISBN (E-Book): 978-3-446-43375-5

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

Gebrochen rationale Funktion f(x) = x2 +1

Gebrochen rationale Funktion f(x) = x2 +1 Gebrochen rationale Funktion f() = +. Der Graph der Funktion f ist punktsmmetrisch, es gilt: f( ) = ( ) + f() = f( ) = + = + = f(). An der Stelle = 0 ist f nicht definiert, an dieser Stelle liegt ein Pol

Mehr

Definition, Funktionsgraph, erste Beispiele

Definition, Funktionsgraph, erste Beispiele 5. Vorlesung im Brückenkurs Mathematik 07 Reelle Funktionen Dr. Markus Herrich Markus Herrich Reelle Funktionen Definition, Funktionsgraph, erste Beispiele Markus Herrich Reelle Funktionen Definition Eine

Mehr

F u n k t i o n e n Zusammenfassung

F u n k t i o n e n Zusammenfassung F u n k t i o n e n Zusammenfassung Johann Carl Friedrich Gauss (*1777 in Braunschweig, 1855 in Göttingen) war ein deutscher Mathematiker, Astronom und Physiker mit einem breit gefächerten Feld an Interessen.

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Wirtschaftsmathematik Methoden - Beispiele - Anwendungen von Robert Galata, Markus Wessler, Helge Röpcke 1. Auflage Hanser München 2012 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 43256 7

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel

Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel Fachhochschule Köln Fakultät für Wirtschafts- und Rechtswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsmathematik Etremwerte und Kurvendiskussion

Mehr

2.4 Exponential - und Logarithmus - Funktionen

2.4 Exponential - und Logarithmus - Funktionen 25.05.20 2.4 Eponential - und Logarithmus - Funktionen Mit Hilfe der Potenz a t definiert man eine weitere Funktionsart, indem man statt der Basis den Eponenten durch die Variable ersetzt: Für a ε R >

Mehr

Analysis 1 Grundlagen und Differenzialrechnung

Analysis 1 Grundlagen und Differenzialrechnung Hans-Jürgen Dobner, Bernd Engelmann Analysis Grundlagen und Differenzialrechnung ISBN-: -446-45- ISBN-: 978--446-45-9 Leseprobe Weitere Informationen oder Bestellungen unter http://www.hanser.de/978--446-45-9

Mehr

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis

K. Eppler, Inst. f. Num. Mathematik Übungsaufgaben. 3. Übung: Woche vom bis Übungsaufgaben 3. Übung: Woche vom 27. 10. bis 31. 10. 2010 Heft Ü1: 3.14 (c,d,h); 3.15; 3.16 (a-d,f,h,j); 3.17 (d); 3.18 (a,d,f,h,j) Übungsverlegung für Gruppe VIW 05: am Mo., 4.DS, SE2 / 022 (neuer Raum).

Mehr

Mathematik für Wirtschaftswissenschaftler

Mathematik für Wirtschaftswissenschaftler Mathematik für Wirtschaftswissenschaftler Yves Schneider Universität Luzern Frühjahr 2016 Repetition Kapitel 1 bis 3 2 / 54 Repetition Kapitel 1 bis 3 Ausgewählte Themen Kapitel 1 Ausgewählte Themen Kapitel

Mehr

13. Funktionen in einer Variablen

13. Funktionen in einer Variablen 13. Funktionen in einer Variablen Definition. Seien X, Y Mengen. Eine Funktion f : X Y ist eine Vorschrift, wo jedem Element der Menge X eindeutig ein Element von Y zugeordnet wird. Wir betrachten hier

Mehr

Potenzen, Wurzeln, Logarithmen

Potenzen, Wurzeln, Logarithmen KAPITEL 3 Potenzen, Wurzeln, Logarithmen 3.1 Funktionen und Umkehrfunktionen.............. 70 3.2 Wurzeln............................ 72 3.3 Warum ist a 2 + b 2 a + b?................. 73 3.4 Potenzfunktion........................

Mehr

9 Funktionen und ihre Graphen

9 Funktionen und ihre Graphen 57 9 Funktionen und ihre Graphen Funktionsbegriff Eine Funktion ordnet jedem Element aus einer Menge D f genau ein Element aus einer Menge W f zu. mit = f(), D f Die Menge aller Funktionswerte nennt man

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Zähler und Nenner eine ganzrationale Funktion (Polynom) befindet: Eigenschaften f(x) = g(x) h(x) Echt gebrochen-rationale

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik

Analysis. Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Analysis Faktensammlung Analysis Im Modul Wirtschaftsmathematik Sommersemester 2013 Prof. Dr. Nikolaus Wolik Wirtschaftsmathematik und Statistik Vorwort Die modernen Wirtschaftswissenschaften nutzen in

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen.1 Eigenschaften von Funktionen........................... 39. Potenz- und Wurzelfunktionen............................ 1.3 Trigonometrische Funktionen.............................

Mehr

Formelsammlung Grundlagen der Wirtschaftsmathematik

Formelsammlung Grundlagen der Wirtschaftsmathematik Ausgabe 2007-09 Formelsammlung Grundlagen der Wirtschaftsmathematik 1 Stichwortverzeichnis (mit Seitenzahlen) Abschreibungen 14 Formelzeichen 2 Grenzerlös, Grenzumsatz 6 Grenzfunktionen, weitere 7 Grenzgewinn

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen

4.7. Prüfungsaufgaben zu Exponential- und Logarithmusfunktionen .. Prüfungsaufgaben zu Eponential- und Logarithmusfunktionen Aufgabe : Funktionsanpassung bei Eponentialfunktionen () Bestimme die Gleichung der Eponentialfunktion f() = c a, deren Schaubild durch die

Mehr

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen.

13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. 13. Lineare DGL höherer Ordnung. Eine DGL heißt von n-ter Ordnung, wenn Ableitungen y, y, y,... bis zur n-ten Ableitung y (n) darin vorkommen. Sie heißt linear, wenn sie die Form y (n) + a n 1 y (n 1)

Mehr

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet.

Funktionen. Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. 1 Der Funktionsbegriff Funktionen Definition. Eine Funktion (oder Abbildung) ist eine Vorschrift, die jedem Element einer Menge A genau ein Element einer Menge B zuordnet. Dabei nennt man die Menge A Definitionsmenge

Mehr

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA)

Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wirtschaftsmathematik Plus für International Management (BA) und Betriebswirtschaft (BA) Wintersemester 2012/13 Hochschule Augsburg Aufgabe 98 12.12.2012 Untersuchen Sie die Funktion f W R! R mit f.x/

Mehr

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5

Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1. 1 Grundlagen 2. 2 Der Graph einer Funktion 4. 3 Umkehrbarkeit 5 Universität Basel Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematischer Vorkurs Dr. Thomas Zehrt Funktionen 1 Inhaltsverzeichnis 1 Grundlagen 2 2 Der Graph einer Funktion

Mehr

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014

Mathematik für Wirtschaftswissenschaftler. Universität Trier Wintersemester 2013 / 2014 Mathematik für Universität Trier Wintersemester 2013 / 2014 Inhalt der Vorlesung 1. Gleichungen und Summen 2. Grundlagen der Funktionslehre 3. Rechnen mit Funktionen 4. Optimierung von Funktionen 5. Funktionen

Mehr

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007

Einführung in das mathematische Arbeiten im SS Funktionen. Evelina Erlacher 1 7. März 2007 Workshops zur VO Einführung in das mathematische Arbeiten im SS 007 Inhaltsverzeichnis Funktionen Evelina Erlacher 7. März 007 Der Funktionsbegriff Darstellungsmöglichkeiten von Funktionen 3 Einige Typen

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

2.6 Stetigkeit und Grenzwerte

2.6 Stetigkeit und Grenzwerte 2.6 Stetigkeit und Grenzwerte Anschaulich gesprochen ist eine Funktion stetig, wenn ihr Graph sich zeichnen lässt, ohne den Stift abzusetzen. Das ist natürlich keine präzise mathematische Definition und

Mehr

Mathematik I für Wirtschaftswissenschaftler

Mathematik I für Wirtschaftswissenschaftler 1 Mathematik I für Wirtschaftswissenschaftler Lösungsvorschläge zur Klausur am 01.08.2003. Bitte unbedingt beachten: a) Verlangt und gewertet werden alle vier gestellten Aufgaben. Alle Aufgaben sind gleichwertig.

Mehr

Mathematische Formeln für das Studium an Fachhochschulen

Mathematische Formeln für das Studium an Fachhochschulen Mathematische Formeln für das Studium an Fachhochschulen von Richard Mohr. Auflage Hanser München 20 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 4255 4 Zu Inhaltsverzeichnis schnell und portofrei

Mehr

Fachhochschule Bochum Fachhochschule Südwestfalen

Fachhochschule Bochum Fachhochschule Südwestfalen Fachhochschule Bochum Fachhochschule Südwestfalen Verbundstudiengang Wirtschaftsingenieurwesen Prof. Dr. rer. nat. habil. J. Resch Prüfung: Mathematik Termin: August 2008 Bearbeitungszeit: 180 Minuten

Mehr

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung

Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung Mathematik I Herbstsemester 2014 Kapitel 4: Anwendungen der Differentialrechnung www.math.ethz.ch/education/bachelor/lectures/hs2014/other/mathematik1 BIOL Prof. Dr. Erich Walter Farkas http://www.math.ethz.ch/

Mehr

Zusammenfassung An1I HS2012 Analysis für Informatiker 1

Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Zusammenfassung An1I HS2012 Analysis für Informatiker 1 Emanuel Duss emanuel.duss@gmail.com 19. November 2012 Analysis für Informatiker 1 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundlagen der Lehre von

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4

y = K(x) = 0,5x³ 3,9x² + 12,4x + 20,4 2. Übungsaufgabe zur Untersuchung ökonomischer Funktionen Ein Unternehmen kann sein Produkt zum Preis von 12 GE / ME verkaufen. Die Produktionskosten lassen sich durch die folgende Kostenfunktion beschreiben:

Mehr

Kapitel 2: Abbildungen und elementare Funktionen

Kapitel 2: Abbildungen und elementare Funktionen Kapitel 2: Abbildungen und elementare Funktionen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika (KO) Abbildungen und elementare Funktionen 1 / 18 Gliederung

Mehr

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem

1.3 Funktionen einer reellen Veränderlichen und ihre Darstellung im x, y - Koordinatensystem .0.0. Funktionen einer reellen Veränderlichen und ihre Darstellung im, - Koordinatensstem Vereinbarungen Wir betrachten vorerst nur noch Funktionen f, deren Definitionsund Wertebereich jeweils R oder ein

Mehr

Spezielle Klassen von Funktionen

Spezielle Klassen von Funktionen Spezielle Klassen von Funktionen 1. Ganzrationale Funktionen Eine Funktion f : R R mit f (x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, n N 0 und a 0, a 1,, a n R, (a n 0) heißt ganzrationale Funktion n

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Die reellen Lösungen der kubischen Gleichung

Die reellen Lösungen der kubischen Gleichung Die reellen Lösungen der kubischen Gleichung Klaus-R. Löffler Inhaltsverzeichnis 1 Einfach zu behandelnde Sonderfälle 1 2 Die ganzrationale Funktion dritten Grades 2 2.1 Reduktion...........................................

Mehr

Teil I. Analysis in der Ökonomie

Teil I. Analysis in der Ökonomie Teil I Analysis in der Ökonomie D... (Funktion) Es sei f XY eine Abbildung. Die Abbildung f heißt Funktion, falls sie eindeutig ist. Man schreibt dann auch: f : X Y f ( ) = y, wobei y das (eindeutig bestimmte)

Mehr

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen

4.1. Grundlegende Definitionen. Elemente der Analysis I Kapitel 4: Funktionen einer Variablen. 4.2 Graphen von Funktionen 4.1. Grundlegende Definitionen Elemente der Analysis I Kapitel 4: Funktionen einer Variablen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 22./29. November 2010 http://www.mathematik.uni-trier.de/

Mehr

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist.

Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Analysis, Woche 5 Funktionen I 5. Definition Funktionen oder Abbildungen sind wir schon mehrere Male begegnet. Es wird Zeit mal genau fest zu legen, was gemeint ist. Definition 5. Eine Funktion f : A B

Mehr

Vorkurs Mathematik B

Vorkurs Mathematik B Vorkurs Mathematik B Dr. Thorsten Camps Fakultät für Mathematik TU Dortmund 8. September 2011 Für die Mathematik zentral sind Abbildungen und Funktionen. Häufig wird zwischen beiden Begriffen nicht unterschieden.

Mehr

Vorkurs Mathematik. Christoph Hindermann. Funktionen, Ableitungen und Optimierung

Vorkurs Mathematik. Christoph Hindermann. Funktionen, Ableitungen und Optimierung Kapitel 3 Funktionen, Ableitungen und Optimierung Christoph Hindermann Vorkurs Mathematik 1 Vorkurs Mathematik 2 3.1 Funktionen Motivation Funktionen reeller Veränderlicher gehören zu den wichtigsten Untersuchungs-

Mehr

Der lange Weg zu den Potenz- und Logarithmengesetzen

Der lange Weg zu den Potenz- und Logarithmengesetzen Der lange Weg zu den Potenz- und Logarithmengesetzen. Schritt: x n, n N, also eine natürliche Zahl ungleich Null). Wie jeder weiß gilt: 0 6 0 3 = } 0 0 0 {{ 0 0 0} 0 } 0 {{ 0} = } 0 0 0 0 0 {{ 0 0 0 0}

Mehr

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen

Skript zur Analysis 1. Kapitel 3 Stetigkeit / Grenzwerte von Funktionen Skript zur Analysis 1 Kapitel 3 Stetigkeit / Grenzwerte von Funktionen von Prof. Dr. J. Cleven Fachhochschule Dortmund Fachbereich Informatik Oktober 2003 2 Inhaltsverzeichnis 3 Stetigkeit und Grenzwerte

Mehr

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7

1 Höhere Ableitungen 2. 2 Mittelwertsatz und Monotonie 3. 3 Konvexe und konkave Funktionen 5. 4 Lokale und globale Extremalstellen 7 Universität Basel 4 Wirtschaftswissenschaftliches Zentrum Abteilung Quantitative Methoden Mathematik 1 Dr. Thomas Zehrt Kurvendiskussionen Inhaltsverzeichnis 1 Höhere Ableitungen 2 2 Mittelwertsatz und

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik

Höhere Mathematik 3. Apl. Prof. Dr. Norbert Knarr. Wintersemester 2015/16. FB Mathematik Höhere Mathematik 3 Apl. Prof. Dr. Norbert Knarr FB Mathematik Wintersemester 2015/16 4. Homogene lineare Dierentialgleichungen 4.1. Grundbegrie 4.1.1. Denition. Es sei J R ein Intervall und a 0 ; : :

Mehr

Analysis 1 für Informatiker (An1I)

Analysis 1 für Informatiker (An1I) Hochschule für Technik Rapperswil Analysis 1 für Informatiker (An1I) Stand: 2012-11-13 Inhaltsverzeichnis 1 Funktionen 3 1.1 Gerade, ungerade und periodische Funktionen..................... 3 1.2 Injektive,

Mehr

Technische Mathematik

Technische Mathematik Lehrplan Technische Mathematik Fachschule für Technik Fachrichtungsbezogener Lernbereich Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach 10 24 52, 66024

Mehr

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard

Funktionenlehre. Grundwissenskatalog G8-Lehrplanstandard GRUNDWISSEN MATHEMATIK Funktionenlehre Grundwissenskatalog G8-Lehrplanstandard Basierend auf den Grundwissenskatalogen des Rhöngmnasiums Bad Neustadt und des Kurt-Huber-Gmnasiums Gräfelfing J O H A N N

Mehr

4.4. Aufgaben zu Potenzfunktionen

4.4. Aufgaben zu Potenzfunktionen .. Aufgaben zu Potenzfunktionen Definition: Eine Funktion der Form f() = c z mit z Z\{;} heißt Potenzfunktion. Aufgabe : Potenzfunktionen mit positiven Eponenten (Parabeln). Ergänze: 9 8 7 6 - - - - -

Mehr

1 Funktionen einer Variablen

1 Funktionen einer Variablen 1 Funktionen einer Variablen 1.1 Einführende Beispiele Kostenfunktion und Stückkostenfunktion: Das Unternehmen Miel produziert hochwertige Waschmaschinen. Es hat monatliche Fikosten von 170.000. Die sind

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Zusammenfassung - Mathematik

Zusammenfassung - Mathematik Mathematik Seite 1 Zusammenfassung - Mathematik 09 October 2014 08:29 Version: 1.0.0 Studium: 1. Semester, Bachelor in Wirtschaftsinformatik Schule: Hochschule Luzern - Wirtschaft Author: Janik von Rotz

Mehr

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik

Exponentialfunktionen. Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik e Exponentialfunktionen Eigenschaften, graphische Darstellungen 1-E1 Vorkurs, Mathematik Exponentialfunktionen Potenzfunktion: y = x 9 Exponentialfunktion: y = 9 x Die Potenz- und die Exponentialfunktionen

Mehr

1 Ableiten der Sinus- und Kosinusfunktion

1 Ableiten der Sinus- und Kosinusfunktion Schülerbuchseite 6 8 Lösungen vorläufig Ableiten der Sinus- und Kosinusfunktion S. 6 Vermutung: Da das Zeit-Weg-Diagramm eine Sinuskurve und das zugehörige Zeit-Geschwindigkeits-Diagramm 8 eine Kosinuskurve

Mehr

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen

Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Elemente der Analysis I Kapitel 2: Einführung II, Gleichungen Prof. Dr. Volker Schulz Universität Trier / FB IV / Abt. Mathematik 8. November 2010 http://www.mathematik.uni-trier.de/ schulz/elan-ws1011.html

Mehr

4. Lösung linearer Gleichungssysteme

4. Lösung linearer Gleichungssysteme 4. Lösung linearer Gleichungssysteme a x + : : : + a m x m = b a 2 x + : : : + a 2m x m = b 2 : : : a n x + : : : + a nm x m = b n in Matrix-Form: A~x = ~ b (*) mit A 2 R n;m als Koe zientenmatrix, ~x

Mehr

Gebrochen-rationale Funktionen

Gebrochen-rationale Funktionen Definition Eine gebrochen-rationale Funktion ist eine Funktion, bei der sich im Nenner befindet. f() = a h() Beispiel 1: f() = 1 Beispiel 2: f() = 1 ² Definitionsbereich und Definitionslücken Bei einer

Mehr

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1

y2 keine eindeutige Zuordnung Reelle Funktionen gebrochen rationale Funktionen f(x)=(x²-1) / x³+1 4 Reelle Funktionen in einer Veränderlichen 4.1 Definition Es seien M 1 und M 2 zwei Mengen reeller Zahlen. Ordnet man jedem Element 1 M 1 durch eine Zuordnungsvorschrift f genau ein Element M 2 zu, so

Mehr

Mathematik 1 für Naturwissenschaften

Mathematik 1 für Naturwissenschaften Hans Walser Mathematik für Naturwissenschaften Modul 0 Einführung Hans Walser: Modul 0, Einführung ii Inhalt Zahlen.... Natürliche Zahlen.... Ganze Zahlen.... Rationale Zahlen.... Reelle Zahlen... Smbole....

Mehr

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik

Logarithmusfunktion zur Basis 2, Aufgaben. 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2, Aufgaben 7-E Vorkurs, Mathematik Logarithmusfunktion zur Basis 2: Aufgaben 7-9 Aufgabe 7: Bestimmen Sie eine vertikale Asymptote für die folgenden Funktionen: f ( x) =

Mehr

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n

, a n 2. p(x) = a n x n + a n 1. x n a 2 x 2 + a 1 x + a 0. reelles Polynom in der Variablen x vom Grad n. Man schreibt deg p(x) = n . Graphen gebrochen rationaler Funktionen ==================================================================. Verhalten in der Umgebung der Definitionslücken ------------------------------------------------------------------------------------------------------------------

Mehr

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt

x 2 2x + = 3 + Es gibt genau ein x R mit ax + b = 0, denn es gilt - 17 - Die Frage ist hier also: Für welche x R gilt x = x + 1? Das ist eine quadratische Gleichung für x. Es gilt x = x + 1 x x 3 = 0, und man kann quadratische Ergänzung machen:... ( ) ( ) x x + = 3 +

Mehr

Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polypol

Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polypol Michael Buhlmann Schülerkurs Betriebswirtschaftslehre > Betrieblicher Absatz, betriebliche Preispolitik > Polpol An der Schnittstelle zwischen Wirtschaftsunternehmen und Markt (im wirtschaftswissenschaftlichen

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Mathematik für Studierende der Biologie und des Lehramtes Chemie Dominik Schillo Universität des Saarlandes 03.11.2017 (Stand: 02.11.2017, 23:25 Uhr) Mathematik für Studierende der Biologie und des Lehramtes

Mehr

MatheBasics Teil 4 Grundlagen der Mathematik

MatheBasics Teil 4 Grundlagen der Mathematik Fernstudium Guide Online Vorlesung Wirtschaftswissenschaft MatheBasics Teil 4 Grundlagen der Mathematik Version vom 02.11.2015 Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49

Kapitel 6. Funktionen. Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Kapitel 6 Funktionen Josef Leydold Mathematik für VW WS 2017/18 6 Funktionen 1 / 49 Reelle Funktion Reelle Funktionen sind Abbildungen, in denen sowohl die Definitionsmenge als auch die Wertemenge Teilmengen

Mehr

Wirtschaftsmathematik - Übungen WS 2017/18

Wirtschaftsmathematik - Übungen WS 2017/18 Wirtschaftsmathematik - Übungen WS 17/18 Blatt 4: Funktionen von einer Variablen 1. Gegeben sind die Mengen M 1 = {, 1,, 3, 4, 5, 6, 7, 8, 9} und M = { 1,, 1, } sowie die Zuordnungsvorschrift f : M 1 æ

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Fachbereich Mathematik der Universität Hamburg WiSe 016/17 Dr. K. Rothe Analsis I für Studierende der Ingenieurwissenschaften Hörsaalübung mit Beispielaufgaben zu Blatt 3 Gegeben sei eine Funktion f :

Mehr

4.6. Rationale Funktionen

4.6. Rationale Funktionen Rationale Funktionen Eine Funktion der Form f() = z() n().. Rationale Funktionen heißt rationale Funktion, wenn z() und n() zwei ganzrationale Funktionen sind. Der maimale Definitionsbereich ist R\{: n()

Mehr

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5

2.5 Komplexe Wurzeln. Mathematik für Naturwissenschaftler I 2.5 Mathematik für Naturwissenschaftler I 2.5 Die Periodizität von e z ist der Grund, warum im Komplexen Logarithmen etwas schwieriger zu behandeln sind als im Reellen: Der natürliche Logarithmus ist die Umkehrung

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe : ( VP) Bilden Sie die erste Ableitung der Funktion f mit sin() f() =. Aufgabe : ( VP) Berechnen Sie das Integral ( )

Mehr

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu.

Funktion. Eine Funktion. x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion Eine Funktion f : D R, x f (x) ordnet jedem Argument x aus dem Definitionsbereich D R einen Wert f (x) aus dem Wertebereich W R zu. Funktion 1-1 Der Graph von f besteht aus den Paaren (x, y) mit

Mehr

Anwendungen der Differentialrechnung

Anwendungen der Differentialrechnung KAPITEL 5 Anwendungen der Differentialrechnung 5.1 Maxima und Minima einer Funktion......................... 80 5.2 Mittelwertsatz.................................... 82 5.3 Kurvendiskussion..................................

Mehr

Funktionen einer reellen Veränderlichen

Funktionen einer reellen Veränderlichen KAPITEL Funktionen einer reellen Veränderlichen. Grundbegriffe Definition.. Eine Abbildung oder Funktion f ist eine Zuordnung(svorschrift), die jeder Zahl x aus dem Definitionsbereich D(f) der Funktion

Mehr

Mathematik 3 für Informatik

Mathematik 3 für Informatik Gunter Ochs Sommersemester 0 Mathematik 3 für Informatik Hausaufgabenblatt Lösungshinweise ohne Garantie auf Fehlerfeiheit). Seien f ) = { {, falls, falls und f ) =. ln, falls a) Skizzieren

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Urs Wyder, 4057 Basel Funktionen. f x x x x 2

Urs Wyder, 4057 Basel Funktionen. f x x x x 2 Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Funktionen f 3 ( ) = + f ( ) = sin(4 ) Inhaltsverzeichnis DEFINITION DES FUNKTIONSBEGRIFFS...3. NOTATION...3. STETIGKEIT...3.3 ABSCHNITTSWEISE DEFINIERTE FUNKTIONEN...4

Mehr

5 Grundlagen der Differentialrechnung

5 Grundlagen der Differentialrechnung VWA-Mathematik WS 2003/04 1 5 Grundlagen der Differentialrechnung 5.1 Abbildungen Unter einer Abbildung f, f:d W, y= f( ) von einer Menge D (Definitionsbereich) in eine Menge W (Wertemenge) versteht man

Mehr

Kapitel 3 Relationen, Ordnung und Betrag

Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Kapitel 3 Relationen, Ordnung und Betrag Mathematischer Vorkurs TU Dortmund Seite 27 / 254 Kapitel 3 Relationen, Ordnung und Betrag Definition 3.1 (Relationen)

Mehr

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1.

e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme sin(x+y) = cos(x) sin(y)+sin(x) cos(y). und f. Für eine reelle Zahl x R gilt e ix = 1. 8. GRENZWERTE UND STETIGKEIT VON FUNKTIONEN 51 e. Für zwei reelle Zahlen x,y R gelten die Additionstheoreme cos(x+y) = cos(x) cos(y) sin(x) sin(y) und sin(x+y) = cos(x) sin(y)+sin(x) cos(y). f. Für eine

Mehr

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0!

2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 25.02.2004 Aufgabe 5 Gegeben ist die Funktion f(x) = 2004, x 0 (e 2x + x) x 1, x > 0. Untersuchen Sie die Funktion auf Stetigkeit an der Stelle x 0 = 0! Klausur 06.08.2003 Aufgabe 5 Gegeben ist

Mehr

2. Funktionen einer Variablen

2. Funktionen einer Variablen . Funktionen einer Variablen Literatur: [SH, Kapitel 4].1. Definitionen.. Typen von Funktionen..1. Lineare Funktionen... Quadratische Funktionen..3. Polynome..4. Potenzfunktionen..5. Exponentialfunktionen..6.

Mehr

Wie reagiert Nachfrage nach dem Gut auf Preisänderungen?

Wie reagiert Nachfrage nach dem Gut auf Preisänderungen? 1 Albert Ludwigs Universität Freiburg Abteilung Empirische Forschung und Ökonometrie Mathematik für Wirtschaftswissenschaftler Dr. Sevtap Kestel Winter 008 7.7 Warum Ökonomen Elastizitäten benutzen? 7.Oktober

Mehr