2 Amplitudenmodulation

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "2 Amplitudenmodulation"

Transkript

1 R - ING Übertraggstechik MOD - 16 Aplitdeodlatio Der isträger bietet drei igalparaeter, die wir beeiflsse köe. Etspreched terscheide wir Aplitdeodlatio für die beeiflsste Aplitde, Freqezodlatio d Phaseodlatio für die beeiflsste Freqez oder Phase. 3 (t) = A cos( ϕ A = Aplitde = (Kreis-)Freqez (des = Phase t + ϕ ) rägers) ( - 1).1 Zeitfktio DEFINIION -1 Die Aplitdeodlatio etsteht, we die Aplitde eier rägerschwigg vo eie zeitabhägige igal verädert wird. Noralerweise wird davo asgegage, dass sich die Aplitde der rägerschwigg liear it de Moetawert des odlierede igals ädert. Geschieht diese Äderg de rsprügliche Wert der rägeraplitde, ergibt sich der allgeeie Fall der Aplitdeodlatio. Wir ehe ei eifaches issigal als Modlatiossigal (t) = û cos( t + ϕ ) ( - ) dait keie egative Aplitdewerte aftrete addiere wir z diese igal û (it û > û ) d erhalte für die Aplitde A = A(t) = û + û cos( t + ϕ ) ( - 3) oit wird das Zeitsigal der Aplitdeodlatio: ( ) AM(t) = $ + $ cos( t+ ϕ ) cos( t) AM(t) = $ (1+ cos( t + ϕ )) cos( t) ( - 4) 3 Nachfolged stehe für räger d für igal (i Basisbad).

2 R - ING Übertraggstechik MOD - 17 DEFINIION - Das Verhältis der Aplitdeäderg zr odlierte rägeraplitde bezeichet a als Modlatiosidex. 4 = û / û ( - 5) Oft wird der Modlatiosidex i Prozet agegebe. Er ist ei Mass für die Itesität der Modlatio. Die aplitdeodlierte rägerschwigg it eie Maxialwert a it d eie Miialwert it û ax = û + û = û (1 + ) û i = û - û = û (1 - ) Eie esstechische Bestig des Modlatiosidexes ka über die Zeitfktio oder das pektr der aplitdeodlierte chwigg erfolge. As Maxialwert A ax d Miialwert A i der Uhüllede berechet sich it d A ax = û ax = û (1 + ) A i = û i = û (1 - ) der Modlatiosidex z Aax - Ai Apax - Api Appax - Appi = = = ( - 6) Aax + Ai Ap ax + Ap i Appax + Appi AM ( t ) t 15 Fig. -1 Zeitverlaf eies AM igals 4 Der Modlatiosidex wird ach Modlatiosgrad geat.

3 R - ING Übertraggstechik MOD - 18 Darstellg i Modlatiostrapez Werde das aplitdeodlierte igal AM af die y Ablekg d das odlierede igal af die x - Ablekg eies Kathodestrahl - Oszillographe gegebe, etsteht das Modlatiostrapez. AM ( t ) 0 Fig. - Modlatiostrapez (it [L 7]) 0 3 ( t ) 3 AM Fig pp A pp i A pp ax Modlatiosidex d Modlatiostrapez Der Modlatiosidex lässt sich ablese it Appax - Appi = Appax + Appi Mit de Modlatiostrapez lasse sich Nichtliearitäte der Modlatio (des Modlators) erkee.. Freqezspektr Wir ehe als erstes ei eifaches Ntzsigal i der For eies sisförige igals d bereche das pektr des AM igals (Eito - AM): $ [ cos ] cos [ ] AM(t) = 1+ ( t) ( t) (t) = $ cos( t)+ cos( t) cos( t) AM 1 1 cosα cosβ cos β α cos β α it: = ( + ) + ( - ) wird AM [ ] (t) = $ cos( t)+ cos(( + )t)+ cos(( - )t) ( - 7)

4 R - ING Übertraggstechik MOD - 19 igal räger AM û teres eitebad û + oberes eitebad Fig. -4 pektr der Aplitdeodlatio AM As dieser Uforg köe wir folgede chlssfolgerge für das pektr ziehe: Eigeschafte des Freqezspektrs - Das pektr der sisförig aplitdeodlierte chwigg ethält de räger d liks d rechts davo i Abstad der Modlatiosfreqez die beide eiteschwigge. - Das Verhältis eier eiteschwiggsaplitde zr rägeraplitde etspricht de halbe Modlatiosidex. Das pektr für ei allgeeies, periodisches Ntzsigal (zerlegt i eie Forier - Reihe) latet: a (t) 0 = + [ ak cos(kt) + bk si(kt) ] ( - 8) daras lässt sich ohe Gleichspagsateil - folgedes allgeeies Freqezspektr eier Aplitdeodlatio herleite: AM AM K+ K+ it : (t) = û wird weiter ( 1+ [ ak cos(kt) + bk si(kt) ]) (t) = û [cos( t) K ( ak cos(kt) ) ( bk si(kt) ) k = 0 cos α cosβ = 1 1 si α cos β = cos( cos( t) K t)] [ cos( α + β) + cos( α - β) ] [ si( α + β) + si( α - β) ] cos( t) ( - 9)

5 R - ING Übertraggstechik MOD - 0 oder + AM + AM + + (t) = û a b (t) = û k c c k k k [ cos( t) ( cos(( +k ) t)+cos(( -k ) t) ) ( si(( +k ) t)-si(( -k ) t) ) ] [ cos (( cos (( cos( t) ( +k ) t)+ ϕ ) :räger :oberes eitebad ( -k ) t)-ϕk) ] :teres eitebad k ( - ) Für die Übertragg vo prache d Msik ss ei gazes Bad vo Freqeze af de räger odliert werde. Ei solches Bad wird i der atürliche Lage als ei asteigedes Dreieck sybolisiert. Drch dieses werde die tiefe d die hohe Freqeze des atürliche Bades gekezeichet (es kezeichet icht die Aplitdeverteilg ierhalb des Bades!). Dies ergibt das folgede pektr : igal räger AM Kehrlage + Regellage Fig. -5 pektr der Aplitdeodlatio AM

6 R - ING Übertraggstechik MOD - 1 DEFINIION -3 I pektr der AM erscheit bei der Modlatio it eie Freqez Bad rechts d liks des rägers je ei Freqezbad. Ma bezeichet sie it oberes (pper UB) d teres eitebad (lower, LB) 5 (OB, UB). DEFINIION -4 Das obere eitebad tritt i der Regellage af, das tere eitebad i der sogeate Kehrlage: hohe d tiefe Freqeze sid i Vergleich z atürliche Bad ivertiert..3 Zeigerdiagra Währed a das Liiediagra der sisförig odlierte AM - chwigg drch pktweise Additio der Moetawerte der drei Eizelschwigge erhält, erhält a die Zeigerdarstellg der AM drch vektorielle Additio der Moetazstäde der drei Zeiger. Z diese Zweck setzt a a beste die beide Zeiger der eiteschwigge a die pitze des Zeigers der rägerschwigg (drch Parallelverschiebg). Ma addiert da zächst vektoriell die Zeiger der eiteschwigge. Der resltierede Zeiger etspricht der chwebg des Liiediagras, seie Läge ädert sich i Rhyths der Modlatiosfreqez. Ih addiert a z Zeiger der rägerschwigg d erhält schliesslich de Zeiger der Aplitdeodlierte chwigg. AM I + AM t t Re Fig. -6 Zeigerdarstellg der AM Wir köe daras die folgede chlssfolgerg ziehe: Eigeschafte des Zeigerdiagras Der as de eiteschwigge resltierede Zeiger hat ier die gleiche Rich- 5 Meist werde die eglische Abkürzge verwedet.

7 R - ING Übertraggstechik MOD - tg wie der Zeiger der rägerschwigg. Dezfolge hat der Zeiger der aplitdeodlierte chwigg sowohl die gleiche Richtg als ach die gleiche Wikelgeschwidigkeit wie die rägerschwigg..4 Badbreite Ei AM - igal wird r da verfälscht übertrage, we alle chwigge seies pektrs i ihrer Aplitde, i ihre Freqezabstad d i ihrer Phaselage zeiader verfälscht übertrage werde. chlssfolgerg: Badbreite Ei AM - igal bracht zr Übertragg eie Badbreite, die idestes das Doppelte der höchste Modlatiosfreqez beträgt. B AM = f ax ( - 11).5 igalleistg Die Leistg eier AM - chwigg ergibt sich als e as der rägerleistg d de Leistge der eitebäder: P AM = P räger + P UB + P OB = P Carrier + P LB + P UB Dait gilt: P AM = Präger 1+ ( - 1) Vo tadpkt der Leistgsökooie ist die eifache AM offesichtlich ei schlechtes Verfahre: wir verschwede eie grosse eil der Leistg de odlierte räger z übertrage (Der räger trägt keie Nachricht). P eieitebad P d räger = ( - 13) P eieitebad P AM = 1+ = 4 +

8 R - ING Übertraggstechik MOD Erzegg vo AM Weil bei der Modlatio ee Freqeze etstehe, ss der Modlator etweder zeitvariabel (ltiplikative Methode) oder ichtliear (additive Methode) sei..6.1 Additive Methode Prizipiell geügt irgedeie ichtlieare Keliie. Die pag a Eitor ist die Überlagerg vo räger (t), odlierte igal (t) d eier Gleichspag U 0, welche daz diet, de Arbeitspkt festzlege. Wir spiegel die Gesatspag a der ichtlieare Keliie. Wege der Nichtliearität etstehe ee Freqeze. U a = c U e + U 0 Die qadratische Keliie ist zr Modlatio ideal geeiget, weil die eitebäder liear it de odlierede igal zsaehäge d keie störede Modlatiosprodkte höherer Ordg aftrete. Praktisch verfügbare ichtlieare Baeleete, z.b. Diode, habe Keliie, welche vo qadratische Verlaf ehr oder weiger abweiche. Uerwüschte Freqezateile üsse it eie geeigete Filter terdrückt werde. (t) (t).l. BP = Addierer (ierer).l. = icht Liearität BP = Badpass AM (t) Fig. -7 Blockschea additive Methode.6. Mltiplikative Methode Nachrichtesigal d räger werde it eier Vierqadrat - Mltiplikator - chaltg ltipliziert. (t) (t) x x = Addierer (ierer) = Mltiplizierer BP BP AM (t) = Badpass Fig. -8 Blockschea ltiplikative Methode Wichtiger als Modlatore, welche echt das Prodkt as odlierede igal d isträger bilde, sid i der Praxis chaltge, die z der Failie der chaltodlatore gehöre. Bei diese ist der i Modlator wirksae räger keie is-, soder eie Rechteckschwigg gleicher Grdfreqez.

9 R - ING Übertraggstechik MOD - 4 Etweder führt a vo asse eie Rechteckträger z oder der zgeführte is hat eie so hohe Aplitde, dass die Modlatordiode bzw. -trasistore it chalter vergliche werde köe, welche it der Freqez periodisch geöffet d geschlosse werde. Vo verschiedee Möglichkeite habe eifache d doppelte Gegetaktschaltge die grösste Bedetg. (t) AM (t) (t) AM (t) (t) (t) Fig. -9 Gegetaktodlator d Rigodlator.7 Deodlatio der AM Wir köe it eier eifache Gleichrichtg die Hüllkrve der AM rekostriere oder it eier Mltiplikatio it de räger das Ntzsigal zrückgewie..7.1 Hüllkrvedetektor Der Vorteil der AM liegt i de sehr eifache Deodlatios - chaltge, deshalb wird sie z.b. bei orale Mittelwellerdfk it Rücksicht af die grosse Azahl der Epfagsgeräte eigesetzt. Da der räger die iforatiostragede eitebäder begleitet, etfällt das Proble der rägerrückgewig. Bereits it eier eifache Diode lasse sich chaltge für ikohärete Deodlatio realisiere. Bei Eiweggleichrichtg ethält das Asgagssigal die igalfreqez, wie as der Forieraalyse hervorgeht. Drch eie iefpass köe die höhere Freqezateile terdrückt werde. GL ( t ) s t 5 Fig t 55 Gleichgerichtetes d gefiltertes igal

10 R - ING Übertraggstechik MOD - 5 AM gleichgerichtet + Filter Asgagssigal Fig. -11 pektr bei der Deodlatio Eie ähliche, häfig verwedete Deodlatios-chaltg erhalte wir drch pitzegleichrichtg it geeiget beesseer Etladezeitkostate. Ma spricht dabei vo Hüllkrvedetektor oder Eveloppedetektor. D C R (t) Fig. -1 chea eies Hüllkrvedetektors Der Kodesator lädt sich bei de positive Halbwelle af die pitzespag af. Hat die Halbwelle ihre pitzewert überschritte, so sperrt die Diode, d C etlädt sich lagsa über R. Die richtige Beessg der Zeitkostate geligt so leichter, je besser >> erfüllt ist. Eie bekate Diesioiergsvorschrift latet: 6 < τ < ; τ = R C ei optiales τ ergibt sich für τoptial = ( - 14).7. Prodktdeodlatio oder ychrodeodlatio Eie häfig verwedete echik heisst Prodktdeodlatio: das odlierte igal wird it de räger ltipliziert d das Prodkt it Hilfe eies iefpasses gefiltert. Der räger ss z diese Zweck vorher as de odlierte igal rückgewoe werde (rägerrückgewig). Wir ltipliziere das AM - igal it de räger: D [ (1+ cos( t))cos( t) ] cos( t + ϕ) = û D(eodliert) = AM (t) cos( t + ϕ) ( - 15) 6 Z berücksichtige ist jeweile die höchste igalfreqez.

11 R - ING Übertraggstechik MOD - 6 d erhalte ach eier ielpassfilterg: D û û = cosϕ + cosϕ cos( t) ( - 16) Die Prodktedeodlatio ss sychro d phasegleich it der edeträgerfreqez erfolge. Ei öglicher rägerfehler geht direkt als Fehler i die epfagee igalfreqez über. Ei Phasefehler wirkt sich af die Aplitde des epfagee igales proportioal z cosϕ as. Der Gleichstroateil des igales ist direkt ei Mass für de gte Abgleich, d.h. die ychroisatio der räger. Ma spricht deshalb vo ychrodetektio (der Hüllkrverdetektor dagege arbeitet asychro). Da die Deodlatio vo ZM igale (siehe weiter Hite) it de Prodktdeodlator erfolge ss, wird oft ach bei dieser Modlatiosart ei rägerrest itgesedet. Die ychroisatio erfolgt da so, dass etweder direkt it de (i Epfäger verstärkte) rägerrest odliert wird, oder der rägerrest daz verwedet wird, i Epfäger ei Hilfsträgersigal z sychroisiere. AM (t) x BP (t) rägerrückgewig x BP = Mltiplizierer = Badpass Fig. -13 Blockschaltbild zr ychrodeodlatio

12 R - ING Übertraggstechik MOD Ahag z Kapitel

13 R - ING Übertraggstechik MOD - 8 As [L 13]

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Formelsammlung für Elektrische Messtechnik

Formelsammlung für Elektrische Messtechnik Formelsammlg ür lektrische Messtechik Ihaltsverzeichis: Thema Bereiche Seite SI-iheitesystem - Fehler Absolter Fehler -3 elativer Fehler -3 Geaigkeitsklasse Uterteilg Fei- d Betriebsmessger. -3 mpidlichkeit

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Zur Definition. der wirksamen. Wärmespeicherkapazität

Zur Definition. der wirksamen. Wärmespeicherkapazität Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč, Büro für Bauphysik, Schöberg a Kap, Österreich Zur Defiitio der wirksae Wärespeicherkapazität vo Ao. Uiv. Prof. Dipl.-Ig. Dr. tech. Klaus Kreč Büro für Bauphysik

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Afägerpraktikum Polarisatio vo Licht Gruppe, Team 5 Sebastia Korff Frerich Max 0.07.06 Ihaltsverzeichis. Eileitug -3-. Polarisatio -3-. Dichroismus -4-.3 BREWSTER Wikel -5-.4 Der FARADAY

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Feldeffekttransistoren in Speicherbauelementen

Feldeffekttransistoren in Speicherbauelementen Feldeffekttrasistore i Speicherbauelemete DRAM Auch we die Versorgugsspaug aliegt, ist ei regelmäßiges (typischerweise eiige ms) Refresh des Speicherihaltes erforderlich (Kodesator verliert mit der Zeit

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT

Qualitätskennzahlen für IT-Verfahren in der öffentlichen Verwaltung Lösungsansätze zur Beschreibung von Metriken nach V-Modell XT Qualitätskezahle für IT-Verfahre i der öffetliche Verwaltug Lösugsasätze zur Vo Stefa Bregezer Der Autor arbeitet im Bereich Softwaretest ud beschäftigt sich als Qualitätsbeauftragter mit Theme zu Qualitätssicherug

Mehr

13. Landeswettbewerb Mathematik Bayern

13. Landeswettbewerb Mathematik Bayern 3. Ladeswettbewerb Mathematik Bayer Lössbeispiele für die Afabe der. Rde 00/0 Afabe I eiem 0x0-Gitter mit qadratische Felder werde 0 Spielsteie so esetzt, dass i jeder Spalte d jeder Zeile ea ei Feld belet

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

elektr. und magnet. Feld A 7 (1)

elektr. und magnet. Feld A 7 (1) FachHochschule Lausitz Physikalisches Praktikum α- ud β-strahlug im elektr. ud maget. Feld A 7 Name: Matrikel: Datum: Ziel des Versuches Das Verhalte vo α- ud β-strahlug im elektrische ud magetische Feld

Mehr

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses.

a) Zeichnen sie ein Schaltbild des Versuches und beschriften sie dieses. Der Hz-Schwigkreis besteht aus eier Spule hoher Iduktivität ud eiem Kodesator. Wird ei solcher Schwigkreis kurzfristig mit elektrischer Eergie versorgt, so führt er eie stark gedämpfte Schwigug aus. Aufgezeichet

Mehr

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst.

Kryptologie: Kryptographie und Kryptoanalyse Kryptologie ist die Wissenschaft, die sich mit dem Ver- und Entschlüsseln von Informationen befasst. Krytologie: Krytograhie ud Krytoaalyse Krytologie ist die Wisseschaft, die sich mit dem Ver- ud Etschlüssel vo Iformatioe befasst. Beisiel Iteretkommuikatio: Versiegel (Itegrität der Nachricht) Sigiere

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

1. Zahlenfolgen und Reihen

1. Zahlenfolgen und Reihen . Zahlefolge ud Reihe We ma eie edliche Mege vo Zahle hat, ka ma diese i eier bestimmte Reihefolge durchummeriere: {a,a 2,...,a }. Ma spricht vo eier edliche Zahlefolge. Fügt ma immer mehr Zahle hizu,

Mehr

Taschenrechner bitte mitbringen

Taschenrechner bitte mitbringen NACHRICHENECHNISCHES PRAKIKUM FREQUENZMODULAION UND DEMODULAION ascherecher bitte itbrige 1. heorie der Frequez- ud Phaseodulatio 1.1 Allgeeies... 1. Zusaehag zwische FM ud PM... 1.3 Kegröße der FM ud

Mehr

SUCHPROBLEME UND ALPHABETISCHE CODES

SUCHPROBLEME UND ALPHABETISCHE CODES SUCHPROBLEME UND ALPHABETISCHE CODES Der Problematik der alphabetische Codes liege Suchprobleme zugrude, dere Lösug dem iformatiostheoretische Problem der Fidug eies (optimale) alphabetische Codes gleich

Mehr

3.2 Die Schrödinger-Gleichung

3.2 Die Schrödinger-Gleichung 3. Die Schröiger-Gleichug Oer Wie fie ich ie Wellefuktio eies Teilches Lit: Simo/McQuarrie Die S.G. ka geauso weig hergeleitet were wie ie Newtosche Gesetze (Fma). Fuametales Postulat er Quatemechaik Wir

Mehr

Aufgaben und Lösungen der Probeklausur zur Analysis I

Aufgaben und Lösungen der Probeklausur zur Analysis I Fachbereich Mathematik AG 5: Fuktioalaalysis Prof. Dr. K.-H. Neeb Dipl.-Math. Rafael Dahme Dipl.-Math. Stefa Wager ATECHNISCHE UNIVERSITÄT DARMSTADT SS 007 19. Jui 007 Aufgabe ud Lösuge der Probeklausur

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2

4 Andreas Gathmann. x 2 +y 2 x 2 +y 2 x 2 +y 2 4 Adreas Gathma 1. Komplexe Zahle Bevor wir mit der komplexe Aalysis begie, wolle wir uächst die grudlegede Defiitioe ud Eigeschafte der komplexe Zahle och eimal kur wiederhole. Defiitio 1.1. Die Mege

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr

Arithmetische und geometrische Folgen. Die wichtigsten Theorieteile. und ganz ausführliches Training. Datei Nr ZAHLENFOLGEN Teil 2 Arithmetische ud geometrische Folge Die wichtigste Theorieteile ud gaz ausführliches Traiig Datei Nr. 4002 Neu Überarbeitet Stad: 7. Juli 206 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

Mehr

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0

Übungen zur Vorlesung Funktionentheorie Sommersemester 2012. Musterlösung zu Blatt 0 UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Prof. Dr. Rolad Speicher M.Sc. Tobias Mai Übuge zur Vorlesug Fuktioetheorie Sommersemester 01 Musterlösug zu Blatt 0 Aufgabe 1. Käpt Schwarzbart,

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

4. Reihen Definitionen

4. Reihen Definitionen 4. Reihe 4.1. Defiitioe Addiere wir die Glieder eier reelle Zahlefolge (a k ), so heißt diese Summe S (uedliche) (Zahle-) Reihe S (Folge: Fuktio über N; Reihe: 1 Zahl): S := a 1 + a 2 + a 3 +... := Σ a

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Musterlösung zu Übungsblatt 2

Musterlösung zu Übungsblatt 2 Prof. R. Padharipade J. Schmitt C. Schießl Fuktioetheorie 25. September 15 HS 2015 Musterlösug zu Übugsblatt 2 Aufgabe 1. Reelle Fuktioe g : R R stelle wir us üblicherweise als Graphe {(x, g(x)} R R vor.

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Löslichkeitsdiagramm. Grundlagen

Löslichkeitsdiagramm. Grundlagen Grudlage Löslichkeitsdiagramm Grudlage Zur etrachtug des Mischugsverhaltes icht vollstädig mischbarer Flüssigkeite, das heißt Flüssigkeite, die sich icht bei jeder Temperatur i alle Megeverhältisse miteiader

Mehr

Mathematischer Vorkurs zum Studium der Physik

Mathematischer Vorkurs zum Studium der Physik Uiversität Heidelberg Mathematischer Vorkurs zum Studium der Physik Übuge Aufgabe zu Kapitel 1 (aus: K. Hefft Mathematischer Vorkurs zum Studium der Physik, sowie Ergäzuge) Aufgabe 1.1: SI-Eiheite: a)

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

Elektronikpraktikum: Digitaltechnik 2

Elektronikpraktikum: Digitaltechnik 2 Elektroikpraktikum: Digitaltechik 2 Datum, Ort: 16.05.2003, PHY/D-213 Betreuer: Schwierz Praktikate: Teshi C. Hara, Joas Posselt (beide 02/2/PHY/02) Gruppe: 8 Ziele Aufbau eier 3-Bit-Dekodierschaltug;

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Klasse: Platzziffer: Punkte: / Graph zu f

Klasse: Platzziffer: Punkte: / Graph zu f Pflichtteil Mathematik I Aufgabe P Name: Vorame: Klasse: Platzziffer: Pukte: / P.0 Gegebe ist die Fuktio f mit der Gleichug (siehe Zeichug). y x8 y,25 4 mit GI IRIR Graph zu f O x P. x 8 Die Pukte C (x,25

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

9 Der bipolare Transistor

9 Der bipolare Transistor 9 Der bipolare Trasistor Der bipolare Trasistor ist ei Halbleiter-auelemet, bei dem mit eiem kleie Steuerstrom ei großer Hauptstrom gesteuert wird. 9.1 Aufbau ud Herstellugsverfahre Der bipolare Trasistor

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

Versuch EP4 Der Transistor

Versuch EP4 Der Transistor BERGISCHE UNIVERSITÄT WUPPERTAL FACHBEREICH C - PHYSIK ELEKTRONIKPRAKTIKUM Versuch EP4 Der Trasistor Versio 2.14, TEX: 3. Februar 2014 I. Zielsetzug des Versuches Trasistore sid die zetrale Verstärkerelemete

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81

FINANZMATHEMATIK. 1. Zinsen und Zinseszinsen. Finanzmathematik 81 Fiazmathematik 8 FINANZMATHEMATIK. Zise ud Ziseszise Die Zise als Preis für die Zurverfügugstellug vo Geld bilde das zetrale Elemet i der Fiazmathematik. Hierbei sid verschiedee Arte der Verzisug zu uterscheide.

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur.

Lichtquellen Körper die selbst Licht erzeugen, nennt man Lichtquellen. Die meisten Lichtquellen sind glühende Körper mit hoher Temperatur. PS - OPTIK P. Redulić 2007 LICHT STRAHLENOPTIK LICHT. Lichtquelle ud beleuchtete Körper Sichtbare Körper sede teilweise Licht aus, teilweise reflektiere sie aber auch das auf sie fallede Licht. Lichtquelle

Mehr

Mengenbegriff und Mengendarstellung

Mengenbegriff und Mengendarstellung R. Brikma http://brikma-du.de Seite 1 05.10.008 Megebegriff ud Megedarstellug Eie Mege, ist die Zusammefassug bestimmter, wohluterschiedeer Objekte userer Aschauug ud useres Dekes welche Elemete der Mege

Mehr

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen

Testumfang für die Ermittlung und Angabe von Fehlerraten in biometrischen Systemen Testumfag für die Ermittlug ud Agabe vo Fehlerrate i biometrische Systeme Peter Uruh SRC Security Research & Cosultig GmbH peter.uruh@src-gmbh.de Eileitug Biometrische Systeme werde durch zwei wichtige

Mehr

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann

Zusammenfassung Wirtschaftsinformatik Stefan Käßmann I. Iformatio ud Nachricht 1. Iformatio ud Nachricht - Nachricht (Sytax), Sigale, Zeiche - Iformatio (Sematik), bit - Rausche 2. digitale Nachrichte - digitale Sigale (Sigalparameter aus edlicher Zeichevorrat)

Mehr

Zusammenfassung: Folgen und Konvergenz

Zusammenfassung: Folgen und Konvergenz LGÖ Ks VMa Schuljahr 6/7 Zusammefassug Folge ud Kovergez Ihaltsverzeichis Defiitioe ud Beispiele für Folge Beschräkte Folge Kovergez vo Folge Grezwertsätze für Folge 5 Für Experte 7 Defiitioe ud Beispiele

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am TU Gaz, Istitut fü Regelugstechik Schiftliche Püfug aus Regelugstechik a 6.0.00 Nae / Voae(): Ke-Mat.N.: Gebutsdatu: BONUSPUNKTE aus Coputeecheübug SS00: 3 4 eeichbae Pukte 5 4 5 5 eeichte Pukte TU Gaz,

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Transformator. n Windungen

Transformator. n Windungen echische iversität Dresde stitut für Ker- ud eilchephysik R. Schwierz V/5/29 Grudpraktikum Physik Versuch R rasformator rasformatore werde i viele ereiche der Elektrotechik ud Elektroik eigesetzt. Für

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Kapitel 6: Quadratisches Wachstum

Kapitel 6: Quadratisches Wachstum Kapitel 6: Quadratisches Wachstum Dr. Dakwart Vogel Ui Esse WS 009/10 1 Drei Beispiele Beispiel 1 Bremsweg eies PKW Bremsweg Auto.xls Ui Esse WS 009/10 Für user Modell des Bremsweges gilt a = a + d a =

Mehr

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung

Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK. 1. Vorbemerkung Versuch 1/1 POISSON STATISTIK Blatt 1 POISSON STATISTIK Physikalische Prozesse, die eier statistische Gesetzmäßigkeit uterworfe sid, lasse sich mit eier Verteilugsfuktio beschreibe. Die Gauß-Verteilug

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten

Computer-Graphik II Verallgemeinerte Baryzentrische Koordinaten 4/22/10 lausthal omputer-raphik II Verallgemeierte Baryzetrische Koordiate. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Verallgemeieruge der baryzetr. Koord. 1. Was macht ma im 2D bei (kovexe)

Mehr

4. Die Menge der Primzahlen. Bertrands Postulat

4. Die Menge der Primzahlen. Bertrands Postulat O. Forster: Eiführug i die Zahletheorie 4. Die Mege der Primzahle. Bertrads Postulat 4.1. Satz (Euklid. Es gibt uedlich viele Primzahle. Beweis. Wir zeige, dass es zu jeder edliche Mege p 1, p 2,..., p

Mehr

Folgen und Reihen Glege 03/01

Folgen und Reihen Glege 03/01 Folge ud Reihe Glege 03/0 I diesem Script werde folgede Theme behadelt: Folge (Eiführug)... Arithmetische Folge... Geometrische Folge...3 Mootoie...4 Kovergez...5 Grezwert...6 Schrake...7 Arithmetische

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.

3 Folgen, Reihen, Grenzwerte 3.1 Zahlenfolgen. Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10. 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Beispiele: 1, 2, 3, 4, 5,. 1, 3, 5, 7, 9, 3, 6, 9, 12, 15, 2, 4, 8, 16, 32, 64, 10, 100, 1.000, 10.000, 1 3 Folge, Reihe, Grezwerte 3.1 Zahlefolge Defiitio: Eie

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie

Thema: Bilanzen, Heizwert, Standardbildungsenthalpie Thema: Bilaze, eizwert, Stadardbildgsethalpie fgabe: Bestimme Sie de obere, molare eizwert o eies Kohlewasserstoffgases as de a eiem Drhflss-Kalorimeter (Bild 1) gemessee Date. T 1, m w Gas Lft V g T G

Mehr

Beobachtung über Reihen, deren Terme nach den Sinus oder Kosinus vielfacher Winkel fortschreiten

Beobachtung über Reihen, deren Terme nach den Sinus oder Kosinus vielfacher Winkel fortschreiten Beobachtug über Reihe, dere Terme ach de Sius oder Kosius vielfacher Wikel fortschreite arxiv:0.000v [math.ho] 3 Ja 0 Leohard Euler We also die Summatio dieser Reihe A+ Bx+Cxx+Dx 3 + etc bekat war, sodass,

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Physikalische Grundlagen: Strahlengang durch optische Systeme

Physikalische Grundlagen: Strahlengang durch optische Systeme ieser Text ist ür iteressierte Leser gedacht, die sich über die klausur-relevate, physiologische Grudlage hiaus mit der Optik des Auges beschätige wolle! Physikalische Grudlage: Strahlegag durch optische

Mehr

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac

Die Gasgesetze. Die Beziehung zwischen Volumen und Temperatur (Gesetz von J.-L. und J. Charles): Gay-Lussac Die Gasgesetze Die Beziehug zwische olume ud Temeratur (Gesetz vo J.-L. Gay-Lussac ud J. Charles): cost. T oder /T cost. cost.. hägt h vo ud Gasmege ab. Die extraolierte Liie scheidet die Temeratur- skala

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy.

Es werden 120 Schüler befragt, ob sie ein Handy besitzen. Das Ergebnis der Umfrage lautet: Von 120 Schülern besitzen 99 ein Handy. Vo der relative Häufigkeit zur Wahrscheilichkeit Es werde 20 Schüler befragt, ob sie ei Hady besitze. Das Ergebis der Umfrage lautet: Vo 20 Schüler besitze 99 ei Hady. Ereigis E: Schüler besitzt ei Hady

Mehr

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2

Durch das Borgen steht an der Zehner-Stelle jetzt nur noch eine 1 statt einer 2 .9 Subtraktio 7.9 Subtraktio Allgemei Bezeichuge: Miued Subtrahed = Differez Die Subtraktio zweier Zahle wird stelleweise ausgeführt. Dabei ka es vorkomme, dass eie größere Zahl vo eier kleiere Zahl subtrahiert

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Einleitung. Aufgabe 1a/1b. Übung IV

Einleitung. Aufgabe 1a/1b. Übung IV Übug IV Eileitug Etity-Relatioship-Modell: Modellierug zu Aalyse- ud Etwurfszwecke (Phase 2 i Wasserfallodell). "diet dazu, de projektierte Awedugsbereich zu strukturiere." [Keper/Eickler: Datebaksystee]

Mehr

Die natürlichen, ganzen und rationalen Zahlen

Die natürlichen, ganzen und rationalen Zahlen ie atürliche, gaze ud ratioale Zahle Ihaltsverzeichis.1 ieatürlichezahle... 11. iegazezahle... 15.3 ieratioalezahle... 15.4 Aufgabe... 17 ie Zahleege N, Z, Q ud R der atürliche, gaze, ratioale ud reelle

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet

Page-Rank: Markov-Ketten als Grundlage für Suchmaschinen im Internet Humboldt-Uiversität zu Berli Istitut für Iformatik Logik i der Iformatik Prof. Dr. Nicole Schweikardt Page-Rak: Markov-Kette als Grudlage für Suchmaschie im Iteret Skript zum gleichamige Kapitel der im

Mehr