Mathematik 3 Projekt-/Problem-orientiert ein Erfahrungsbericht

Größe: px
Ab Seite anzeigen:

Download "Mathematik 3 Projekt-/Problem-orientiert ein Erfahrungsbericht"

Transkript

1 Mathematik 3 Projekt-/Problem-orientiert ein Erfahrungsbericht Institut für Informatik & Automation, IIA Fakultät E-Technik & Informatik, Hochschule Bremen Exact Modeling of the 10. Workshop Mathematik für Ingenieure, HRW,

2 1 2 Wunsch und Gelegenheit Agenda Exact Modeling of the 3 : Systems of Springs, 4 beabsichtigte 5 im Ablauf 6 Exact Modeling of the, Extensions and Generalisations 7 Beobachtungen, und Ausblick

3 Exact Modeling of the Die Curricula der Studiengänge der Technischen Informatik TI, ISTI, MEI und DSInf an der Hochschule Bremen sehen drei Semester Mathematik vor: 1 Mathe1: lineare Algebra und analytische Geometrie 2 Mathe2: Analysis und Differentialgleichungen (SAGE) 3 Mathe3: mehrdimensionale Analysis, Stochastik (seit Jahren obligatorisch MATLAB-basiert) Für die Studierenden sind diese Module extrem ungeliebt bis verhasst, anstrengend, weil Anwendungsbeispiele immer Kenntnisse aus anderen Disziplinen von Naturwissenschaft und Technik erfordern, hoffentlich bald vorbei (least effort) und angesichts Wichtigererem eigentlich überflüssig.

4 Wunsch und Gelegenheit Mein Wunsch war, Mathematik3 Projekt- und Problem-orientiert anzulegen, um Studierende zu interessieren und zu aktivieren, Studierende durch eigene Erfolgserlebnisse zu motivieren, Studierende notwendige Kenntnisse sich selbst aneignen und ggfls. den Kommilitonen vermitteln zu lassen, Studierende im Rahmen eines überschaubaren Themas modellieren, mathematisch formalisieren, implementieren, verallgemeinern und Plausibilität überprüfen zu lassen. Exact Modeling of the Eine Gelegenheit ergab sich im SS12: Mathematik3 für letztendlich nur neun Studenten mit verhaltener Bereitschaft, sich auf Neues einzulassen verhaltener Zustimmung, an der PO vorbei zu agieren (Projekte brauchen andere Leistungsbeurteilungen als Lehrveranstaltungen mit SU, müb und Klausur).

5 Exact Modeling of the : Systems of Springs, Systeme von Spiral-Federn,, d.h. modellieren und ihr dynamisches Verhalten in der Zeit und neue statische Gleichgewichte unter Last mit MATLAB bestimmen und visualisieren 1 dynamisch: 1D, 2D, 3D Systeme von Differentialgleichungen 2. Ordnung in Systeme von Differentialgleichungen 1. Ordnung überführen Systeme von Differentialgleichungen erster Ordnung mit MATLAB lösen die Lösung visualisieren 2 statisch: 1D, 2D, 3D Systeme linearer bzw. nicht-linearer Gleichungen aufstellen Systeme linearer bzw. nicht-linearer Gleichungen lösen die Lösung visualisieren 3 nach unendlich langer Zeit nehmen gedämpfte Systeme den Gleichgewichtszustand unter (statischer) Last ein!

6 beabsichtigte Exact Modeling of the Modellieren MATLAB effizient einsetzen Plausibilität von Lösungen einschätzen Modelle hinterfragen Druck-/Zug-Federn Federn in Begrenzung Lösungsverfahren kennen-, anwenden und einschätzen numerisch symbolisch Lösungsverfahren kennen-, anwenden und einschätzen Runge-Kutta: ode45, ode23,... Nelder-Mead: fminsearch Levenberg-Marquardt: lsqnonlin

7 Exact Modeling of the einige im Ablauf [8] Präsentation des Ziels, Entscheidung für Projekt/Problem, Erinnern Mathe1 & Mathe2, Einführung MATLAB 16./ Anforderungen an newcomer, praktische Bestimmung von Feder-Konstanten, Regressionsgeraden 23./ Systeme von Differentialgleichungen 2. Ordnung in Systeme von Differentialgleichungen 1. Ordnung überführen Verteilung von Kür-Themen Studenten sagen Film mit erläuterndem Vorspann und dem dynamischen Verhalten individueller s zu physikalisches 2D-Experiment dsolve-bug: y + ay 2 = x 2 18./19.12 legend-problem Jahre ZIMT : Präsentation des -Films, s.a. video CPU/GPU-benchmarks 9./ Wie kann man Federn mit Begrenzung modellieren? Energie als Kontroll-Größe! myfminsearch vs fminsearch 16./ Parallelisierung mit der Parallel Computing Toolbox

8 Exact Modeling of the Appetizer [7] In answering to a request of one of my students let us look into the following problem: There are some springs, connected in so called nodes, some of them are fixed in one end in some position. They become a system of springs, SOS. Initially all springs are released. Now, some external forces are applied to some of the nodes. Determine the new equilibrium of the system, i.e. the new positions of the nodes. In order to stepwise solve the problem reduce the dimension of the SOS use a simplified model of the restoring forces use examples, compare results with expectations, check plausibility, refine model perceive suitability of algorithms

9 Introductory [7] Three springs are connected in two nodes n 1 and n 2 ; Two external forces f1 and f2 apply at n 1 and n 2 resp. All on one line: one-dimensional version of the problem f 1 n 1 n 2 f 2 Exact Modeling of the Let x i denote the displacement of node n i, x = (x 1, x 2 ). Then the elongations e = (e 1, e 2, e 3 ) of the three springs are e ( ) e = e 2 = 1 1 x1 = Ax x e 3 with adjacency matrix A.

10 Introductory [7] Exact Modeling of the Hooke 1 s law: strain is directly proportional to stress! i.e. frestoring is proportional to the elongation of the spring. c f restoring = 0 c 2 0 e = Ce = CAx 0 0 c 3 External forces are compensated by the restoring forces f external = A f restoring = A CAx = Kx with symmetric stiffness matrix K = A CA. Solving the system of linear equations Kx = f external easily gives the unknown displacements x. 1 R. Hooke ( ) www-history.mcs.st-andrews.ac.uk/biographies/hooke.html

11 Moving on to a [7] As an example consider a SOS with 24 springs and 9 nodes. Exact Modeling of the Assume: all springs have unit length and unit spring constant; exactly one force applies to the center node.

12 Exact Modeling of the In the example there are 12 horizontal and 12 vertical springs. A horizontal spring between (x 1, y 1 ) and (1 + x 2, y 2 ), and a vertical spring between (x 1, y 1 ) and (x 2, 1 + y 2 ) resp. have elongations e h = e h (x 1, y 1, x 2, y 2 ) = (1 + x 2 x 1 ) 2 + (y 2 y 1 ) 2 1 and e v = e v (x 1, y 1, x 2, y 2 ) = (x 2 x 1 ) 2 + (1 + y 2 y 1 ) 2 1 resp. Taylor expansion gives the linear approximation 2 of the elongation of a horizontal spring e h = e h (x 1, y 1, x 2, y 2 ) x 2 x 1 and of a vertical spring analogously e v = e v (x 1, y 1, x 2, y 2 ) y 2 y 1 2 c.p. e.g. H.Williamson, A.Mehta, M.Broussard, J.Cavazos, J.Bridge, S.Cox: The Physics of Springs

13 Again, we solve a system of linear equations Kx = f external where x is the vector of displacements (x i, y i ) of node i. Exact Modeling of the Exact solution of the linear model: first order approximation of the elongation frame, f external nodes without load springs without load nodes under load springs under load We get an obviously not very convincing result: exact solution of an insufficient model does not yield a reasonable result!

14 Exact Modeling of the Taylor expansion gives e h = e h (x 1, y 1, x 2, y 2 ) x 2 x (y 2 y 1 ) 2 and analogously e v = e v (x 1, y 1, x 2, y 2 ) y 2 y (x 2 x 1 ) 2 For n nodes with displacements (x i, y i ) let x = (x i ) i=1,..,n and y = (y i ) i=1,...n. A is again the adjacency matrix. Then e = A*[x;y]+1/2*(A*[y;x]). 2 f_restoring = C*e f_external = A'*f_restoring f_external = A'*C*(A*[x;y]+1/2*(A*[y;x]). 2). To solve this non-linear vector equation, the generic Nelder- Mead [5] algorithm, e.g. fminsearch applied to the scalar norm(f_external-a'*c*(a*[x;y]+1/2*(a*[y;x]). 2)) in 18 variables is not very reasonable!

15 Better to use the adequate Levenberg-Marquardt algorithm [2],[4],[6], e.g. lsqnonlin of the optimization toolbox. Exact Modeling of the Approximated solution of the quadratic model: second order approximation of the elongation frame, f external nodes without load springs without load nodes under load springs under load The result is still not convincing: we do not take the direction of the restoring forces into account.

16 Exact Modeling of the f restoring of a horizontal spring with unit length and spring constant c between p = (x 1, y 1 ) and q = (1 + x 2, y 2 ) is f restoring = c elongation q p q p = c( q p 1) q p q p. Exact Modeling of the Approximated solution of the exact model frame, f external nodes without load springs without load nodes under load springs under load

17 , Extensions and Generalisations Exact Modeling of the lessons learnt Modeling is of importance! Only adequate algorithms produce reasonable results! By far not all web resources are reliable! suggested extensions different positions, lengths, spring constants different initial conditions: prestress 3D suggested generalisations dynamics: system behaviour in time system of ode s discrete continuous pde

18 Beobachtungen, und Ausblick Exact Modeling of the + Interesse, Motivation und Engagement sind hoch! [8] + wiki auf AULIS/ILIAS = Wissensbasis, zum Austausch! + Unerwartete Eigeninitiative! [8] + Unerwartete Beiträge mit hoher Serendipität! [8] + Überraschenderweise wird im Tutorium weitere Mathematik wie z.b. Statistik nachgefragt! o Spezialisierung/Hobby [8] Schwache Studierende sind schnell abgehängt! Mathematisch (zu?) Anspruchsvolles bleibt gern liegen! Tendenz weg von der Mathematik hin zu MATLAB, hin zur Programmierung ist nicht kontrollierbar! Steuerung, Qualitätssicherung: individuell, aufwändig! verschiedenartige Beiträge diffizile Benotung! Dennoch: bei günstiger Gelegenheit Anderes jederzeit wieder!

19 Exact Modeling of the References [1] C.T. Kelly: Iterative Methods for Optimization; SIAM [2] K. Levenberg: A Method for the Solution of Certain Problems in Least Squares; Quart. Appl. Math., 1944, Vol 2, [3] K. Madsen, H.B. Nielsen, O. Tingleff: Methods for Nonlinear Least Squares Problems; IMM, Technical University of Denmark 2004 www2.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf [4] D. Marquardt: An Algorithm for Least Squares Estimation of Nonlinear Parameters; SIAM J. Appl. Math., 1963, Vol 11, [5] John A. Nelder, R. Mead: A Simplex Method for Function Minimization; Computer Journal 1965, Vol 7, [6] A. Ranganathan: The Levenberg-Marquardt Algorithm; [7] Th. Risse: Equilibria of Systems of Springs; LSBU, March 22 nd [8] Th. Risse: Protokoll zur Veranstaltung Mathe3 im SS12; HSB

Finite Difference Method (FDM)

Finite Difference Method (FDM) Finite Difference Method (FDM) home/lehre/vl-mhs-1-e/folien/vorlesung/2a_fdm/cover_sheet.tex page 1 of 15. p.1/15 Table of contents 1. Problem 2. Governing Equation 3. Finite Difference-Approximation 4.

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, D-Example /home/lehre/vl-mhs-/inhalt/cover_sheet.tex. p./22 Table of contents D Example - Finite Element Method. D Setup Geometry 2. Governing equation 3. General Derivation of Finite

Mehr

Introduction FEM, 1D-Example

Introduction FEM, 1D-Example Introduction FEM, 1D-Example home/lehre/vl-mhs-1-e/folien/vorlesung/3_fem_intro/cover_sheet.tex page 1 of 25. p.1/25 Table of contents 1D Example - Finite Element Method 1. 1D Setup Geometry 2. Governing

Mehr

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number.

Magic Figures. We note that in the example magic square the numbers 1 9 are used. All three rows (columns) have equal sum, called the magic number. Magic Figures Introduction: This lesson builds on ideas from Magic Squares. Students are introduced to a wider collection of Magic Figures and consider constraints on the Magic Number associated with such

Mehr

Inverse Problems In Medical Imaging

Inverse Problems In Medical Imaging Inverse Problems In Medical Imaging 07.05.18 Simon Krug physics654: Seminar Medical Imaging University of Bonn Inverse Problems Problem solving Inverse problems Noise Object and Image Radon transform Silent

Mehr

1D-Example - Finite Difference Method (FDM)

1D-Example - Finite Difference Method (FDM) D-Example - Finite Difference Method (FDM) h left. Geometry A = m 2 = m ents 4m q right x 2. Permeability k f = 5 m/s 3. Boundary Conditions q right = 4 m/s y m 2 3 4 5 h left = 5 m x x x x home/baumann/d_beispiel/folie.tex.

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/folien/vorlesung/4_fem_isopara/cover_sheet.tex page of 25. p./25 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types

Mehr

Priorities (time independent and time dependent) Different service times of different classes at Type-1 nodes -

Priorities (time independent and time dependent) Different service times of different classes at Type-1 nodes - E.6 Approximate Analysis of Non-product-Form Queueing Networks Non exponentially distributed service times Priorities (time independent and time dependent) Different service times of different classes

Mehr

Field-Circuit Coupling for Mechatronic Systems: Some Trends and Techniques

Field-Circuit Coupling for Mechatronic Systems: Some Trends and Techniques Field-Circuit Coupling for Mechatronic Systems: Some Trends and Techniques Stefan Kurz Robert Bosch GmbH, Stuttgart Now with the University of the German Federal Armed Forces, Hamburg stefan.kurz@unibw-hamburg.de

Mehr

Functional Analysis Final Test, Funktionalanalysis Endklausur,

Functional Analysis Final Test, Funktionalanalysis Endklausur, Spring term 2012 / Sommersemester 2012 Functional Analysis Final Test, 16.07.2012 Funktionalanalysis Endklausur, 16.07.2012 Name:/Name: Matriculation number:/matrikelnr.: Semester:/Fachsemester: Degree

Mehr

Number of Maximal Partial Clones

Number of Maximal Partial Clones Number of Maximal Partial Clones KARSTEN SCHÖLZEL Universität Rostoc, Institut für Mathemati 26th May 2010 c 2010 UNIVERSITÄT ROSTOCK MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT, INSTITUT FÜR MATHEMATIK

Mehr

Ressourcenmanagement in Netzwerken SS06 Vorl. 12,

Ressourcenmanagement in Netzwerken SS06 Vorl. 12, Ressourcenmanagement in Netzwerken SS06 Vorl. 12, 30.6.06 Friedhelm Meyer auf der Heide Name hinzufügen 1 Prüfungstermine Dienstag, 18.7. Montag, 21. 8. und Freitag, 22.9. Bitte melden sie sich bis zum

Mehr

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach 1 Universität Siegen Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Klausur Monetäre Außenwirtschaftstheorie und politik / International Macro Wintersemester 2011-12 (1. Prüfungstermin) Bearbeitungszeit:

Mehr

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach 1 Universität Siegen Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Klausur Monetäre Außenwirtschaftstheorie und politik / International Macro Wintersemester 2011-12 (2. Prüfungstermin) Bearbeitungszeit:

Mehr

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010

Stochastic Processes SS 2010 Prof. Anton Wakolbinger. Klausur am 16. Juli 2010 Stochastic Processes SS 2010 Prof. Anton Wakolbinger Klausur am 16. Juli 2010 Vor- und Nachname: Matrikelnummer: Studiengang: Tutor(in): In der Klausur können 100 Punkte erreicht werden. Die Gesamtpunktezahl

Mehr

A Classification of Partial Boolean Clones

A Classification of Partial Boolean Clones A Classification of Partial Boolean Clones DIETLINDE LAU, KARSTEN SCHÖLZEL Universität Rostock, Institut für Mathematik 25th May 2010 c 2010 UNIVERSITÄT ROSTOCK MATHEMATISCH-NATURWISSENSCHAFTLICHE FAKULTÄT,

Mehr

Aufgabe 1 (12 Punkte)

Aufgabe 1 (12 Punkte) Aufgabe ( Punkte) Ein Medikament wirkt in drei Organen O, O, O 3. Seine Menge zur Zeit t im Organ O k wird mit x k (t) bezeichnet, und die Wechselwirkung wird durch folgendes System von Differentialgleichungen

Mehr

Einführung in die Finite Element Methode Projekt 2

Einführung in die Finite Element Methode Projekt 2 Einführung in die Finite Element Methode Projekt 2 Juri Schmelzer und Fred Brockstedt 17.7.2014 Juri Schmelzer und Fred Brockstedt Einführung in die Finite Element Methode Projekt 2 17.7.2014 1 / 29 Project

Mehr

Die neuen Studiengänge der Physik

Die neuen Studiengänge der Physik Ab dem kommenden Wintersemester ändern sich die Studiengänge BSc Physik, BA Lehramt GymGe/ BK Physik und MSc Physics. Bis zum 31.12.2015 müssen Sie sich entscheiden, in welcher Studienordnung Sie Ihren

Mehr

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung.

Copyright by Hildegard Heilmann IAG 13.03.2004. Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. MTEquationSection;Flächenintegrale mit Derive Diese Unterlagen stelle ich den SchülerInnen des V. Bachilleratos des IAG zur Verfügung. Einige Anleitungen zum Arbeiten mit Derive: Befehle: VECTOR, ITERATES,

Mehr

Unit 4. The Extension Principle. Fuzzy Logic I 123

Unit 4. The Extension Principle. Fuzzy Logic I 123 Unit 4 The Extension Principle Fuzzy Logic I 123 Images and Preimages of Functions Let f : X Y be a function and A be a subset of X. Then the image of A w.r.t. f is defined as follows: f(a) = {y Y there

Mehr

Allgemeine Mechanik Musterlösung 11.

Allgemeine Mechanik Musterlösung 11. Allgemeine Mechanik Musterlösung 11. HS 2014 Prof. Thomas Gehrmann Übung 1. Poisson-Klammern 1 Zeigen Sie mithilfe der Poisson-Klammern, dass folgendes gilt: a Für das Potential V ( r = α r 1+ε ist der

Mehr

Einführung In Die Moderne Matrix-Algebra: Mit Anwendungen In Der Statistik (German Edition) By Karsten Schmidt;Götz Trenkler

Einführung In Die Moderne Matrix-Algebra: Mit Anwendungen In Der Statistik (German Edition) By Karsten Schmidt;Götz Trenkler Einführung In Die Moderne Matrix-Algebra: Mit Anwendungen In Der Statistik (German Edition) By Karsten Schmidt;Götz Trenkler Experimental Econometrics - K./ Trenkler, G.: Einf hrung in die Moderne Matrix-Algebra:

Mehr

DYNAMISCHE GEOMETRIE

DYNAMISCHE GEOMETRIE DYNAMISCHE GEOMETRIE ÄHNLICHKEITSGEOMETRIE & MODELLIERUNG PAUL LIBBRECHT PH WEINGARTEN WS 2014-2015 CC-BY VON STAUDT KONSTRUKTIONEN Menü Erinnerung: Strahlensatz Längen, Frame Zielartikel Addition, Subtraktion

Mehr

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM)

Finite Difference Method (FDM) Integral Finite Difference Method (IFDM) Finite Difference Method (FDM) Integral Finite Difference Method (IFDM) home/lehre/vl-mhs-1-e/cover sheet.tex. p.1/29 Table of contents 1. Finite Difference Method (FDM) 1D-Example (a) Problem and Governing

Mehr

Mathematics (M4) (English version) ORIENTIERUNGSARBEIT (OA 11) Gymnasium. Code-Nr.:

Mathematics (M4) (English version) ORIENTIERUNGSARBEIT (OA 11) Gymnasium. Code-Nr.: Gymnasium 2. Klassen MAR Code-Nr.: Schuljahr 2005/2006 Datum der Durchführung Donnerstag, 6.4.2006 ORIENTIERUNGSARBEIT (OA 11) Gymnasium Mathematics (M4) (English version) Lesen Sie zuerst Anleitung und

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, June 11, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

2011 European HyperWorks Technology Conference

2011 European HyperWorks Technology Conference 2011 European HyperWorks Technology Conference Topology Optimization Methods applied to Automotive Transmission Housings 1 Agenda Introduction - Corporate Information - overview Topology Optimization for

Mehr

1.9 Dynamic loading: τ ty : torsion yield stress (torsion) τ sy : shear yield stress (shear) In the last lectures only static loadings are considered

1.9 Dynamic loading: τ ty : torsion yield stress (torsion) τ sy : shear yield stress (shear) In the last lectures only static loadings are considered 1.9 Dynaic loading: In the last lectures only static loadings are considered A static loading is: or the load does not change the load change per tie N Unit is 10 /sec 2 Load case Ι: static load (case

Mehr

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo

Research Collection. Backward stochastic differential equations with super-quadratic growth. Doctoral Thesis. ETH Library. Author(s): Bao, Xiaobo Research Collection Doctoral Thesis Backward stochastic differential equations with super-quadratic growth Author(s): Bao, Xiaobo Publication Date: 2009 Permanent Link: https://doi.org/10.3929/ethz-a-005955736

Mehr

Rätsel 1: Buchstabensalat klassisch, 5 5, A C (10 Punkte) Puzzle 1: Standard As Easy As, 5 5, A C (10 points)

Rätsel 1: Buchstabensalat klassisch, 5 5, A C (10 Punkte) Puzzle 1: Standard As Easy As, 5 5, A C (10 points) Rätsel 1: uchstabensalat klassisch, 5 5, (10 Punkte) Puzzle 1: Standard s Easy s, 5 5, (10 points) Rätsel 2: uchstabensalat klassisch, 5 5, (5 Punkte) Puzzle 2: Standard s Easy s, 5 5, (5 points) Rätsel

Mehr

Übungsblatt 6. Analysis 1, HS14

Übungsblatt 6. Analysis 1, HS14 Übungsblatt 6 Analysis, HS4 Ausgabe Donnerstag, 6. Oktober. Abgabe Donnerstag, 23. Oktober. Bitte Lösungen bis spätestens 7 Uhr in den Briefkasten des jeweiligen Übungsleiters am J- oder K-Geschoss von

Mehr

Level 2 German, 2015

Level 2 German, 2015 91126 911260 2SUPERVISOR S Level 2 German, 2015 91126 Demonstrate understanding of a variety of written and / or visual German text(s) on familiar matters 2.00 p.m. Friday 4 December 2015 Credits: Five

Mehr

Linear Algebra for Economists

Linear Algebra for Economists Springer Texts in Business and Economics Linear Algebra for Economists Bearbeitet von Fuad Aleskerov, Hasan Ersel, Dmitri Piontkovski 1. Auflage 2011. Buch. xii, 280 S. Hardcover ISBN 978 3 642 20569 9

Mehr

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ].

Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. ,and C = [ ]. Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Attention: Give your answers to problem 1 and problem 2 directly below the questions in the exam question sheet. Problem 1 (15 points) a) (1 point) A system description

Mehr

Ewald s Sphere/Problem 3.7

Ewald s Sphere/Problem 3.7 Ewald s Sphere/Problem 3.7 Studentproject/Molecular and Solid-State Physics Lisa Marx 831292 15.1.211, Graz Ewald s Sphere/Problem 3.7 Lisa Marx 831292 Inhaltsverzeichnis 1 General Information 3 1.1 Ewald

Mehr

MA2000 (6) Math. Grundlagen. MA2003 (5) Maß- und Int. MA2004 (5) Vektoranalysis MA2101 (9) Algebra. MA2203 (5) Geo-Kalküle

MA2000 (6) Math. Grundlagen. MA2003 (5) Maß- und Int. MA2004 (5) Vektoranalysis MA2101 (9) Algebra. MA2203 (5) Geo-Kalküle weitere Pflichtmodule Reine Mathe frühestes Semester: 1. Sem (WiSe) 2. Sem (SoSe) 3. Sem (WiSe) 4. Sem (SoSe) 5. Sem (WiSe) 6. Sem (SoSe) MA1001 (10) Analysis 1 MA1002 (10) Analysis 2 MA2000 (6) Math.

Mehr

FEM Isoparametric Concept

FEM Isoparametric Concept FEM Isoparametric Concept home/lehre/vl-mhs--e/cover_sheet.tex. p./26 Table of contents. Interpolation Functions for the Finite Elements 2. Finite Element Types 3. Geometry 4. Interpolation Approach Function

Mehr

Causal Analysis in Population Studies

Causal Analysis in Population Studies Causal Analysis in Population Studies Prof. Dr. Henriette Engelhardt Prof. Dr. Alexia Prskawetz Randomized experiments and observational studies for causal inference inference Historical dichotomy between

Mehr

v+s Output Quelle: Schotter, Microeconomics, , S. 412f

v+s Output Quelle: Schotter, Microeconomics, , S. 412f The marginal cost function for a capacity-constrained firm At output levels that are lower than the firm s installed capacity of K, the marginal cost is merely the variable marginal cost of v. At higher

Mehr

Interpolation Functions for the Finite Elements

Interpolation Functions for the Finite Elements Interpolation Functions for the Finite Elements For the finite elements method, the following is valid: The global function of a sought function consists of a sum of local functions: GALERKIN method: the

Mehr

KTdCW Artificial Intelligence 2016/17 Practical Exercises - PART A

KTdCW Artificial Intelligence 2016/17 Practical Exercises - PART A KTdCW Artificial Intelligence 2016/17 Practical Exercises - PART A Franz Wotawa Technische Universität Graz, Institute for Software Technology, Inffeldgasse 16b/2, A-8010 Graz, Austria, wotawa@ist.tugraz.at,

Mehr

Algebra. 1. Geben Sie alle abelschen Gruppen mit 8 und 12 Elementen an. (Ohne Nachweis).

Algebra. 1. Geben Sie alle abelschen Gruppen mit 8 und 12 Elementen an. (Ohne Nachweis). 1 Wiederholungsblatt zur Gruppentheorie 18.12.2002 Wiederholen Sie für die Klausur: Algebra WS 2002/03 Dr. Elsholtz Alle Hausaufgaben. Aufgaben, die vor Wochen schwer waren, sind hoffentlich mit Abstand,

Mehr

Informatik - Übungsstunde

Informatik - Übungsstunde Informatik - Übungsstunde Jonas Lauener (jlauener@student.ethz.ch) ETH Zürich Woche 08-25.04.2018 Lernziele const: Reference const: Pointer vector: iterator using Jonas Lauener (ETH Zürich) Informatik

Mehr

a) Name and draw three typical input signals used in control technique.

a) Name and draw three typical input signals used in control technique. 12 minutes Page 1 LAST NAME FIRST NAME MATRIKEL-NO. Problem 1 (2 points each) a) Name and draw three typical input signals used in control technique. b) What is a weight function? c) Define the eigen value

Mehr

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs

Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Algorithmische Bioinformatik II WS2004/05 Ralf Zimmer Part III Probabilistic Modeling IV Bayesian Modeling: Algorithms, EM and MC Methods HMMs Ralf Zimmer, LMU Institut für Informatik, Lehrstuhl für Praktische

Mehr

Algorithms for graph visualization

Algorithms for graph visualization Algorithms for graph visualization Project - Orthogonal Grid Layout with Small Area W INTER SEMESTER 2013/2014 Martin No llenburg KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

Grade 12: Qualifikationsphase. My Abitur

Grade 12: Qualifikationsphase. My Abitur Grade 12: Qualifikationsphase My Abitur Qualifikationsphase Note 1 Punkte Prozente Note 1 15 14 13 85 % 100 % Note 2 12 11 10 70 % 84 % Note 3 9 8 7 55 % 69 % Note 4 6 5 4 40 % 54 % Note 5 3 2 1 20 % 39

Mehr

Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum

Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum Synchronisation: ein universelles Ordnungsprinzip für Rhythmen Michael Rosenblum Statistische Physik / Chaos Theorie Institut für Physik und Astronomie Universität Potsdam Schwingungen: wichtig in Wissenschaft

Mehr

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3

Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3 Angewandte Umweltsystemanalyse: Finite-Elemente-Methode (FEM) #3 Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden

Mehr

Josh Engwer (TTU) Line Integrals 11 November / 25

Josh Engwer (TTU) Line Integrals 11 November / 25 Line Integrals alculus III Josh Engwer TTU 11 November 2014 Josh Engwer (TTU) Line Integrals 11 November 2014 1 / 25 PART I PART I: LINE INTEGRALS OF SALAR FIELDS Josh Engwer (TTU) Line Integrals 11 November

Mehr

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator

[[ [ [ [[ Natur, Technik, Systeme. Test, Dezember Erstes Semester WI10. PV Panel und Kondensator Natur, Technik, Systeme Test, Dezember 00 Erstes Semester WI0 Erlaubte Hilfsmittel: Bücher und persönlich verfasste Zusammenfassung. Rechen- und Schreibzeugs. Antworten müssen begründet und nachvollziehbar

Mehr

Hydrosystemanalyse: Finite-Elemente-Methode (FEM)

Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Hydrosystemanalyse: Finite-Elemente-Methode (FEM) Prof. Dr.-Ing. habil. Olaf Kolditz 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Dresden, 17.

Mehr

Übungen zur Analysis 2

Übungen zur Analysis 2 Mathematisches Institut der Universität München Prof. Dr. Franz Merkl Sommersemester 013 Blatt 3 03.04.013 Übungen zur Analysis 3.1 Abstraktion des Beweises der Minkowskiungleichung. Es seien V ein K-Vektorraum

Mehr

Allgemeine Mechanik Musterlösung 5.

Allgemeine Mechanik Musterlösung 5. Allgemeine Mechanik Musterlösung 5. HS 014 Prof. Thomas Gehrmann Übung 1. Rotierende Masse. Eine Punktmasse m rotiere reibungslos auf einem Tisch (siehe Abb. 1). Dabei ist sie durch einen Faden der Länge

Mehr

Open queueing network model of a computer system: completed jobs

Open queueing network model of a computer system: completed jobs E Queueing Networks E Queueing Networks Open queueing network model of a computer system: Stream of new jobs Disk CPU Printer Stream of completed jobs Magnetic Tape E.164 E Queueing Networks "Central-Server-Model

Mehr

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6

Unit 1. Motivation and Basics of Classical Logic. Fuzzy Logic I 6 Unit 1 Motivation and Basics of Classical Logic Fuzzy Logic I 6 Motivation In our everyday life, we use vague, qualitative, imprecise linguistic terms like small, hot, around two o clock Even very complex

Mehr

Weather forecast in Accra

Weather forecast in Accra Weather forecast in Accra Thursday Friday Saturday Sunday 30 C 31 C 29 C 28 C f = 9 5 c + 32 Temperature in Fahrenheit Temperature in Celsius 2 Converting Celsius to Fahrenheit f = 9 5 c + 32 tempc = 21

Mehr

Where are we now? The administration building M 3. Voransicht

Where are we now? The administration building M 3. Voransicht Let me show you around 9 von 26 Where are we now? The administration building M 3 12 von 26 Let me show you around Presenting your company 2 I M 5 Prepositions of place and movement There are many prepositions

Mehr

Titelmasterformat Object Generator durch Klicken bearbeiten

Titelmasterformat Object Generator durch Klicken bearbeiten Titelmasterformat Object Generator durch Klicken bearbeiten How to model 82 screws in 2 minutes By Pierre-Louis Ruffieux 17.11.2014 1 Object Generator The object generator is usefull tool to replicate

Mehr

Fachübersetzen - Ein Lehrbuch für Theorie und Praxis

Fachübersetzen - Ein Lehrbuch für Theorie und Praxis Fachübersetzen - Ein Lehrbuch für Theorie und Praxis Radegundis Stolze Click here if your download doesn"t start automatically Fachübersetzen - Ein Lehrbuch für Theorie und Praxis Radegundis Stolze Fachübersetzen

Mehr

CNC ZUR STEUERUNG VON WERKZEUGMASCHINEN (GERMAN EDITION) BY TIM ROHR

CNC ZUR STEUERUNG VON WERKZEUGMASCHINEN (GERMAN EDITION) BY TIM ROHR (GERMAN EDITION) BY TIM ROHR READ ONLINE AND DOWNLOAD EBOOK : CNC ZUR STEUERUNG VON WERKZEUGMASCHINEN (GERMAN EDITION) BY TIM ROHR PDF Click button to download this ebook READ ONLINE AND DOWNLOAD CNC ZUR

Mehr

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n

4. Bayes Spiele. S i = Strategiemenge für Spieler i, S = S 1... S n. T i = Typmenge für Spieler i, T = T 1... T n 4. Bayes Spiele Definition eines Bayes Spiels G B (n, S 1,..., S n, T 1,..., T n, p, u 1,..., u n ) n Spieler 1,..., n S i Strategiemenge für Spieler i, S S 1... S n T i Typmenge für Spieler i, T T 1...

Mehr

Anlage 1: Studiengang Wirtschaftsmathematik mit dem Abschluss Bachelor of Science STUDIENABLAUFPLAN

Anlage 1: Studiengang Wirtschaftsmathematik mit dem Abschluss Bachelor of Science STUDIENABLAUFPLAN Module 1. Semester 2. Semester 3. Semester 4. Semester 5. Semester 6. Semester Workload Leistungspunkte Gesamt 1. Basismodule: 1. a Basismodule Mathematik: B01 Analysis I B02 Lineare Algebra und Analytische

Mehr

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB Read Online and Download Ebook PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB DOWNLOAD EBOOK : PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: Click link bellow

Mehr

Wissenschaftliche Arbeitsgemeinschaft für Raketentechnik und Raumfahrt. Lehrstuhl für Raumfahrttechnik Technische Universität München

Wissenschaftliche Arbeitsgemeinschaft für Raketentechnik und Raumfahrt. Lehrstuhl für Raumfahrttechnik Technische Universität München Structure and Mechanisms Work Package Report FEM Simulation Goals: 1.) Find out if two mechanisms are required to hold down the solar panels 2.) Find out if a middle plate is required to stabilize structure

Mehr

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS

Final Exam. Friday June 4, 2008, 12:30, Magnus-HS Stochastic Processes Summer Semester 2008 Final Exam Friday June 4, 2008, 12:30, Magnus-HS Name: Matrikelnummer: Vorname: Studienrichtung: Whenever appropriate give short arguments for your results. In

Mehr

Lattice Structure Design with Linear Optimization in the Field of Generative Design

Lattice Structure Design with Linear Optimization in the Field of Generative Design Lattice Structure Design with Linear Optimization in the Field of Generative Design Structure 1. Motivation 2. Workflow 3. Linear Statics for Frame Member 4. Optimization Model 5. CAD-Integration 6. Results

Mehr

Übung 7 Beispiel 3 Daniel Herold

Übung 7 Beispiel 3 Daniel Herold Übung 7 Beispiel 3 Daniel Herold Given an integer J, consider the following uniform partition of (0, ): 0 = y 0 < y < < y J+ =, y j = j J +, j = 0...J + Based on this partition, a domain decomposition

Mehr

Klausurplan Mathematik

Klausurplan Mathematik Klausurplan Mathematik SS 18 Stand: 11. Juli 2018 Zuordnung: Studenten ACHTUNG: Beachten Sie, dass einige Klausuren wegen niedriger Zahl von Anmeldungen durch mündliche Prüfungen ersetzt werden können

Mehr

Selbstlernmodul bearbeitet von: begonnen: Inhaltsverzeichnis:

Selbstlernmodul bearbeitet von: begonnen: Inhaltsverzeichnis: bearbeitet von: begonnen: Fach: Englisch Thema: The Future Deckblatt des Moduls 1 ''You will have to pay some money soon. That makes 4, please.'' ''Oh!'' Inhaltsverzeichnis: Inhalt bearbeitet am 2 Lerntagebuch

Mehr

German translation: technology

German translation: technology A. Starter Write the gender and the English translation for each word, using a dictionary if needed. Gender (der/die/das) German English Handy Computer Internet WLAN-Verbindung Nachricht Drucker Medien

Mehr

Transport Equation. Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung

Transport Equation. Institut für Wasserbau, Lehrstuhl für Hydromechanik und Hydrosystemmodellierung Transport Equation home/lehre/vl-mhs--e/folien/vorlesung/8_transport/cover_sheet.tex page of 22. p./22 Table of contents. Introduction 2. Transport Equation 3. Analytical Solution 4. Discretization of

Mehr

Anlage 1: Studiengang Finanzmathematik mit dem Abschluss Bachelor of Science STUDIENABLAUFPLAN

Anlage 1: Studiengang Finanzmathematik mit dem Abschluss Bachelor of Science STUDIENABLAUFPLAN Module 1. Semester 2. Semester 3. Semester 4. Semester 5. Semester 6. Semester Workload Leistungspunkte Gesamt 1. Basismodule: 1. a Basismodule in Mathematik B01 Analysis I 8 LVS (V4/Ü4) B02 Lineare Algebra

Mehr

6. Übungsblatt Aufgaben mit Lösungen

6. Übungsblatt Aufgaben mit Lösungen 6. Übungsblatt Aufgaben mit Lösungen Exercise 6: Find a matrix A R that describes the following linear transformation: a reflection with respect to the subspace E = {x R : x x + x = } followed by a rotation

Mehr

Algebra. Übungsblatt 2 (Lösungen)

Algebra. Übungsblatt 2 (Lösungen) Fakultät für Mathematik Sommersemester 2017 JProf. Dr. Christian Lehn Dr. Alberto Castaño Domínguez Algebra Übungsblatt 2 (Lösungen) Aufgabe 1. Es sei n 3. Zeigen Sie, dass S n von (1 2) und (1... n) erzeugt

Mehr

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB

PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB Read Online and Download Ebook PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: ENGLISCH LERNEN MIT JUSTUS, PETER UND BOB DOWNLOAD EBOOK : PONS DIE DREI??? FRAGEZEICHEN, ARCTIC ADVENTURE: Click link bellow

Mehr

Automatentheorie und formale Sprachen reguläre Ausdrücke

Automatentheorie und formale Sprachen reguläre Ausdrücke Automatentheorie und formale Sprachen reguläre Ausdrücke Dozentin: Wiebke Petersen 6.5.2009 Wiebke Petersen Automatentheorie und formale Sprachen - SoSe09 1 Formal language Denition A formal language L

Mehr

Integer Convex Minimization in Low Dimensions

Integer Convex Minimization in Low Dimensions DISS. ETH NO. 22288 Integer Convex Minimization in Low Dimensions A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by TIMM OERTEL Diplom-Mathematiker,

Mehr

Informationen zum Bachelor Technische Mathematik. Studienplan neu ab 1. Oktober 2018

Informationen zum Bachelor Technische Mathematik. Studienplan neu ab 1. Oktober 2018 Informationen zum Bachelor Technische Mathematik Studienplan neu ab 1. Oktober 2018 Änderungen im Überblick keine Bachelorprüfung Umbenennungen (z.b. Computersysteme -> Programmierung 2) Aufteilung von

Mehr

aus Doktorarbeiten Anna Lena Birkmeyer Oktober 2016

aus Doktorarbeiten Anna Lena Birkmeyer Oktober 2016 aus Doktorarbeiten Anna Lena Birkmeyer Fachbereich Mathematik TU Kaiserslautern Oktober 2016 In der der Arbeit: The mathematical modeling and optimization of... is a wide field of research [4,15,19,35,61,62,66,76,86]

Mehr

Computational Models

Computational Models - University of Applied Sciences - Computational Models - CSCI 331 - Friedhelm Seutter Institut für Angewandte Informatik Part I Automata and Languages 0. Introduction, Alphabets, Strings, and Languages

Mehr

Inhalt und Überblick. Visuelle Kognition Adrian Schwaninger Universität Zürich. Erkennung und Repräsentation Ansichtenbasierte Ansatze Überblick

Inhalt und Überblick. Visuelle Kognition Adrian Schwaninger Universität Zürich. Erkennung und Repräsentation Ansichtenbasierte Ansatze Überblick Einleitung Visuelle Kognition Adrian Schwaninger Universität Zürich Inhalt und Überblick Repräsentation, Erkennung, Kategorisierung Traditioneller Ansatz Strukturelle Beschreibungen Ansichtenbasierte Modelle

Mehr

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund

Seminarvortrag. Euler-Approximation. Marian Verkely TU Dortmund Seminarvortrag Euler-Approximation Marian Verkely TU Dortmund 03.12.14 1 / 33 Inhaltsverzeichnis 1 Motivation 2 Simulierte Prozesse 3 Euler-Approximation 4 Vasicek-Prozess: Vergleich analytische Lösung

Mehr

Klausurplan Mathematik WS 18/19 Stand: 28. Januar 2019 Zuordnung: Studenten

Klausurplan Mathematik WS 18/19 Stand: 28. Januar 2019 Zuordnung: Studenten Klausurplan Mathematik WS 18/19 Stand: 28. Januar 2019 Zuordnung: Studenten ACHTUNG: Beachten Sie, dass einige Klausuren wegen niedriger Zahl von Anmeldungen durch mündliche Prüfungen ersetzt werden können

Mehr

Accelerating Information Technology Innovation

Accelerating Information Technology Innovation Accelerating Information Technology Innovation http://aiti.mit.edu Ghana Summer 2011 Lecture 05 Functions Weather forecast in Accra Thursday Friday Saturday Sunday 30 C 31 C 29 C 28 C f = 9 5 c + 32 Temperature

Mehr

Data Structures and Algorithm Design

Data Structures and Algorithm Design - University of Applied Sciences - Data Structures and Algorithm Design - CSCI 340 - Friedhelm Seutter Institut für Angewandte Informatik Contents 1 Analyzing Algorithms and Problems 2 Data Abstraction

Mehr

Unit 5. Mathematical Morphology. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85

Unit 5. Mathematical Morphology. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85 Unit 5 Mathematical Morphology Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 85 Introduction to Mathematical Morphology Use of algebraic analysis for detecting

Mehr

Modulbeschreibung. The course is principally designed to impart: technical skills 50%, method skills 40%, system skills 10%, social skills 0%.

Modulbeschreibung. The course is principally designed to impart: technical skills 50%, method skills 40%, system skills 10%, social skills 0%. Titel des Moduls: Parallel Systems Dt.: Parallele Systeme Verantwortlich für das Modul: Heiß, Hans-Ulrich E-Mail: lehre@kbs.tu-berlin.de URL: http://www.kbs.tu-berlin.de/ Modulnr.: 866 (Version 2) - Status:

Mehr

3. Exercise. t 1. t t 6. p 4 p 5. t 4. Exercise 3.1 (Controlling a manufacturing system)

3. Exercise. t 1. t t 6. p 4 p 5. t 4. Exercise 3.1 (Controlling a manufacturing system) Prof. Dr.-Ing. Jörg Raisch Germano Schafaschek Soraia Moradi Behrang Nejad Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Lehrveranstaltung Ereignisdiskrete

Mehr

Learning Linear Ordering Problems for Better Translation

Learning Linear Ordering Problems for Better Translation Learning Linear Ordering Problems for Better Translation Roy Tromble, Google Pittsburgh Jason Eisner, Johns Hopkins August 7, 2009 Overview Monotonic translation is easier Construct sentence-specific Linear

Mehr

Level 1 German, 2012

Level 1 German, 2012 90886 908860 1SUPERVISOR S Level 1 German, 2012 90886 Demonstrate understanding of a variety of German texts on areas of most immediate relevance 9.30 am Tuesday 13 November 2012 Credits: Five Achievement

Mehr

Scheduling. chemistry. math. history. physics. art

Scheduling. chemistry. math. history. physics. art Scheduling Consider the following problem: in a university, assign exams to time slots in such a way: ) every student can do the exams of the courses he is taking; ) the total number of used time slots

Mehr

FPGA-Based Architecture for Pattern Recognition

FPGA-Based Architecture for Pattern Recognition Institut für Technik der Informationsverarbeitung FPGA-Based Architecture for Pattern Recognition Institut für Prozessdatenverarbeitung und Elektronik - IPE, KIT University of the State of Baden-Wuerttemberg

Mehr

Supply Chain Management

Supply Chain Management Supply Chain Management Forecasting Methods Prof. Dr.-Ing. Burkhard Schmager Department of Industrial Engineering EAH Jena Sept 2016 SS 2016 Kapitel 2-1 Material Planning Approaches MRP - methods deterministical

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 19 (27.6.2018) Dynamische Programmierung III Algorithmen und Komplexität Dynamische Programmierung DP Rekursion + Memoization Memoize:

Mehr

Informatik für Mathematiker und Physiker Woche 6. David Sommer

Informatik für Mathematiker und Physiker Woche 6. David Sommer Informatik für Mathematiker und Physiker Woche 6 David Sommer David Sommer October 31, 2017 1 Heute: 1. Rückblick Übungen Woche 5 2. Libraries 3. Referenzen 4. Step-Wise Refinement David Sommer October

Mehr

Hydroinformatik II: Grundlagen Numerik V5

Hydroinformatik II: Grundlagen Numerik V5 Hydroinformatik II: Grundlagen Numerik V5 1 Helmholtz Centre for Environmental Research UFZ, Leipzig 2 Technische Universität Dresden TUD, Dresden Leipzig, 13. Mai 2016 1/27 Prof. Dr.-Ing. habil. Olaf

Mehr

Unit 9. Prototype-Based Clustering. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 176

Unit 9. Prototype-Based Clustering. Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 176 Unit 9 Prototype-Based Clustering Knowledge-Based Methods in Image Processing and Pattern Recognition; Ulrich Bodenhofer 176 Introduction Instead of a complete set description, every cluster C i is represented

Mehr