Monte Carlo Simulationen

Größe: px
Ab Seite anzeigen:

Download "Monte Carlo Simulationen"

Transkript

1 Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell) Streuung von Photonen oder Teilchen in Materie Derartige Vorgänge können mit Monte Carlo Simulationen beschrieben werden

2 Monte Carlo Integration Ziel: Berechnung von mit f(x) z für x є [a,b] b a f ( x ) dx Erzeugung von statistisch verteilten Punkten P i (x i y i ) aus gleichverteilten, nicht korrelierten Zufallszahlen x i є [a,b] und y i є [,z] y=f(x) x Abschätzung des Integrals durch Zählen der Punkte, die innerhalb der von der Kurve und der x-achse eingeschlossenen Fläche liegen: f ( x) dx ( b a) z g( P) 1 1, falls yi < f ( xi ) 1 g ( P ) = ( ) N g P = g( P i ) i, sonst N i= b a

3 Monte Carlo Integration Alternatives Verfahren: Erzeuge Folge von Zufallszahlen x i b a f ( x) dx ( b a) f ± ( b a) f 2 N f N 2 mit f = f ( ) f = f ( ) N i= x i N N i= x i

4 1 Monte Carlo Integration N Beispiel: x 2 dx, Fehler = f ( x i ) 3 N i= 1 Fehler.1.1 1E-3 1E-4 N Gleichverteilte Zufallszahlen x i ε [,1[ mit L Ecuyer Generator, Seed=-1 1E-5 1E Anzahl Zufallszahlen

5 Erzeugung von Zufallszahlen Lineare Kongurenz-Generatoren Liefern eine Folge von Pseudo-Zufallszahlen ξ i Vorschrift: ξ i+1 = (a. ξ i + c) mod m, mit a, c, m є N a: multiplier, c: increment, m: moduls ξ : seed Liefert Zufallszahlen mit ξ i є..m-1 Maximale Periodizität (bei geeigneter Wahl von a, c und m): m Vorteil: Schnell und einfach zu Implementieren Nachteil: Nicht frei von Korrelationen (n-cube)

6 Minimaler Standard-Generator nach Park und Miller ξ i+1 = (a. ξ i ) mod m, mit a = 7 5 = 1687, m = = Problem bei der Implementierung: Die Rechnung kann nicht in einem 32-Bit Register durchgeführt werden Lösung: Schrage-Algorithmus Approximative Faktorisierung von m: m=a. q+ r q = (int) m/a := [m/a], r = m mod a Für ξ i mit < ξ i < m-1 folgt: a ξ mod m i = a a ( ξi mod q) r[ z q], falls a ( ξi mod q) r[ z q] ( ξ mod q) r[ z q] + m, sonst i Periodizität: ~ 2.1*1 9 Besonderheit: Seed muss ungleich null sein Beispielprogramm ran

7 Verbesserte Generatoren Beim 2-Cube Test werden beim Park-Miller Generator noch Korrelationen beobachtet, die durch zufälliges vertauschen der Zufallszahlen in der Folge vermieden werden können Beispeilprogramm ran1 L Ecuyer Generator: Zwei Folgen von Zufallszahlen mit unterschiedlicher Periodizität werden erzeugt: m 1 = , a 1 =414, q 1 =53668, r 1 =12211 m 2 = , a 2 =4692, q 2 =52774, r 2 =3791 Eine neue Serie von Zufallszahlen wird erzeugt gemäß: ξ Neu i = (ξ 1 i + ξ i2 ) mod m 1 Mit den oben angegebenen Konstanten ergibt sich eine Periodizität von ca. 2.3*1 18 Beispielprogramm ran2

8 Erzeugung von gleichverteilten Zufallszahlen є [,1[ Sei ξ i eine Folge von ganzzahligen, gleichverteilten Zufallszahlen mit ξ i RAND_MAX. Dann bildet x i = ξ i /(RAND_MAX+1) eine Folge gleichverteilten Fließkommazahlen mit x i є [,1[. Wahrscheinlichkeitsdichteverteilung p(x) für gleichverteilte Zufallszahlen x i mit x i є [,1[: p ( x) 1, falls x [,1[ =, sonst Die Wahrscheinlichkeit, dass eine Zufallszahl zwischen x und x+dx gezogen wird, beträgt p(x)dx Normierung: + p ( x) dx =1

9 Erzeugung von Zufallszahlen mit beliebiger Verteilung: Transformationsverfahren Zufallszahlen y i mit einer anderen Wahrscheinlichkeitsdichteverteilung können durch Anwendung einer Funktion f generiert werden: y = ( ) i x i Wahrscheinlichkeitsdichteverteilung p~ ( y) der y i : f d 1 ( ) f ( y) ~ dx p( y) dy p( x) dx ~ 1 = p( y) = p( x) = p f ( y) dy dy Beispiel: Exponentialverteilte Zufallszahlen y = ~ p 1 f ( x) = ln( x) f ( y) = exp( y) ( y) = exp( y)

10 Gaußverteilte Zufallszahlen: Box Muller Verfahren Seien x 1 und x 2 gleichverteilt in [,1[. Dann sind y y 1 2 = = 2ln 2ln ( x1 ) cos( 2π x2 ) ( x ) sin( 2π x ) 1 2 normalverteilte Zufallszahlen Programm BoxMuller.cpp 8 Häufigkeitsverteilung von 1 Zufallszahlen, die mit dem Box Mueller Generator erzeugt wurden Häufigkeit Zufallszahl ξ

11 Random Walk Beispiel: Diffusion einer Substanz in einem Torus π/2*r 1. t = : Gaußförmiges Konzentrationsprofil π*r R x Konzentration [b. E.] (π/2)r πr (3π/2)R 2πR 3/2* π*r Ortskoordinate π/2* R 1. Späterer Zeitpunkt: Konzentrationsprofil konvergiert gegen Gleichverteilung π*r R x Konzentration [b. E.] (π/2)r πr (3π/2)R 2πR 3/2* π*r Ortskoordinate

12 Random Walk: Diskretisierung der Ortskordinate t= R j= N-1 N-2 N-3 Anzahl Teilchen N/4 N/2 Position X (3/2)N N-1 λ = Δt D Δ 2 x

13 Bewegung der Teilchen Im Fall der Diffusion beträgt die Wahrscheinlichkeit, dass sich das Partikel zum Zeitpunkt t+δt am gleichen Ort bleibt: p() = 1-2λ am Ort X+1 befindet: p(1) = λ am Ort X-1 befindet: p(-1) = λ 1) Bewegung eines einzelnen Partikels i: Ziehe Zufallszahl ξє[,1[ ξ< λ? Bewege Partikel von X[i] nach X[i]-1 λ ξ<2λ? Bewege Partikel von X[i] nach X+1 Achtung: periodische Randbedingungen 2) Sweep Wiederholung von Schritt 1 für alle Teilchen

14 Random Walk 25 Teilchentahl Zeit [1*t ] Ortskoordinate [x ]

15 Erstellen einer DLL mit dem Visual Studio Neues Projekt Projekttyp: Visual C++ Projekte Win32 Projekt Anwendungseinstellungen: DLL Das DLL Hauptprogramm DllMain ist bereits vorhanden Noch zu erledigen: Funktionen hinzufügen double _stdcall summe (double x, double y) {return x+y;} double _stdcall produkt (double x, double y) {return x*y;}

16 Exportieren von Funktionen aus einer DLL Verwendung einer Moduldefinitionsdatei (.def) LIBRARY RechnenMitDLL EXPORTS Erstellen der Moduldefinitionsdatei: Projekt Neues Element hinzufügen DEF-Datei (.def)

17 Exportieren von Funktionen aus einer DLL Andere Möglichkeit: Verwendung von declspec (dllexport): declspec(dllexport) double _stdcall summe (double x, double y) { return x+y; } declspec(dllexport) double _stdcall produkt (double x, double y) { return x*y; }

18 Laden der DLL Implizites Verknüpfen (statisches Laden): Die DLL (.dll) wird über die Importbibliothek (.lib) mit dem Programm verknüpft. Die.lib Datei muss als zusätzliche Abhängigkeit im Projekt angegeben sein. Die exportierten Funktionen müssen im Programm deklariert werden (z.b. durch einbinden der Headerdatei) und können direkt verwendet werden. Explizites Verknüpfen (dynamisches Laden): Die DLL wird über einen Funktionsaufruf geladen. Auf die exportierten Funktionen wird über einen Funktionszeiger zugegriffen.

19 Implizites Verknüpfen double _stdcall summe (double, double); double _stdcall produkt (double, double); #include <iostream> using namespace std; void main () { double a=1.; double b=2.; double c,d; c=summe (a,b); d=produkt (a,b); } cout << c << endl << d; cin.get ();

20 Implizites Verknüpfen Erstellen des Programms als Win32 Konsolenanwendung Kopieren der Importbibliothek (.lib) und der DLL (.dll) in das Projektverzeichnis Einbinden der Importbibliothek Projekt Eigenschaften Konfigurationseigenschaften Linker Eingabe Zusätzliche Abhängigkeiten: RechnenMitDLL.lib

21 IO mit Parallelport

22 IO mit Parallelport

23 Parallelportprogrammierung bei Windows 9x Datenausgabe durch Port 888 (x378) #include <conio.h> #include <stdio.h> void main () { _outp(888,1); }

24 Parallelportprogrammierung bei Windows NT/ 2/ XP Direkte Ansteuerung der Ports wird vom Betriebssystem nicht zugelassen Zugriff auf Ports nur mit Kernel-Mode Treiber DLL mit eingebautem Kernel Mode Treiber für Parallelport: Inpout32.dll

25 Ansteuerung von Ports mit Out32 short _stdcall Inp32(short PortAddress); void _stdcall Out32(short PortAddress, short data); int main() { Out32(888,8); } return ;

26

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Projektverwaltung Problem Lösung: Modulare Programmierung

Projektverwaltung Problem Lösung: Modulare Programmierung Projektverwaltung Problem Der Sourcecode ür ein Programm wird immer länger und unübersichtlicher Eine Funktion, die in einem alten Projekt verwendet wurde, soll auch in einem neuen Projekt verwendet werden

Mehr

Funktionen Häufig müssen bestimmte Operationen in einem Programm mehrmals ausgeführt werden. Schlechte Lösung: Gute Lösung:

Funktionen Häufig müssen bestimmte Operationen in einem Programm mehrmals ausgeführt werden. Schlechte Lösung: Gute Lösung: Funktionen Häufig müssen bestimmte Operationen in einem Programm mehrmals ausgeführt werden. Schlechte Lösung: Der Sourcecode wird an den entsprechenden Stellen im Programm wiederholt Programm wird lang

Mehr

FC1 - Monte Carlo Simulationen

FC1 - Monte Carlo Simulationen FC1 - Monte Carlo Simulationen 16. Oktober 2007 Universität Paderborn - Theoretische Physik Autor: Simone Sanna, Stephan Blankenburg Datum: 16. Oktober 2007 FC1 - Monte Carlo Simulationen 3 1 Das Monte

Mehr

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536

Statistik. R. Frühwirth. Statistik. fru@hephy.oeaw.ac.at. VO 142.090 http://tinyurl.com/tu142090. Februar 2010. R. Frühwirth Statistik 1/536 fru@hephy.oeaw.ac.at VO 142.090 http://tinyurl.com/tu142090 Februar 2010 1/536 Übersicht über die Vorlesung Teil 1: Deskriptive Teil 2: Wahrscheinlichkeitsrechnung Teil 3: Zufallsvariable Teil 4: Parameterschätzung

Mehr

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner

ZUFALLSZAHLEN. WPG Informatik / Mathematik. BG/BRG Bad Ischl. A. Lindner ZUFALLSZAHLEN WPG Informatik / Mathematik BG/BRG Bad Ischl A. Lindner 1 BEDEUTUNG VON ZUFALLSZAHLEN Beispiel: Computertip für Lotto in einer Trafik. Wie kann ein (elektronisches) Gerät, das nach einem

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator)

2.1 Berechnung gleichverteilter Zufallszahlen. (Linearer Kongruenz-Generator) Seydel: Skript umerische Finanzmathematik, Kap. 2 (Version 20) 33 ¾º Ö ÒÙÒ ÚÓÒ Ù ÐÐ Þ Ð Ò Definition (Stichprobe einer Verteilung) Eine Folge von Zahlen heißt Stichprobe (sample) von einer Verteilungsfunktion

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2008/09 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund - mit / ohne Parameter - mit / ohne Rückgabewerte

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Einführung in die C++ Programmierung für Ingenieure

Einführung in die C++ Programmierung für Ingenieure Einführung in die C++ Programmierung für Ingenieure MATTHIAS WALTER / JENS KLUNKER Universität Rostock, Lehrstuhl für Modellierung und Simulation 14. November 2012 c 2012 UNIVERSITÄT ROSTOCK FACULTY OF

Mehr

Einführung in die Programmierung Wintersemester 2016/17

Einführung in die Programmierung Wintersemester 2016/17 Einführung in die Programmierung Wintersemester 2016/17 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund : Gültigkeitsbereiche Inhalt Lokale und globale

Mehr

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen.

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen. Ziele sind das Arbeiten mit Funktionen und dem Aufzählungstyp (enum), sowie - einfache Verzweigung (if else) - Alternativen switch case - einfache Schleifen (while oder do while) Aufgabe 3: Diese Aufgabe

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040

Mehr

Angewandte Mathematik und Programmierung

Angewandte Mathematik und Programmierung Angewandte Mathematik und Programmierung Einführung in das Konzept der objektorientierten Anwendungen zu mathematischen Rechnens SS2013 Inhalt Projekt Vorlesung: praktische Implementierung üben Ein und

Mehr

Einführung in die Programmierung

Einführung in die Programmierung : Inhalt Einführung in die Programmierung Wintersemester 2010/11 Lokale und globale Variablen Namensräume Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering Fakultät für Informatik TU Dortmund

Mehr

Klausur in Programmieren

Klausur in Programmieren Studiengang Sensorik/Sensorsystemtechnik Note / normierte Punkte Klausur in Programmieren Wintersemester 2010/11, 17. Februar 2011 Dauer: 1,5h Hilfsmittel: Keine (Wörterbücher sind auf Nachfrage erlaubt)

Mehr

Nr. 4: Pseudo-Zufallszahlengeneratoren

Nr. 4: Pseudo-Zufallszahlengeneratoren Proseminar: Finanzmathematische Modelle und Simulationen Martin Dieckmann WS 09/0 Nr. 4: Pseudo-Zufallszahlengeneratoren Begriff Pseudo-Zufallszahl Zufallszahlen im Rechner entstehen letztlich immer durch

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

DLLs (dynamic loaded libraries) mit MingW erstellen

DLLs (dynamic loaded libraries) mit MingW erstellen DLLs (dynamic loaded libraries) mit MingW erstellen Autor: Michel D. Schmid Datum: April 2, 2009 Contents 1 Einführung 1 1.1 Open-Source Tools.......................................... 1 2 Beispiel 1:

Mehr

Fakultät Angewandte Informatik Lehrprofessur für Informatik 23.01.2012

Fakultät Angewandte Informatik Lehrprofessur für Informatik 23.01.2012 WS 2011/2012 Fakultät Angewandte Informatik Lehrprofessur für Informatik 23.01.2012 Prof. Dr. Robert Lorenz Musterlösung zur Vorlesung Informatik I, Extrablatt zu komplexen Datenstrukturen Aufgabe 45 **

Mehr

Unterprogramme. Funktionen. Bedeutung von Funktionen in C++ Definition einer Funktion. Definition einer Prozedur

Unterprogramme. Funktionen. Bedeutung von Funktionen in C++ Definition einer Funktion. Definition einer Prozedur Unterprogramme Unterprogramme sind abgekapselte Programmfragmente, welche es erlauben, bestimmte Aufgaben in wiederverwendbarer Art umzusetzen. Man unterscheidet zwischen Unterprogrammen mit Rückgabewert

Mehr

Deklarationen in C. Prof. Dr. Margarita Esponda

Deklarationen in C. Prof. Dr. Margarita Esponda Deklarationen in C 1 Deklarationen Deklarationen spielen eine zentrale Rolle in der C-Programmiersprache. Deklarationen Variablen Funktionen Die Deklarationen von Variablen und Funktionen haben viele Gemeinsamkeiten.

Mehr

Methoden. von Objekten definiert werden, Methoden,, Zugriffsmethoden und Read-Only

Methoden. von Objekten definiert werden, Methoden,, Zugriffsmethoden und Read-Only Methoden Wie Konstruktoren und Destruktoren zum Auf- und Abbau von Objekten definiert werden, Wie inline-methoden Methoden,, Zugriffsmethoden und Read-Only Only- Methoden einzusetzen sind, Der this-pointer

Mehr

R ist freie Software und kann von der Website. www.r-project.org

R ist freie Software und kann von der Website. www.r-project.org R R ist freie Software und kann von der Website heruntergeladen werden. www.r-project.org Nach dem Herunterladen und der Installation von R kann man R durch Doppelklicken auf das R-Symbol starten. R wird

Mehr

Computergrundkenntnisse und Programmieren, WS 11/12, Übung 7: Grafik

Computergrundkenntnisse und Programmieren, WS 11/12, Übung 7: Grafik Computergrundkenntnisse und Programmieren, WS 11/12, Übung 7: Grafik Christof Gattringer (christof.gattringer@uni-graz.at) 1 // Programm zum Testen von Xwindows 2 // Kompilieren 32 bit: g++ -L/usr/lib

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Anweisungsblöcke (dazu zählen auch Programme) werden in geschweifte Klammern eingeschlossen.

Anweisungsblöcke (dazu zählen auch Programme) werden in geschweifte Klammern eingeschlossen. Programmierung in C++ Seite: 1 Beispielprogramm 1: Programmierung in C++ int main() int hoehe = 3; int grundseite = 5; double flaeche = hoehe*grundseite*0.5; cout

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Übungen zur Vorlesung EidP (WS 2015/16) Blatt 6

Übungen zur Vorlesung EidP (WS 2015/16) Blatt 6 Andre Droschinsky Ingo Schulz Dortmund, den 0. Dezember 2015 Übungen zur Vorlesung EidP (WS 2015/16) Blatt 6 Block rot Es können 4 + 1 Punkte erreicht werden. Abgabedatum: 10. Dezember 2015 2:59 Uhr Hinweise

Mehr

Praktikum Ingenieurinformatik. Termin 4. Funktionen, numerische Integration

Praktikum Ingenieurinformatik. Termin 4. Funktionen, numerische Integration Praktikum Ingenieurinformatik Termin 4 Funktionen, numerische Integration 1 Praktikum Ingenieurinformatik Termin 4 1. Funktionen. Numerische Integration, Trapezverfahren 1.1. Funktionen Eine Funktion ist

Mehr

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n

a n := ( 1) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 10n + 1. a n := 1 3 + 1 2n 5n 2 n 2 + 7n + 8 b n := ( 1) n Folgen und Reihen. Beweisen Sie die Beschränktheit der Folge (a n ) n N mit 2. Berechnen Sie den Grenzwert der Folge (a n ) n N mit a n := ( ) n 3n2 + 5 2n 2. a n := 5n4 + 2n 2 2n 3 + 3 n +. 4 3. Untersuchen

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 16

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 16 Kapitel 5 Arithmetische Operatoren Seite 1 von 16 Arithmetische Operatoren - Man unterscheidet unäre und binäre Operatoren. - Je nachdem, ob sie auf einen Operanden wirken, oder eine Verknüpfung zweier

Mehr

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen.

Es ist für die Lösung der Programmieraufgabe nicht nötig, den mathematischen Hintergrund zu verstehen, es kann aber beim Verständnis helfen. Ziele sind das Arbeiten mit Dateien, sowie Records und Funktionen Aufgabe 4: Diese Aufgabe basiert auf der Aufgabe 3. Es ist ein Programm zu erstellen, in welchem der Anwender aus einer Anzahl möglicher

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Die Monte-Carlo-Methode mit Pseudound Quasi-Zufallszahlen Marco A. Harrendorf Karlsruhe Institut für Technologie, Bachelor Physik Vortrag

Mehr

Vorkurs Mathematik Übungen zu Differentialgleichungen

Vorkurs Mathematik Übungen zu Differentialgleichungen Vorkurs Mathematik Übungen zu Differentialgleichungen Als bekannt setzen wir die folgenden Umformungen voraus: e ln(f(x)) = f(x) e f(x)+c = e f(x) e c e ln(f(x)) +c = f(x) e c = f(x) c f ( g(x) ) g (x)

Mehr

Klausur in Programmieren

Klausur in Programmieren Studiengang Sensorik/Sensorsystemtechnik Note / normierte Punkte Klausur in Programmieren Sommer 2009, 16. Juli 2009 Dauer: 1,5h Hilfsmittel: Keine (Wörterbücher sind auf Nachfrage erlaubt) Name: Matrikelnr.:

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18

Wintersemester Maschinenbau und Kunststofftechnik. Informatik. Tobias Wolf http://informatik.swoke.de. Seite 1 von 18 Kapitel 3 Datentypen und Variablen Seite 1 von 18 Datentypen - Einführung - Für jede Variable muss ein Datentyp festgelegt werden. - Hierdurch werden die Wertemenge und die verwendbaren Operatoren festgelegt.

Mehr

2. Semester, 2. Prüfung, Lösung

2. Semester, 2. Prüfung, Lösung 2. Semester, 2. Prüfung, Lösung Name Die gesamte Prüfung bezieht sich auf die Programmierung in C++! Prüfungsdauer: 90 Minuten Mit Kugelschreiber oder Tinte schreiben Lösungen können direkt auf die Aufgabenblätter

Mehr

Objektorientierte Programmierung mit C++ Vector und List

Objektorientierte Programmierung mit C++ Vector und List Vector und List Ziel, Inhalt Wir lernen die Klassen vector und list aus der Standard-C++ Library kennen und anwenden. In einer Übung wenden wir diese Klassen an um einen Medienshop (CD s und Bücher) zu

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Kontrollstrukturen und Funktionen in C

Kontrollstrukturen und Funktionen in C Kontrollstrukturen und Funktionen in C Lernziele: Vertiefen der Kenntnisse über Operatoren, Kontrollstrukturen und die Verwendung von Funktionen. Aufgabe 1: Quickies: Datentypen in C a) Was sind die elementaren

Mehr

Lösungsvorschlag zum Übungsblatt 1 zur Vorlesung Informatik II / WS2001/02

Lösungsvorschlag zum Übungsblatt 1 zur Vorlesung Informatik II / WS2001/02 Lösungsvorschlag zum Übungsblatt 1 zur Vorlesung Informatik II / WS2001/02 Prof. Dr.-Ing. Holger Vogelsang (FH-Karlsruhe) Dipl.-Inform. (FH) Gudrun Keller (FH-Karlsruhe) Dipl.-Inform. Mathias Supp (.riess

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2015/2016 Wirtschaftsingenieur Bachelor 5. Aufgabe Datenstruktur, Dateieingabe und -ausgabe

Hochschule Darmstadt Informatik-Praktikum (INF 1) WS 2015/2016 Wirtschaftsingenieur Bachelor 5. Aufgabe Datenstruktur, Dateieingabe und -ausgabe Aufgabenstellung Für eine Hausverwaltung sollen für maximal 500 Wohnungen Informationen gespeichert werden, die alle nach der gleichen Weise wie folgt strukturiert sind: Art Baujahr Wohnung Whnginfo Nebenkosten

Mehr

Projektarbeit Von Neumann-Algorithmus. für NSIM-VL (Dr. Hofmann) SS 2000

Projektarbeit Von Neumann-Algorithmus. für NSIM-VL (Dr. Hofmann) SS 2000 FACHHOCHSCHULE SALZBURG Telekommunikationstechnik & -systeme Projektarbeit Von Neumann-Algorithmus für NSIM-VL (Dr. Hofmann) SS 2000 Martin Schober Name(n): Matrikelnummer: Unterschrift: Abgabedatum: 2000-05-26

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

Monte Carlo Simulation des Ising Modells. Lukas Brunner

Monte Carlo Simulation des Ising Modells. Lukas Brunner Lukas Brunner 1 Problemstellung und Vorgangsweise Das nach Ernst Ising benannte Ising Modell beschreibt den Ferromagnetismus in Festkörpern. Es wird angenommen, dass die Spins, welche das magnetische Moment

Mehr

Informatik II Übung, Woche 10

Informatik II Übung, Woche 10 Giuseppe Accaputo 10. März, 2016 Plan für heute 1. Typumwandlung (Typecasts) 2. Ordnerstruktur für Übungen 3. Vorbesprechung Übung 3 4. Nachbesprechung Übung 2 (inkl. Live Programmierung) Informatik II

Mehr

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik. Nachname: Vorname: Matr.-Nr.: Punkte:

Klausur: Grundlagen der Informatik I, am 05. Februar 2008 Dirk Seeber, h_da, Fb Informatik. Nachname: Vorname: Matr.-Nr.: Punkte: Seite 1 von 8 Hiermit bestätige ich, dass ich die Übungsleistungen als Voraussetzung für diese Klausur in folgender Übung erfüllt habe. Jahr: Übungsleiter: Unterschrift: 1. Aufgabe ( / 10 Pkt.) a) Geben

Mehr

Zufallszahlen in AntBrain

Zufallszahlen in AntBrain Zufallszahlen SEP 291 Zufallszahlen in AntBrain Spezifikation, Teil II: Zum Beispiel könnte ein Objekt vom Typ Match die Spielfelder nach jeweils 1000 Spielrunden speichern; bei einer Anfrage nach den

Mehr

Programmieren in C++ Arrays, Strings und Zeigerarithmetik

Programmieren in C++ Arrays, Strings und Zeigerarithmetik Programmieren in C++ Arrays, Strings und Zeigerarithmetik Inhalt Eindimensionale C-Arrays C-Strings und Strings (Mehrdimensionale C-Arrays) Arrays und Vektoren (C++) Unique Pointers (C++11) Zeigerarithmetik

Mehr

Modulare Programmierung und Bibliotheken

Modulare Programmierung und Bibliotheken Modulare Programmierung und Bibliotheken Proseminar-Vortrag am 24.06.2011 von Ludwig Eisenblätter Ludwig Eisenblätter 1 von 25 Modulare Programmierung und Bibliotheken Inhaltsübersicht Motivation / Einleitung

Mehr

Vergleich verschiedener OO-Programmiersprachen

Vergleich verschiedener OO-Programmiersprachen Vergleich verschiedener OO-Programmiersprachen - Schnellumstieg in 15 Minuten - C++ Java Visual C++ C# Programmbeispiel in Visual C++, C#, Java und C++ Dr. Ehlert, Juni 2012 1 Inhaltsverzeichnis 1. Problemstellung

Mehr

Pass by Value Pass by Reference Defaults, Overloading, variable Parameteranzahl

Pass by Value Pass by Reference Defaults, Overloading, variable Parameteranzahl Funktionen Zusammenfassung von Befehlssequenzen als aufrufbare/wiederverwendbare Funktionen in einem Programmblock mit festgelegter Schnittstelle (Signatur) Derartige prozedurale Programmierung erlaubt

Mehr

Anleitung zur Einrichtung von OpenCV

Anleitung zur Einrichtung von OpenCV Anleitung zur Einrichtung von Dieses Dokument beschreibt die Einrichtung und Funktionsüberprüfung von im Kontext der Lehrveranstaltung. Einrichtung Dieser Abschnitt beschreibt die Einrichtung von unter

Mehr

Erste Schritte mit HG 2

Erste Schritte mit HG 2 Erste Schritte mit HG 2 Malte Ried FH-Gießen Version: 1.0 21. November 2003 Inhaltsverzeichnis 1 Einführung 2 2 Allgemeines 2 2.1 Koordinaten...................................... 2 2.2 Farben.........................................

Mehr

Zusammengesetzte Datentypen -- Arrays und Strukturen

Zusammengesetzte Datentypen -- Arrays und Strukturen Zusammengesetzte Datentypen -- und Strukturen Informatik für Elektrotechnik und Informationstechnik Benedict Reuschling benedict.reuschling@h-da.de Hochschule Darmstadt Fachbereich Informatik WS 2013/14

Mehr

Nachname: Vorname: Matr.-Nr.: Punkte: 1. Aufgabe: ( / 25 Pkt.) Gegeben ist das folgende Struktogramm zur Berechnung von sin(x) mit Hilfe einer Reihe.

Nachname: Vorname: Matr.-Nr.: Punkte: 1. Aufgabe: ( / 25 Pkt.) Gegeben ist das folgende Struktogramm zur Berechnung von sin(x) mit Hilfe einer Reihe. Hiermit bestätige ich, dass ich die Übungsleistungen als Voraussetzung für diese Klausur in folgender Übung erfüllt habe. Jahr: Übungsleiter: Unterschrift: 1. Aufgabe: ( / 25 Pkt.) Gegeben ist das folgende

Mehr

Algorithmen zur Datenanalyse in C++

Algorithmen zur Datenanalyse in C++ Algorithmen zur Datenanalyse in C++ Hartmut Stadie 23.04.2012 Algorithmen zur Datenanalyse in C++ Hartmut Stadie 1/ 16 Einführung Algorithmen zur Datenanalyse in C++ Hartmut Stadie 2/ 16 Übersicht Einführung

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Automatisierung ( Fernsteuerung ) von Excel unter Microsoft Windows Tilman Küpper (tilman.kuepper@hm.edu)

Automatisierung ( Fernsteuerung ) von Excel unter Microsoft Windows Tilman Küpper (tilman.kuepper@hm.edu) HMExcel Automatisierung ( Fernsteuerung ) von Excel unter Microsoft Windows Tilman Küpper (tilman.kuepper@hm.edu) Inhalt 1. Einleitung...1 2. Beispiele...2 2.1. Daten in ein Tabellenblatt schreiben...2

Mehr

4. Differentialgleichungen

4. Differentialgleichungen 4. Differentialgleichungen Prof. Dr. Erich Walter Farkas 10.11.2011 Seite 1 Einleitung Viele in der Natur stattfindende Vorgänge können durch sogenannte Differentialgleichungen beschrieben werden. Unter

Mehr

1 Native C Code in C# Umgebung mit Visual Studio 2010

1 Native C Code in C# Umgebung mit Visual Studio 2010 1 Native C Code in C# Umgebung mit Visual Studio 2010 29.07.2013 1.1 Ziel Ein Embedded C Code soll innerhalb einer C# Umgebung lauf- und debuggfähig sein. Der C# Anteil stellt dem Embedded C Code einen

Mehr

C++ Teil 2. Sven Groß. 16. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 22

C++ Teil 2. Sven Groß. 16. Apr IGPM, RWTH Aachen. Sven Groß (IGPM, RWTH Aachen) C++ Teil Apr / 22 C++ Teil 2 Sven Groß IGPM, RWTH Aachen 16. Apr 2015 Sven Groß (IGPM, RWTH Aachen) C++ Teil 2 16. Apr 2015 1 / 22 Themen der letzten Vorlesung Hallo Welt Elementare Datentypen Ein-/Ausgabe Operatoren Sven

Mehr

18. Bitmanipulationen. Bitoperationen Bitmasken

18. Bitmanipulationen. Bitoperationen Bitmasken 18. Bitmanipulationen Bitoperationen Bitmasken Anwendung von Bits Statusanzeigen bei Ein-/Ausgabe (Stream-Klassen) Zugriffsrechte auf Dateien Maschinensteuerung/Gerätetreiber Status-/Steuerungsangaben

Mehr

Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele

Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele 11. Zufallszahlen 1 Einführung (1) In der Praxis finden Sie viele Anwendungsfelder für Zufallszahlen. Beispiele sind 1. Computersimulationen 2. Optimierungsprobleme und 3. Hochdimensionale Integrale. Problemstellung:

Mehr

Name: Klausur Programmierkonzepte SS 2011

Name: Klausur Programmierkonzepte SS 2011 Prof. Dr.-Ing. Hartmut Helmke Ostfalia Hochschule für angewandte Wissenschaften Fakultät für Informatik Matrikelnummer: Punktzahl: Ergebnis: Freiversuch F1 F2 F3 Klausur im SS 2011: Programmierkonzepte

Mehr

Informatik Repetitorium SS 2009. Volker Jaedicke Volker.Jaedicke@web.de 0179 1322692

Informatik Repetitorium SS 2009. Volker Jaedicke Volker.Jaedicke@web.de 0179 1322692 Informatik Repetitorium SS 2009 Volker Jaedicke Volker.Jaedicke@web.de 0179 1322692 Operatoren und Datentypen Beispiel: Anweisungen Variable int a float b int c a= a % (int) (++b-1/4) Vorher 36 3.5 c=b

Mehr

Pseudozufallsgeneratoren

Pseudozufallsgeneratoren Pseudozufallsgeneratoren In welchen kryptographischen Verfahren werden keine Zufallszahlen benötigt? Wie generiert man Zufallszahlen in einer deterministischen Maschine wie dem Computer? Wenn man eine

Mehr

Anleitung zur Einrichtung von OpenCV

Anleitung zur Einrichtung von OpenCV Anleitung zur Einrichtung von Dieses Dokument beschreibt die Einrichtung und Funktionsüberprüfung von im Kontext der Lehrveranstaltung. Einrichtung Dieser Abschnitt beschreibt die Einrichtung von unter

Mehr

8. Referenzen und Zeiger

8. Referenzen und Zeiger 8. Referenzen und Zeiger Motivation Variable werden in C++ an speziellen Positionen im Speicher abgelegt. An jeder Position befindet sich 1 Byte. Sie sind durchnummeriert beginnend bei 0. Diese Positionen

Mehr

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Fraunhofer ITWM Kaiserslautern, 4..009 Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Ralf Korn (TU Kaiserslautern & Fraunhofer ITWM) 0. Einige praktische Probleme

Mehr

Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen

Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen Die Monte-Carlo-Methode zur Simulation von Teilchenreaktionen Michael Rauch 7. Mai 2 H AUPTSEMINAR E XPERIMENTELLE UND T HEORETISCHE M ETHODEN KIT University of the State of Baden-Wuerttemberg and National

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

Algorithmen zur Datenanalyse in C++

Algorithmen zur Datenanalyse in C++ Algorithmen zur Datenanalyse in C++ Hartmut Stadie 25.06.2012 Algorithmen zur Datenanalyse in C++ Hartmut Stadie 1/ 15 Einführung Zeiger, Felder und Strukturen Zufallszahlen für andere Verteilungen Algorithmen

Mehr

Ziel, Inhalt. Programmieren in C++ Wir lernen wie man Funktionen oder Klassen einmal schreibt, so dass sie für verschiedene Datentypen verwendbar sind

Ziel, Inhalt. Programmieren in C++ Wir lernen wie man Funktionen oder Klassen einmal schreibt, so dass sie für verschiedene Datentypen verwendbar sind Templates und Containerklassen Ziel, Inhalt Wir lernen wie man Funktionen oder Klassen einmal schreibt, so dass sie für verschiedene Datentypen verwendbar sind Templates und Containerklassen 1 Ziel, Inhalt

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

Kryptographie und Komplexität

Kryptographie und Komplexität Kryptographie und Komplexität Einheit 2.3 One-Time Pads und Perfekte Sicherheit 1. Perfekte Geheimhaltung 2. One-Time Pads 3. Strombasierte Verschlüsselung Wie sicher kann ein Verfahren werden? Ziel ist

Mehr

12. Vererbung. Prof. Dr. Markus Gross Informatik I für D-ITET (WS 03/04)

12. Vererbung. Prof. Dr. Markus Gross Informatik I für D-ITET (WS 03/04) 12. Vererbung Prof. Dr. Markus Gross Informatik I für D-ITET (WS 03/04)!Vererbung Konzept!Protected Section!Virtuelle Mitgliedsfunktionen!Verwendung von Vererbung Copyright: M. Gross, ETHZ, 2003 2 Vererbung!

Mehr

Klausur in Programmieren

Klausur in Programmieren Studiengang Sensorik/Sensorsystemtechnik Note / normierte Punkte Klausur in Programmieren Sommer 2014, 16. Juli 2014 Dauer: 1,5h Hilfsmittel: Keine (Wörterbücher sind auf Nachfrage erlaubt) Name: Matrikelnr.:

Mehr

Hochschule München, FK03 SS 2016. Masterstudiengang Technische Berechnung und Simulation. Programmierung von CAx-Systemen Teil 1

Hochschule München, FK03 SS 2016. Masterstudiengang Technische Berechnung und Simulation. Programmierung von CAx-Systemen Teil 1 Hochschule München, FK03 SS 2016 Masterstudiengang Technische Berechnung und Simulation Programmierung von CAx-Systemen Teil 1 Name Vorname Matrikelnummer Aufgabensteller: Hilfsmittel: Dr. Reichl, Dr.

Mehr

Objektorientiertes Programmieren für Ingenieure

Objektorientiertes Programmieren für Ingenieure Uwe Probst Objektorientiertes Programmieren für Ingenieure Anwendungen und Beispiele in C++ 18 2 Von C zu C++ 2.2.2 Referenzen und Funktionen Referenzen als Funktionsparameter Liefert eine Funktion einen

Mehr

In beiden Fällen auf Datenauthentizität und -integrität extra achten.

In beiden Fällen auf Datenauthentizität und -integrität extra achten. Stromchiffren Verschlüsseln eines Stroms von Daten m i (Bits/Bytes) mithilfe eines Schlüsselstroms k i in die Chiffretexte c i. Idee: Im One-Time Pad den zufälligen Schlüssel durch eine pseudo-zufällige

Mehr

Kurzeinführung in C++

Kurzeinführung in C++ Kurzeinführung in C++ Johannes J. Schneider 27.10.2004 1 Einleitung C++ ist eine heutzutage in vielen Bereichen sehr häufig verwendete Programmiersprache, die auf der Programmiersprache C aufsetzt, aber

Mehr

Trennung der Variablen, Aufgaben, Teil 1

Trennung der Variablen, Aufgaben, Teil 1 Trennung der Variablen, Aufgaben, Teil -E -E Trennung der Variablen Die Differenzialgleichung. Ordnung mit getrennten Variablen hat die Gestalt f ( y) dy = g (x) dx Satz: Sei f (y) im Intervall I und g

Mehr

Programmieren in C Einführung

Programmieren in C Einführung Programmieren in C Einführung Aufbau eines Programms Einfache Programme Datentypen und Vereinbarungen Das Entwicklungswerkzeug Seite Einfache Programme Kugeltank-Berechnung #include void main

Mehr

Zählen von Objekten einer bestimmten Klasse

Zählen von Objekten einer bestimmten Klasse Zählen von Objekten einer bestimmten Klasse Ziel, Inhalt Zur Übung versuchen wir eine Klasse zu schreiben, mit der es möglich ist Objekte einer bestimmten Klasse zu zählen. Wir werden den ++ und den --

Mehr

Kurze Einführung in die Programmiersprache C++ und in Root

Kurze Einführung in die Programmiersprache C++ und in Root Kurze Einführung in die Programmiersprache C++ und in Root Statistik, Datenanalyse und Simulation; 31.10.2006 Inhalt 1 Einführung in die Programmiersprache C++ Allgemeines Variablen Funktionen 2 1 Einführung

Mehr