Formeln zu Mathematik für die Fachhochschulreife

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Formeln zu Mathematik für die Fachhochschulreife"

Transkript

1 Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße Hn-Guiten Euop-N.: 8519

2 Autoen: Bend Gimm Bend Sciemnn Sindelfingen, Leoneg Stuttgt, Offenug Lektot: Bend Sciemnn Bildentwüfe: Bend Gimm Bildestellung: YellowHnd, 76 Nütingen, Ds voliegende Buc wude uf de Gundlge de ktuellen mtlicen Rectsceiegeln estellt. 3. Auflge 010 Duck Alle Ducke deselen Auflge sind pllel einsetz, d sie is uf die Beeung von Duckfelen unteeinnde unveändet sind. ISBN: Alle Recte voelten. Ds Wek ist ueeectlic gescützt. Jede Vewetung ußel de gesetzlic geegelten Fälle muss vom Velg sciftlic genemigt weden. 010 y Velg Euop-Lemittel, Nouney, Vollme GmH & Co. KG, 4781 Hn-Guiten ttp:// Umsclggestltung: Idee Bend Sciemnn; Ausfüung Micel Mi Kppenstein, Fnkfut/Min Stz und Gfik: YellowHnd, 76 Nütingen, Duck: Tutte Duckeei GmH, 9411 Slzweg/Pssu

3 Vowot Vowot zu 1. Auflge: Die Fomelsmmlung entält uptsäclic die Fomeln, die zum Ewe de Fcocsculeife enötigt weden. Fomeln de Gundlgenmtemtik sind uf ds Wesentlice eduziet entlten. Vowot zu. Auflge: Es sind nu kleine Ändeungen vogenommen woden, die uf Veesseungsvosclägen unsee Lese euen. Einige wenige Fele en wi ntülic uc koigiet. Vowot zu 3. Auflge: Neu ist ds Kpitel Stocstik. Die Reienfolge de Kpitel Vektoecnung und Anlysis wude getusct. Egänzt wuden die Volumenfomeln fü Pymiden sowie in de Vektoecnung die Fomeln fü Steckenteilungen und spitze Winkel. Ie Meinung inteessiet uns! Teilen Sie uns Ie Veesseungsvoscläge, Ie Kitik e uc Ie Zustimmung zum Buc mit. Sceien Sie uns n die E-Mil-Adesse: Die Autoen und de Velg Euop-Lemittel Hest 010 3

4 Inltsvezeicnis Üescift 1 Geiet Inlt Seite Bsiswissen Bucecnen 6 Klmmeecnen 6 Potenzecnen 6 Wuzelecnen 6 Logitmen 6 Fläcenfomeln 7 Volumenfomeln und Oefläcenfomeln 8 Winkelmße 8 Winkelfunktionen m Deieck 9 Winkelfunktionsezieungen 10 Linee Funktion und Gede 11 Qudtisce Funktion und Pel 11 Potenzfunktion, Pel und Hypeel 1 Logitmusfunktion 1 Exponentilfunktion 1 Tigonometisce Funktionen 13 Umkefunktion f 1 (uc _ f ) 13 Anlysis Aleitungen 14 Integle 14 Symmetien 14 Acsenscnittpunkte 15 Nullstellen 15 Näeungsvefen nc Newton 15 Extempunkte, Wendepunkte 16 Tngenten, Nomlen 16 Fläcenintegle 17 Extemweteecnung 17 Spezielle Integtionsvefen und Integtionsegeln 18 Vektoecnung Vektodstellung in R 3 19 Addition und Sutktion 19 Skle Multipliktion 0 Eineitsvektoen 0 Stecke 0 Linee Aängigkeit 1 Podukte von Vektoen 1 Otogonle Pojektionen Lotvektoen, Nomlenvektoen Gede g 3 Punkt A und Gede g 3 Lgeezieung zweie Geden g und 4 Küzeste Astnd windsciefe Geden 5 Eene E 6 Eene E und Punkt Q 7 Eene E und Gede g 7 Eene E und Eene F 8 4

5 Inltsvezeicnis Geiet Inlt Seite Stocstik Zufllsexpeiment, Egenismenge 9 Eeignis, Eeignisten 9 Häufigkeit und sttistisce Wsceinlickeit 30 Klssisce Wsceinlickeit 30 Bumdigmm, Pfdegeln 31 Bedingte Wsceinlickeit 31 Unängige und ängige Eeignisse 3 Gesetze de Komintoik, Unenmodell 3 Zufllsvile, Wsceinlickeitsfunktion, Ewtungswet 33 Gewinnspiel 33 Vinz und Stnddweicung 34 Benoulli-Ketten 34 Anng Mtemtisce Zeicen, Aküzungen und Fomelzeicen 35 Mtemtisce Fcegiffe 37 Alpetisces Registe 38 5

6 Bsiswissen Üescift 1 Bucecnen Vilen [ Z; Nenne Þ 0 Addition und Sutktion Multipliktion Division _ 6 c_ d = d 6 c _ d c_ d = c _ d : c_ d = d c Klmmeecnen Distiutivgesetz: ( 6 c) = 6 c Assozitivgesetz: ( + ) (c + d) = c + d + c + d Vilen [ R 1. inomisce Fomel ( + ) = + +. inomisce Fomel ( ) = + 3. inomisce Fomel ( + ) ( ) = Potenzecnen, [ R \ {0}; n, m [ N n n = ( ) n m n = m + n ( n ) m = m n 0 = 1 1 = _ n = ( ) _ n _ m n n = m n n = 1_ ( ) n = { + ( )n fü gedes n n ( ) n fü ungedes n Meke! 4 = e 4 = Meke! ( ) =. 0 e = ( ), 0 Wuzelecnen, [ R + ; c [ R; Nenne Þ 0 Ds Egenis de Qudtwuzel ist fü D = R stets göße gleic null: Îw = e: 3 Îw c 3 = c n 1_ Î w = n n Î w n Îw = n Îw n Îw _ n Îw = n Î w _ n Î w m = m_ n = ( n Î w ) m Logitmen,, c [ R + ; n [ R; Nenne Þ 0 De Logitmus ist die Hoczl n, mit de die Bsis potenziet weden muss, um den Wet zu elten. n = n = log log ( c) = log + log c log ( _ c ) = log log c log n = n log Zenelogitmus (m TR: log) Bsis = 10 log 10 = lg Ntülice Logitmus (m TR: ln) Bsis = e log e = ln Binäe Logitmus (nict m TR) Bsis = log = l TR = Tscenecne Die Umkefunktion von ln x ist e x. Es gilt: ln e n = n und e ln = mit e =,

7 Bsiswissen Fläcenfomeln Deieck A = 1_ g A = 1_ Gundseite Höe g Fläce = A Keis A = π Umfng: = Rdius Ducmesse: d U = π = π d d = Keising A = π (R ) R = Außendius = Innendius R Keis sekto (Ausscnitt) Keissegment (Ascnitt) A = π A = 1_ 360 = Bogenlänge A = 1_ [ s ( )] Senenlänge s = Îw α α M s M Pllelogmm A = Gundseite Höe A = g Spezilfälle: Recteck A = Qudt A = g = Tpez A = 1_ ( + c) = Höe; Þ d d c, c = pllele gegenüeliegende Seiten Dcen A = 1_ e f e, f = senkect ufeinnde steende Digonlen e f Rute A = g = A = 1_ e f Die Rute ist gleiczeitig Dcen und Pllelogmm. Alle Seiten sind gleic lng. e f 7

8 Bsiswissen Üescift 1 Volumenfomeln und Oefläcenfomeln Volumen = V; Oefläce = O gleicmäßig dicke Köpe V = G V = Gundfläce Höe O = G + M M = Mntelfläce Zylindeoefläce: O = π ( + ) Qude G Zylinde G Pism spitze Köpe V = 1_ 3 G V = 1_ Gundfläce Höe 3 G G Pymide: O = + Îw + 4 M = Îw + 4 Pymide Kegel Kegel: O = π + π Îw + M = π Îw + stumpfe Köpe V Stumpf = V gesmt V Spitze z. B. fü Pymidenstumpf, Kegelstumpf V Spitze V Stumpf V gesmt Kugel V = 4_ 3 π 3 Oefläce: O = π d Umfng: U = π d = Kugelsegment (Ascnitt) V = 1_ 3 π (3 ) O = π(4 ) p = ( ) p = Gundkeisdius p M Winkelmße Gdmß (DEG) und Bogenmß (RAD) Bogenlänge Gdmß = 180 π Bogenmß π = 180 De Hlkeis t = 180 (DEG), = π (RAD). = _ π = 180 = 1 α Eineitskeis: = 1; U = π Ds Bogenmß ist die Bogenlänge m Eineitskeis. 8

9 Bsiswissen Winkelfunktionen m Deieck Deieck mit ectem Winkel sin (Winkel) = Gegenktete Hypotenuse sin = Sinus cos = Cosinus tn = Tngens sin = _ c = csin _ c cos (Winkel) = Anktete Hypotenuse cos = _ c = ccos _ c tn (Winkel) = Gegenktete Anktete tn = _ = ctn _ Umkefunktionen (Akusfunktionen) eim Tscenecne: B Ktete C β Ktete Hypotenuse c Die Hypotenuse liegt gegenüe dem ecten Winkel. Die Ktete ist die Gegenktete von und die Anktete von. α A csin: ccos: ctn: elieiges Deieck Sinusstz: sin sin = _ sin sin g = _ c sin g sin = c_ Meke! De Tscenecne eecnet mit dem Sinusstz nu Winkel is 90. Kosinusstz: = + c c cos Umkeis mit Umkeisdius R Inkeis mit Inkeisdius C = + c c cos γ c = + cos g Umkeisdius R: c R = sin = sin = c sin g A α c β B Inkeisdius : = _ + c tn _ = _ + c tn _ g = _ + c tn _ Höen: c = sin = sin g = c sin 9

10 Bsiswissen Üescift 1 Winkelfunktionsezieungen Bezieungen 1 cot = tn cot = cos sin tn = sin cos y 1 cot sin + cos = 1 cos sin() = sin cos cos() = cos sin sin sin 0 cos cot = Kotngens 1 tn x cos = 6 Îw 1 sin sin tn = 6 Îw 1 sin Meke! sin = (sin ) e: sin = sin() tn() = tn _ 1 tn sin(3) = 3 sin 4 sin3 cos(3) = 4 cos 3 3 cos sin( 6 ) = sin cos 6 cos sin cos( 6 ) = cos cos 7 sin cos tn 6 tn tn( 6 ) = _ 1 7 tn tn 6 sin 6 sin = sin cos 7 cos + cos = cos + cos cos cos = sin + sin Wete Winkel im Gdmß (DEG) Winkel im Bogenmß (RAD) 0 1_ 6 π 1_ 4 π 1_ 3 π 1_ π π 3_ π π sin(winkel) 0 1_ 1_ Îw 1_ Îw cos(winkel) 1 1_ Îw 3 1_ Îw 1_ tn(winkel) 0 1_ 3 Îw 3 1 Îw

11 Uns liegt n Ie Bildung! Mtemtik fü die Fcocsculeife mit Vektoecnung 3. Aufl. 008, 56 S., 4-fg., 17 4 cm, osc. ISBN Euop-N ,0 P Kompktes Le- und Üungsuc, ds scwieige mtemtisce Zusmmenänge visulisiet. P Algeisce Gundlgen, Geometisce Gundlgen, Vektoecnung, Anlysis, Diffeenzilecnung, Integlecnung, Komplexe Recnung, Gfik - fäige Tscenecne GTR, Püfungsvoeeitung, Aufgen us de Pxis und Pojektufgen. P Zu Födeung ndlungsoientiete Temene - eitung entält ds Buc eine goße Anzl von Beispielen, nnd dee eine Vielzl von Aufgen zu lösen sind. Fomelsmmlung 3. Aufl. 010, 40 S., 15 x 1 cm, geeftet ISBN Euop-N ,0 Die Fomelsmmlung entält uptsäclic die Fomeln, die zum Ewe de Fcocsculeife enötigt weden. Fomeln de Gundlgenmtemtik sind uf ds Wesentlice eduziet entlten. Lösungen zum Buc Mtemtik fü die Fcocsculeife De Lösungsnd entält kl stuktuiet die Lösungen zu llen Aufgen des Buces Mtemtik fü die Fcocsculeife. Ausfülice Scitte zeigen den Weg zu Lösung jede Aufge. 1. Aufl. 007, 7 S., 17 x 4 cm, osc. ISBN Euop-N ,40 VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße Hn-Guiten

Formelsammlung. x 2 + px + q = 0 ax 2 + bx + c = 0 x 1,2. = p 2 ± p². Fläche eines rechtwinkligen Dreiecks: Fläche eines Dreiecks: A = 1 2 g h

Formelsammlung. x 2 + px + q = 0 ax 2 + bx + c = 0 x 1,2. = p 2 ± p². Fläche eines rechtwinkligen Dreiecks: Fläche eines Dreiecks: A = 1 2 g h Fomelsmmlung p q Fomel: c Fomel x 2 + px + q = 0 x 2 + x + c = 0 x 1,2 = p 2 ± p² 4 q x 1,2 = ± ² 4c 2 Fläce eines Deiecks: Fläce eines ectwinkligen Deiecks: A = 1 2 g A = 1 2 g Fläce eines Qudts: A =

Mehr

Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A.

Formelsammlung Mathematik Fachoberschule Jahrgangsstufe 12 Hochtaunusschule Oberursel. Philipp Maurer in Zusammenarbeit mit StR A. Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Hoctunusscule Oeusel Pilipp Mue in Zusmmeneit mit StR A. Käme Stnd: 20. Feu 2014 Fomelsmmlung Mtemtik Fcoescule Jgngsstufe 12 Inltsvezeicnis 1 Mtemtisce Gundlgen

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Abiturprüfung Mathematik 2017 Merkhilfe S. 1/8. Dreieck Flächeninhalt: 1 2. Mindestens zwei Seiten sind gleich lang.

Abiturprüfung Mathematik 2017 Merkhilfe S. 1/8. Dreieck Flächeninhalt: 1 2. Mindestens zwei Seiten sind gleich lang. Aitupüfung Mthemtik 07 Mekhilfe S. /8 Eene Figuen Deieck Flächeninhlt: A g h g gleichschenkliges Deieck Mindestens zwei Seiten sind gleich lng. gleichseitiges Deieck Alle dei Seiten sind gleich lng. Flächeninhlt:

Mehr

Formeln Informationsund Systemtechnik

Formeln Informationsund Systemtechnik EUROA-ACHBUCHREIHE fü elekoecnice un elekonice Beufe omeln Infomionun Syemecnik Auoen Monik Bugmie Suieniekoin Sug Ulic G.. eye Dipl.-Ing., Anly fü Meienecnik Kln Ben Gimm Oeuien Leoneg, Sinelfingen Gego

Mehr

Inhalt, Formelsammlung:

Inhalt, Formelsammlung: Inlt, Fomelsmmlung: Geometie Ds llgemeine Deiek Spezielle Deieke Vieeke Regelmäßige Vieleke Keisfläen Pismen Pymien un Kegel 5 Pymien- un Kegelstümpfe 6 Kugel 6 Zentise Stekung un ie Stlensätze 6 Stz es

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Vierecke. 1. Parallelogramm Ein Viereck heißt Parallelogramm, wenn die Gegenseiten jeweils parallel sind.

Vierecke. 1. Parallelogramm Ein Viereck heißt Parallelogramm, wenn die Gegenseiten jeweils parallel sind. Vieeke. Pllelogmm Ein Vieek eißt Pllelogmm, wenn ie egenseiten jeweils pllel sin. D C Stz: Ein Vieek ist genu nn punktsymmetis (zum Digonlensnittpunkt), wenn es ein Pllelogmm ist. Ein Vieek ist genu nn

Mehr

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl.

Strahl Eine gerade Linie, die auf einer Seite von einem Punkt begrenzt wird, (Anfangspunkt) heißt Strahl. 1. 1. 2. Strecke B B Gerde Eine gerde, von zwei Punkten begrenzte Linie heißt Strecke. Eine gerde Linie, die nicht begrenzt ist, heißt Gerde. D.h. eine Gerde ht keine Endpunkte! 2. 3. 3. g Strhl Eine gerde

Mehr

Referat im Fach Mathematik

Referat im Fach Mathematik Refet im Fc Mtemtik Tem: Beecnung von Rottionsköpen mit klssiscen Metoden und mit Integlecnung m Beispiel von Kegel, Kugel und Rottionsellipsoid. Vefsse: Ruen Flle Inltsvezeicnis. Ws sind Rottionsköpe?

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS. Hypotenuse Mtemtik: Mg. Scmid Wolfgng Arbeitsbltt 10. Semester ARBEITSBLATT 10 SATZ DES PYTHAGORAS Definition: Ktete Ktete Hypotenuse Jene beiden Seiten, die den recten Winkel bilden (,b) nennt mn Kteten, die dritte

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Mathematik in eigenen Worten

Mathematik in eigenen Worten Sieglinde Wsmier Mtemtik in eigenen Worten Lernumgeungen für die Sekundrstufe I Klett und Blmer Verlg Mtemtik in eigenen Worten Scülerinnen und Scüler screien ire Lern- und Denkwege uf : Sieglinde Wsmier

Mehr

1.7 Inneres Produkt (Skalarprodukt)

1.7 Inneres Produkt (Skalarprodukt) Inneres Produkt (Sklrprodukt) 17 1.7 Inneres Produkt (Sklrprodukt) Montg, 27. Okt. 2003 7.1 Wir erinnern zunächst n die Winkelfunktionen sin und cos, deren Wirkung wir m Einheitskreis vernschulichen: ϕ

Mehr

Ausbildungsberuf KonstruktionsmechanikerIn

Ausbildungsberuf KonstruktionsmechanikerIn KM 07U Projekt Einfce Pyrmide mit qudrtiscer Grundfläce Ausbildungsberuf KonstruktionsmecnikerIn Einstzgebiet/e: Metllbu Sciffbu Scweißen Projekt Gerde Pyrmide mit qudrtiscer Grundfläce Anm.: Blecstärke

Mehr

für beliebige Mengen A, B, C

für beliebige Mengen A, B, C 1.1 Mengenlehre A A A B B A A B B C A C für elieige Mengen A, B, C (Reflexivität) (Symmetrie) (Trnsitivität) (1) (2) (3) A B = B A A B = B A (Kommuttivgesetze) (4) (A B) C = A (B C) (A B) C = A (B C) (Assozitivgesetze)

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsmmlung Mthemtik Inhlt Mßumwnlungen... Längenmße... Flähenmße... Rum- un Hohlmße... Zeitmße... Rehtek... Qurt... llgemeines Dreiek... 4 Rehtwinkeliges Dreiek... 4 Gleihshenkliges Dreiek... 5 Gleihseitiges

Mehr

Grundwissen. 9. Jahrgangsstufe. Mathematik

Grundwissen. 9. Jahrgangsstufe. Mathematik Gundwissen 9. Jahgangsstufe Mathematik Seite 1 1 Reelle Zahlen 1.1 Rechnen mit Quadatwuzeln a ist diejenige nicht negative Zahl, die zum Quadat a egibt. d.h.: ist keine Wuzel aus 4. Eine Wuzel kann nicht

Mehr

ist ein Punkt im 2-dimensionalen karthesischen Koordinatensystem, früher hieß stumpfer gestreckter Winkel 180 o

ist ein Punkt im 2-dimensionalen karthesischen Koordinatensystem, früher hieß stumpfer gestreckter Winkel 180 o Geometie Punkt ist ein Punkt im -dimensionlen ktesisen Koodintensystem, füe ieß P x p y P szisse eute x-koodinte x p Odinte eute y-koodinte y P stnd de Punkte und d(, ) = = (x x ) + (y y ) Die Steke t

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

EBENE GEOMETRIE. 1) Kollineare Punkte: liegen alle auf einer Geraden. 6) Parallele Geraden: schneiden sich nicht: g 2. 7) Einteilung der Dreiecke:

EBENE GEOMETRIE. 1) Kollineare Punkte: liegen alle auf einer Geraden. 6) Parallele Geraden: schneiden sich nicht: g 2. 7) Einteilung der Dreiecke: N GOTRI 1) Kollinee Punkte: lieen lle uf eine Geden 6) Pllele Geden: sneiden si nit: ) u denselen Punkt eende Geden: 7) inteilun de eieke: n den eiten: O uneelmäßi: lle eiten vesieden ln 3) Winkeleinteilun:

Mehr

2.2. Aufgaben zu Figuren

2.2. Aufgaben zu Figuren 2.2. Aufgen zu Figuren Aufge 1 Zeichne ds Dreieck ABC in ein Koordintensystem. Bestimme die Innenwinkel, und und erechne ihre Summe. Ws stellst Du fest? ) A(1 2), B(8 3) und C(3 7) ) A(0 3), B(10 1) und

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Körper II. 1 Ziehe in jedem Bild die Kegelform mit einem Farbstift nach. 2 Kreuze die richtigen Aussagen an. Hinweis: Betrachte die Zeichnung.

Körper II. 1 Ziehe in jedem Bild die Kegelform mit einem Farbstift nach. 2 Kreuze die richtigen Aussagen an. Hinweis: Betrachte die Zeichnung. I Köpe II 6. Volumen und Obefläce eines Dekegels 1 Ziee in jedem Bild die Kegelfom mit einem Fabstift nac. 2 Keuze die ictigen Aussagen an. Hinweis: Betacte die Zeicnung. Spitze Mantel Höe Mantelstecke

Mehr

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c.

SBP Mathe Grundkurs 2. Differentialquotient. Namen und Schreibweisen für Differentialquotienten. Ableitung von f(x) = c. SBP Mthe Grundkurs 2 # 0 by Clifford Wolf # 0 Antwort Diese Lernkrten sind sorgfältig erstellt worden, erheben ber weder Anspruch uf Richtigkeit noch uf Vollständigkeit. Ds Lernen mit Lernkrten funktioniert

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Prof. Dr.Ing. W. Scheideler Brückenkurs Mthemtik WS 0/ us und überrbeitet von B. Eng. Sevd Hppel und Dipl.Ing. Jun Rojs Prof. Dr.Ing. W. Scheideler Inhltsverzeichnis Brüche, Potenzen und Wurzeln. Brüche..

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

Grundwissen 9. Klasse G8

Grundwissen 9. Klasse G8 Leibniz-Gymnsium Altdorf Grundwissen 9. Klsse G8 Wissen / Können Aufgben und Beispiele Lösungen I) Reelle Zhlen Für eine nichtnegtive Zhl heißt diejenige nichtnegtive Zhl, deren Qudrt ergibt, Qudrtwurzel

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

2)Fehlerhafte Socken werden in einem Kaufhaus um 15 % billiger zu 5,10 das Paar angeboten. Berechne den Preis der fehlerfreien Ware!

2)Fehlerhafte Socken werden in einem Kaufhaus um 15 % billiger zu 5,10 das Paar angeboten. Berechne den Preis der fehlerfreien Ware! M Übung für die 5. Sculrbeit 01 Nme: 1)Eine Recnung für ds Verlegen eines Teppicbodens lutet uf 51. Bei Brzlung innerlb von Tgen werden % Skonto gewärt. Berecne die Ersprnis und den ermäßigten Preis! )Felerfte

Mehr

NAE Nachrichtentechnik und angewandte Elektronik

NAE Nachrichtentechnik und angewandte Elektronik nhaltsvezeichnis: Thema ntepunkt Seite Pegel Definition - Pegelangabe und umechnung - Nomgeneatoen - Dämpfung und Vestäkung - Relative Pegel Definition -3 elative Spannungs-, Stom-, Leistungspegel -3 Dämpfung/Vestäkung

Mehr

Tag der Mathematik 2011

Tag der Mathematik 2011 Zentrum für Mthemtik Tg der Mthemtik 0 Gruppenwettbewerb Einzelwettbewerb Mthemtische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden.

Mehr

Brückenkurs MATHEMATIK

Brückenkurs MATHEMATIK Brückenkurs MATHEMATIK Professor Dr. rer. nt. Bernd Bumnn Professor Dr. rer. nt. Ulrich Stein Hochschule für Angewndte Wissenschften Hmburg 5. März 008 VO R B E M E R K U N G E N Liebe Studentin, lieber

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE

Übungsbeispiele Dreiecke Mag. Thomas Höfferer. Aufgaben DREIECKE Übungsbeispiele Deiecke Mg. Toms Höffee ufgben DREIECKE Fläce von Deiecken: D 1. Gegeben sin ie ei Seiten eines llgemeinen Deiecks. estimme ie Fläce un ie ei Höen e einzelnen Deiecke. b c b c.) 1 1 15

Mehr

Lösung Arbeitsblatt Geometrie / Trigonometrie

Lösung Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Lösung Arbeitsbltt Geometrie / Trigonometrie Dozent: - Brückenkurs Mthemtik 016 Winkelbeziehugen

Mehr

Grundwissen l Klasse 5

Grundwissen l Klasse 5 Grundwissen l Klsse 5 1 Zhlenmengen und Punktmengen {1; 2; 3; 4; 5; 6;... } Die Menge der ntürlichen Zhlen. 0 {0; 1; 2; 3; 4; 5;... } Die Menge der ntürlichen Zhlen mit Null. M {; ; C;... } Die Menge der

Mehr

Arbeitsblatt Geometrie / Trigonometrie

Arbeitsblatt Geometrie / Trigonometrie Fchhochschule Nordwestschweiz (FHNW) Hochschule für Technik Institut für Mthemtik und Nturwissenschften Arbeitsbltt Geometrie / Trigonometrie Dozent: - rückenkurs Mthemtik 2016 Modul: Mthemtik Dtum: 2016

Mehr

(Analog nennt man a die und b die des Winkels β.)

(Analog nennt man a die und b die des Winkels β.) Mthemtik Einführung Ws edeutet ds Wort und mit ws eschäftigt sich die? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Eck' Beispiel: Pentgon ds Fünfeck mit 5 Winkeln

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

Prisma und Pyramide 10

Prisma und Pyramide 10 Prism und Pyrmide 10 C10-01 1 5 1 Körper 1 Scnittbogen 1 Körper Scnittbogen Körper Scnittbogen Körper Scnittbogen 6 Scnittbogen Scnittbogen 5 M c = + ( ) = 10 + 5 = 15 11, c c c c Individuelle Individuelle

Mehr

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen

2.6. Anwendungs- und Beweisaufgaben zu Kongruenzsätzen 2.6. Anwendung- und eweiufgben zu Kongruenzätzen Aufgbe ) Ermittle zeicneric die Längen der drei Fläcendigonlen d b, d c und d bc und der Rumdigonlen d de bgebildeten Quder mit den Abmeungen = 4 cm, b

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V.

a) Spezielle Winkel bei schneidenden Geraden und Parallelen α 3 β 4 Institut für Automatisierungstechnik Prof. Dr. Ch. Bold Vorsemester V. 0.05.0 Geometrie und Trigonometrie ) Spezielle Winkel ei shneidenden Gerden und Prllelen 4 4 Sheitelwinkel sind gleih (z.. zw. ) Neenwinkel ergänzen sih zu 80 0 (z.. + 80 0 ) Stufenwinkel sind gleih (z..

Mehr

Lösungen Mathematik II

Lösungen Mathematik II Lösungen Mthemtik II Geometrie für Berufsmturitätsschulen,. Auflge Druckdtum: August I PLANIMETRIE Winkel Lösungen zu Üungen. ) 8 β α + γ ) ϕ 8 β. ) α 7 ) α 5 ; β c) α 5 d) α ; β. α. ε 78 5. ) α 58 ;

Mehr

Übung: Untersuchung einfacher Funktionen

Übung: Untersuchung einfacher Funktionen MK.6. Differentition_Ueb Untersuc.mc Aufgben: Übung: Untersucung einfcer Funktionen Untersucen Sie ie folgenen zusmmengesetzen Funktion uf Differenzierbrkeit un Stetigkeit. () f( ) : für fb( ) : für

Mehr

2.8. Aufgaben zum Satz des Pythagoras

2.8. Aufgaben zum Satz des Pythagoras Aufgbe 1 Vervollständige die folgende Tbelle:.8. Aufgben zum Stz des Pythgors Kthete 6 1 4 1 13 17 15 Kthete b 8 1 7 8 11 Hypotenuse c 13 9 19 17 Aufgbe Berechne jeweils die Länge der dritten Seite: Aufgbe

Mehr

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden?

Trigonometrie. 5) Ein 9,60 hoher Mast wirft einen 5,10 m langen Schatten. Unter welchem Winkel treffen die Sonnenstrahlen auf den Erdboden? Relscule Scüttorf Mtemtik Klsse 10d Dezemer 006 1) Ein Deic t folgende Mße: c = 9 m = 0 m = 18 β = 8 ) Wie reit ist die Deicsole? ) Wie groß ist der trpezförmige Querscnitt des Deices? Runde uf zwei Stellen

Mehr

Workshop zu Trigonometrie

Workshop zu Trigonometrie Wokshop zu Tigonometie Gudun Szewiezek SS 00 Wi eshäftigen uns hie mit de eenen Tigonometie (g. tigonos = Deiek, g. meton = Mß). Dei geht es huptsählih um die geometishe Untesuhung von Deieken in de Eene.

Mehr

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K

360 2 r. 360 r2. α Bogenmaß. α 360. α 2π. 4 3 r3 V K. 4 r 2 O K Grundwissen Mthemtik 10. Klsse Kreis Länge eines Kreisbogens b 360 r r r b Fläche eines Kreissektors 360 r r r Bogenmß Bogenmß des Winkels : Umrechnungsformel: b α Bogenmß r α Bogenmß π α 360 Grdmß Kugel

Mehr

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0}

Menge der natürlichen Zahlen. ℕ = ℕ {0} Menge der ganzen Zahlen ℤ = ℤ {0} ℝ. Menge der reellen Zahlen. ℝ = ℝ {0} ℝ+ = { x ℝ x 0} Mekhilfe Mthemtik fü Bildugsgäge die zu FHSR fühe Zhlemege ℕ = { ; ; ; ;...} Mege de tüliche Zhle ℕ = ℕ {} ℤ = {... ; ; ; ; ; ;...} Mege de gze Zhle ℤ = ℤ {} ℝ Mege de eelle Zhle ℝ = ℝ {} ℝ+ = { ℝ } Mege

Mehr

Ü b u n g s b l a t t 13. Organisatorisches:

Ü b u n g s b l a t t 13. Organisatorisches: MATHEMATIK FÜ INFOMATIKE I WINTESEMESTE 7/8 POF. D. FIEDICH EISENBAND D. KAI GEHS Ü b u n g s b l t t 13 Orgnistorisches: Dieses Übungsbltt wir nicht mehr korrigiert. D ie Aufgben ennoch klusurrelevnt

Mehr

Einführung in Mathcad 14.0 2011 H.

Einführung in Mathcad 14.0 2011 H. Einführung in Mthc. H. Glvnik Eitieren von Termen Tet schreiben mit Shift " + + Nvigtion mit Leertste un Cursor + Löschen mit Shift + Entf + + 5 sin( ) + Arten von Gleichheitszeichen Definition eines Terms

Mehr

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele

Grundwissen Mathematik 10. Klasse. Eigenschaften Besonderheiten - Beispiele Themen Eigenschften Besonderheiten - Beispiele Kreis beknnt us Klsse 8: U Kreis = 2 π r A Kreis = r 2 π Kreissektor Bogenlänge b Flächeninhlt Kreissektor: Die Länge b des Kreisbogens und der Flächeninhlt

Mehr

Übungsheft Mittlerer Schulabschluss Mathematik

Übungsheft Mittlerer Schulabschluss Mathematik Ministerium für Bildung und Kultur des Lndes Schleswig-Holstein Zentrle Abschlussrbeit 011 Übungsheft Mittlerer Schulbschluss Mthemtik Korrekturnweisung Impressum Herusgeber Ministerium für Bildung und

Mehr

Grundwissen Klasse 10

Grundwissen Klasse 10 Grundwissen Klsse 0 I. Funktionen. Potenzfunktionen und gnzrtionle Funktionen (Mthehelfer : S.56-57) - Grphen von Potenzfunktionen mit gnzzhligen Eponenten zeichnen - Grphen von gnzrtionlen Funktionen

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - Areitslätter 3 M Wiederolung 3 6 7 8 38 Reelle Zlen 3 6 Stzgruppe des Ptgors 3 6 7 8 9 Terme 3 6 6 Gleicungen und Ungleicungen 3 6 7 8 9 7 Körpererecnungen

Mehr

STRATEGIEPAPIER für Abschlussprüfungen

STRATEGIEPAPIER für Abschlussprüfungen .) Gleichungen: STRATEGIEPAPIER für Aschlussprüfungen.) normle Gleichungen : Auflösen nch (oder einer nderen Vrilen) Bestimmen der Lösungsmenge (L). Beispiel: + + / Zusmmenfssen + / + + / 9 / : { } L.)

Mehr

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2

Aufgabe 1: Geben Sie die Nullstellen der Funktion f(x) = sin (3x 2 Etra-Mathematik-Übung: 005--9 Aufgabe : Geben Sie die Nullstellen der Funktion f() sin ( * Pi) an! Skizze: Wertetabelle: X - ½ Pi ½ Pi sin ( ½ Pi) -,0-6,0 -,57-7,57-0,96 -,5 -,5 -,57-6,07 + 0, -,0 -,0

Mehr

Rotationskörper

Rotationskörper .17.5 ottionskörper Im folgenden efssen wir uns mit Körpern, die ddurc entsteen, dss eine eene Kurve oder ein eenes Kurvenstück um eine Acse rotiert, die in der gleicen Eene liegt. Einige spezielle Typen

Mehr

v P Vektorrechnung k 1

v P Vektorrechnung k 1 Vektorrechnung () Vektorielle Größen in der hysik: Sklren Größen wie Zeit, Msse, Energie oder Tempertur werden in der hysik mit einer Mßzhl und einer Mßeinheit ngegeen: 7 sec, 4.5 kg. Wichtige physiklische

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

Methodische Lösungswege zu 70364

Methodische Lösungswege zu 70364 Methodische Lösungswege zu 7036 1. Auflage 010. Taschenbuch. S. Paperback ISBN 978 3 8085 7039 5 Format (B x L): 17 x cm Gewicht: g schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a.

Lösungsformel für quadratische Gleichungen. = ± q + Lösungsformel für. Potenzen. negative Exponenten: gebrochene Exponenten: a a. HUNKLOIHDWKHPDWLN Dies ist keie Fomelsmmlug im klssische Si - die vewedete Bezeichuge wede icht eklät ud Voussetzuge fü die ültigkeit de Fomel wede i de Regel icht gegee. 7HLO,6WRIIJHELHWHHULWWHOVWXIH

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Oberfläche des Zylinders

Oberfläche des Zylinders Zylinde und Kegel Zylinde: Jede Zylinde hat zwei keisfömige Gundflächen (G), die zueinande paallel sind. Die gekümmte Seitenfläche heißt Mantelfläche (M). De Abstand de beiden Gundflächen voneinande ist

Mehr

Kleine Algebra-Formelsammlung

Kleine Algebra-Formelsammlung Immnuel-Knt-Gymnsium Heiligenhus Gierhrt Kleine Alger-Formelsmmlung Mittelstufe (is Klsse 0) Drgestellt sin ie wichtigsten Fkten un Gesetze, woei iverse Ausnhmeregeln wie z.b. s Verot er Division urch

Mehr

E x t r e m w e r t a u f g a b e n

E x t r e m w e r t a u f g a b e n E x t e m w e t u f e n Aufen De Qude Welce oen offene Scctel in de Fom eine qu dtiscen S ule t ei eeenem Oefl ceninlt von dm ein mximles Fssunsvemoen? De Keel Aus einem keisfomien Bltt Ppie soll ein Keel

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Klassenarbeiten Mathematik 5. Geometrische Figuren und Körper. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Downlod Mrco Bettner, Erik Dinges Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Downloduszug us dem Originltitel: Klssenrbeiten Mthemtik 5 Geometrische Figuren und Körper Dieser Downlod ist

Mehr

5.5. Aufgaben zur Integralrechnung

5.5. Aufgaben zur Integralrechnung .. Aufgn ur Ingrlrchnung Aufg : Smmfunkionn Bsimmn Si jwils ll Smmfunkionn für di folgndn Funkionn: ) f() f) f() k) f() n mi n R\{} p) f() 6 + 7 + ) f() g) f() l) f() + 6 q) f() f() h) f() m) f() + + r)

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss

Einser-Flächen. Online-Ergänzung HEINZ KLAUS STRICK. MNU 66/7 (15.10.2013) Seiten 1 5, ISSN 0025-5866, Verlag Klaus Seeberger, Neuss Einser-Flächen HEINZ KLAUS STRICK Online-Ergänzung MNU 66/7 (15.10.01) Seiten 1 5, ISSN 005-5866, Verlg Klus Seeberger, Neuss 1 HEINZ KLAUS STRICK Einser-Flächen Die bgebildeten Figuren hben eines gemeinsm:

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen

Mathematik in eigenen Worten Arbeitsblätter und Kopiervorlagen Mthemtik in eigenen Woten Abeitsblätte und Kopievolgen Abeitsblätte und Kopievolgen stehen unte www.klett.ch/spektumschule kostenlos ls Downlod zu Vefügung. Ihe Vewendung fü den eigenen Unteicht wid vom

Mehr

Grundwissen Mathematik 7I

Grundwissen Mathematik 7I Winkel m Kreis Grundwissen themtik 7I Rndwinkelstz Der Winkel heißt ittelpunktswinkel über der Sehne []. Die Winkel n sind die Rndwinkel über der Sehne []. lle Rndwinkel über einer Sehne eines Kreises

Mehr

x = d größer 0 entschieden. Dieses bleibt nun fest,

x = d größer 0 entschieden. Dieses bleibt nun fest, Stützkus Matematik WIW Üungen Tag 5 Datum: 7.. ****** Temen: Etemwetpoleme, Aleitung de Umkefunktion, Genzwete, Stetigkeit und Diffeenzieakeit Umfang: Hilfsmittel: Aufgaen Sind keine notwendig. Eine Fomelsammlung

Mehr

Orientierungstest Mathematische Grundlagen

Orientierungstest Mathematische Grundlagen Orientierungstest Mthemtische Grundlgen Lösungen:. Welche Zhlenmengen git es? Beispiele? Menge der ntürlichen Zhlen N {,,, } Menge der gnzen Zhlen Z {,, 0,,, } Menge der rtionlen Zhlen Q Menge ller ls

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Aufge 69. Quizz Integrle. Es sei Höhere Mthemtik für Informtiker II (Sommersemester

Mehr

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III

Grundwissen am Ende der Jahrgangsstufe 9. Wahlpflichtfächergruppe II / III Grundwissen m Ende der Jhrgngsstufe 9 Whlpflichtfächergruppe II / III Funktionsbegriff Gerdengleichungen ufstellen und zu gegebenen Gleichungen die Grphen der Gerden zeichnen Ssteme linerer Gleichungen

Mehr

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose.

Excel hat bärenstärke Werkzeuge. So kann man z.b. den Solver nutzen um Optimierungen vorzunehmen. Hier am Beispiel einer Blechdose. Excel at bäenstäke Wekzeuge. So kann man z.b. den Solve nutzen um ptimieungen vozunemen. Hie am Beispiel eine Blecdose. B C Anfangswete 4 Radius 4,50 cm 4,5 5 Höe 10,00 cm 10 4,50 cm 6 Fomeln: 7 Zylindeobefläce

Mehr

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch

Mittelwerte und Zahlenfolgen Beat Jaggi, beat.jaggi@phbern.ch vsmp sspmp ssimf Mittelwete ud Zhlefolge Bet Jggi, bet.jggi@phbe.ch Eileitug Ds Bilde vo Mittelwete ist ei zetles Kozept i de Mthemtik: Lgemsse i de Sttistik (Mittelwet, Medi, Modus); Mitte, Mittelliie

Mehr

Übungsblatt 1 zum Propädeutikum

Übungsblatt 1 zum Propädeutikum Üungsltt zum Propädeutium. Gegeen seien die Mengen A = {,,,}, B = {,,} und C = {,,,}. Bilden Sie die Mengen A B, A C, (A B) C, (A C) B und geen Sie diese in ufzählender Form n.. Geen Sie lle Teilmengen

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Pof. Anes Hez, D. Stefn Häusle emil: heusle@biologie.uni-muenchen.e Deptment Biologie II Telefon: 89-8-748 Goßhenest. Fx: 89-8-7483 85 Plnegg-Mtinsie

Mehr

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges

DOWNLOAD. Vertretungsstunden Mathematik Klasse: Körperberechnungen. Vertretungsstunden Mathematik 9./10. Klasse. Marco Bettner/Erik Dinges DOWNLOAD Mrco Bettner/Erik Dinges Vertretungsstunden Mthemtik 32 10. Klsse: Mrco Bettner/Erik Dinges Bergedorfer Unterrichtsideen Downloduszug us dem Originltitel: Vertretungsstunden Mthemtik 9./10. Klsse

Mehr

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an.

Die Grundfigur der Trigonometrie ist das rechtwinklige Dreieck. Mit ihm fangen wir an. TRIGONOMETRIE [ J. Möller, WS Üerlingen] TRIGON = Dreieck Die Trigonometrie ist der Zweig der Mtemtik, der sic mit der Berecnung von Seiten und Winkeln in rectwinkligen und llgemeinen Dreiecken efsst.

Mehr

Mathematik - Arbeitsblätter

Mathematik - Arbeitsblätter Ic knn... Ic knn Mte... Ic knn Mte lernen Mtemtik - reitslätter M Wiederolung 6 7 8 8 Reelle Zlen 6 Stzgruppe des Ptgors 6 7 8 9 Terme 6 6 leicungen und Ungleicungen 6 7 8 9 7 Körpererecnungen 6 7 8 9

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Berufsmaturität GIBB. Mathematik. BMS GEW Skript. Autoren: B. Jakob, A. Göldi, M. Saier

Berufsmaturität GIBB. Mathematik. BMS GEW Skript. Autoren: B. Jakob, A. Göldi, M. Saier Beufsmtuität GIBB Mthemtik BMS GEW Skipt Autoen: B. Jkob, A. Göldi, M. Sie Inhltsvezeichnis Geometie Plnimetie... S. 8 Plnimetie... S. 9 6 Steeometie... S. 7 40 Tigonometie Tigonometie... S. 4 54 Tigonometie...

Mehr

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs

Pythagoras. Suche ein rechtwinkliges Dreieck mit ganzzahligen Seitenlängen. ... c Roolfs Pythgors Suhe ein rehtwinkliges Dreiek mit gnzzhligen Seitenlängen..... 1 Pythgors Für ein Dreiek mit den Seitenlängen = 3 und = 4 (in m) gilt vermutlih = 5. Weise diese Vermutung nh. Tipp: Bestimme den

Mehr