Signal- und Systemtheorie for Dummies

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Signal- und Systemtheorie for Dummies"

Transkript

1 FB Eleroechni Ewas Signal- und Sysemheorie or Dummies Version - Juli Oh No!!!! Pro. Dr.-Ing. ajana Lange Fachhochschule Merseburg FB Eleroechni Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

2 Gegensand der Berachung sind analoge Signale: FB Eleroechni u() periodisch u() u() analoge Signale aperiodisch - einzelner Impuls sochasisch Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

3 Jede periodische Zeiunion ann durch die Summe unendlich vieler Cosinus-Schwingungen unerschiedlicher Ampliude und uner Frequenz ( und Phase) dargesell werden. u FB Eleroechni () A cos( π ) = + = p u p () =,33+,55cos( π ) +,8cos( π ),4cos( π 4 ),cos( π 5 ) +,8cos( π 7 ) +... p = 3ms A Sperum = = p 333 Hz Hz Hz Pro. Dr.-Ing. ajana Lange 3Hz Die Ampliuden der Cosinus- Schwingungen sell man als Linien über der Frequenzachse dar.! disrees (Linien-)Sperum Signal- und Sysemheorie or Dummies ( π ) +,55cos 3 ( π ) +,8cos ( π 4 ),4cos ( π 5 ),cos ( π 7 ) +,8cos

4 FB Eleroechni A =ms p =ms , Hz Hz 3Hz =ms p =3ms Hz Hz 3Hz =ms p =4ms Hz Hz 3Hz =ms p =5ms Hz Hz 3Hz Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 4

5 FB Eleroechni Erennnisse:. Die Nulldurchgänge der Hüllurve über den Fourier-Koeizienen hängen nur von der Impulsbreie, aber nich von der Periode p ab.. Die Frequenz der Grundwelle häng nur von der Periode p ab. 3. Je größer die Periode p, um so geringer der Absand zwischen den Frequenzen der Grundwelle und der Oberwellen. Der Absand zwischen den Linien im Sperum wird immer leiner. 4. Mi größer werdender Periode werden die Were der Fourier-Koeizienen bzw. die Ampliude der Hüllurve immer leiner. Die Form der Hüllurve bleib jedoch erhalen. ~U / p / U Hz Hz 3Hz / p p Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 5

6 FB Eleroechni Grenzwerberachung: Sreb die Periode gegen Unendlich ( p ), so sreb der Absand zwischen den Sperallinien gegen Null ( =(+) - ) sreb die Ampliude der Hüllurve gegen Null; die Form der Hüllurve bleib jedoch erhalen!!! Dami verwandel sich das disree Liniensperum in eine oninuierliche sperale Dicheunion (urz: sperale Diche, Sperum). Eine gegen Unendlich srebende Periode bedeue, daß nur noch ein einzelner Impuls (oder aperiodische Funion) berache wird (die anderen Impulse verschwinden im Unendlichen ), der im Frequenzbereich durch die sperale Diche beschrieben is. / ~/ p Hz Hz 3Hz / p p / Hz Pro. Dr.-Ing. ajana Lange Hz 3Hz p Signal- und Sysemheorie or Dummies p 6

7 FB Eleroechni Der Verlau der speralen Dicheunion gib Ausun über die Vereilung der (unendlich leinen aber diereniell unerschiedlichen ) Ampliuden der unendlich vielen Cosinus-Schwingungen über die Frequenz. Die Maßeinhei is [V/Hz]. Man sprich in diesem Zusammenhang auch von der Ampliudendiche U(). Mere: Die Maßeinhei der Fourier-Koeizienen A (ür periodische Signale) is [V]. Zusammenassende Erennnis:. Ein periodisches Zeisignal besiz ein disrees Sperum. [V] u p() p U p [V]. Ein aperiodische Signal besiz ein oninuierliches Sperum. [V] u() aperiodische Funion U() [V/Hz] U Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 7

8 FB Eleroechni Fourierransormaion - Warum un wir uns das an? u () Z L R u () u ()? u () = R R + jz L Induion verursach Phasendrehung um 9!!! Z L = ω L = π L Darsellung des omplexen Widersands in der omplexen Zahlenebene: j Z L R u () u () u () () = U cos( π ) u u () = U cos( π ) R + R jπ L u () requenzabhängiger Überragungsaor G( ) Das Sysemverhalen is requenzabhängig. Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 8

9 Allgemein: FB Eleroechni periodische harmonische Signale () = U cos( π ) () = U G( ) cos( π ) u Sysem G( ) u periodische nich-harmonische Signale u () = U cos( π ) = aperiodische Signale u + j π () = U ( ) e d Sysem G( ) Sysem G() ( ) U ( ) G( ) U = () = U G( ) cos( π ) u u + j π ( ) = U ( ) G( ) e d u + j π () = U ( ) e d Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 9

10 Rechenweg: Fourierransormaion u () U () Graphische Mulipliaion G() Sysem ( ) U ( ) G( ) U = U () u () FB Eleroechni Fourierransormaion U () 3!! ( ) U ( ) G( ) U = G() U ()! Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

11 FB Eleroechni Sysem G()? Rechnen u () Z L R u () Messen G ( ) = R + R jz L ( ) Meßanordnung Cosinus-Generaor durchsimmbare Frequenz ~ Meßobje Meßgerä, z.b. Oszillograph Veorvolmeer u ()=U cos(π ) u ()=U ( )cos(π (- ))= U ( )cos(π - π ) U =cons., z.b. V ϕ Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

12 FB Eleroechni Mere: Die Beziehung U ()=U ()G() gil nur ür lineare, zeiinvariane Syseme (Beispiel. eleronischer Versärer im linearen Arbeisbereich). u () Sysem u () u () Sysem u () lineares Sysem zeiinvarianes Sysem nichlineares Sysem nichzeiinvarianes Sysem Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

13 FB Eleroechni Jez ewas Mahemai: Fourier-Reihe ür periodische Signale (Funionen): F- u p () A cos( π + ϕ ) = + = u() p = p u p ( ) = [ a cos( π ) + b sin( π ) ] + = Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 3

14 Komplexe Form der Fourier-Reihe: A cos ( π + ϕ ) = A C e j jϕ A e = 3 ( π +ϕ ) j( π +ϕ ) e jπ + e A e C jϕ e j π FB Eleroechni Euler sche Formel cos x = e + jx + e jx F- + + () ( ) j π u p = A cos π + ϕ = C e = =! Berechnung der Koeizienen: F-3 C C = + p / π u p p / p j () e d jϕ { C } + j { C } = C e = Re Im C C A = e jϕ C = Re C A jϕ gil: = e C = A cos ( ϕ ) A = C Für reale { } A C ; ϕ = = A C = cos ( ϕ ) Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 4

15 FB Eleroechni Mi p erhäl man schließlich eine aperiodische Funion im Zeibereich und ein oninuierliches Sperum im Bildbereich: u() aperiodische Funion U() U / Das Fourier-Inegral ersez die Fourier-Reihe:! + + j π j π F-4 u() = U ( ) e d U ( ) = u( ) e d F-5 Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 5

16 FB Eleroechni Beache Symmerie: u + j π j π () = U ( ) e d U ( ) = u( ) e d + Beispiel ür Symmerie: u() U U() U u() u() 3 U U Zeibereich Frequenz- bzw. Bildbereich Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 6

17 FB Eleroechni Sandardsignale und ihre Speren () () Zeibereich Sperum u() U p = U.δ(+ ) U() U.δ(- ) - + p () = U cos( π ) u! u() U U / H B H U() U H U H / H B H Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 7

18 FB Eleroechni Sandardsignale und ihre Speren () () Zeibereich u() U Sperum U() U U H ( ) U si( π ) = H H H H 3 H H u() Fläche der Söße = A p = U() Fläche der Söße = A p In der Realiä werden die Dirac-Söße durch schmale Impulse ersez. Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 8

19 FB Eleroechni Einige wichige Eigenschaen der Fourierransormaion () ( ) (a) Wenn u U und eine zei- und requenzunabhängige Konsane is, dann gil: () U ( ) u () ( ) () ( ) (b) Wenn U und U, dann gil: u u () + u () U ( ) U ( ) u + (c) Die Fläche uner der Frequenzunion Zeiunion u() bei = : (d) Die Fläche uner der Zeiunion Frequenzunion U ( ) bei = : u() u U U ( ) is gleich dem Wer der + ( = ) = u( ) = U ( )d is gleich dem Wer der + ( = ) = U ( ) = u( )d Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 9

20 FB Eleroechni Wichige Näherungsbeziehung: u() U()! U U / U H U H / H U U H BH U = u( = ) ( = ) BH ( = ) u( = ) H = U H B H Zur No ann jedes Signal näherungsweise als ein glocenörmiger Impuls berache werden. Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

21 FB Eleroechni Beispielaugabe: Gegeben is die in der Abbildung dargeselle Überragungsunion G() eines iepaß. Sizzieren Sie näherungsweise das Signal am Ausgang des iepaß ür olgende drei Fälle: (A) Am Eingang des iepasses wir ein dreiecörmiger Impuls mi der Halbwersbreie H =µs und einer Ampliude von U = V - siehe Abbildung A. (B) Am Eingang des iepasses wir ein glocenörmiger Impuls mi der Halbwersbreie H =ms und einer Ampliude von U = V - siehe Abbildung B. (C) Am Eingang des iepasses wir eine cosinusormige Spannung - siehe Abb. C G() B H =5 Hz Fall (A) Fall (B) Fall (C) u () u () V V u () V H =µs H =ms 4 µs Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

22 FB Eleroechni Lösung Fall A. Schri: Ermilung des Sperums des Eingangssignals (näherungsweise!!!): u () V U () U (=) V/MHz H =µs B H MHz. Schri: (graphische) Mulipliaion mi der Überragungsunion des iepasses: Beache: Unerschiedliche Maßsäbe au den Frequenzachsen. Im Durchlaßbereich des iepasses is die sperale Ampliudendiche des Eingangssignals U() V/MHz=cons. G() B H =5 Hz 3. Schri: Rücransormaion (näherunsweise): u () u (=),V Ergebnis: H µs 3 U () U (=) V/MHz B H =5 Hz Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies

23 FB Eleroechni Lösung Fall B. Schri: Ermilung des Sperums des Eingangssignals (näherungsweise!!!): u () V U () U (=) V/Hz H =ms. Schri: (graphische) Mulipliaion mi der Überragungsunion des iepasses: Beache: Unerschiedliche Maßsäbe der Frequenzachsen. Im Frequenzband des Eingangssignals is der Verlau der Überragungsunion nahezu onsan. (ür -Hz < < +Hz gil G() =cons.) Das Signal wird ohne requenzmäßige Einschränung durchgelassen, jedoch um den Faor versär. G() B H =Hz B H =5 Hz 3. Schri: Rücransormaion (näherunsweise): Ergebnis: u () 4V U () U (=) 4V/Hz H =ms 3 B H =Hz Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 3

24 FB Eleroechni Lösung Fall C u() U Lösungsvariane - regulärer Weg U.δ(+ ) U() U.δ(- ) p p =4µs =/ p =5Hz - + =5Hz. Schri: (graphische) Mulipliaion mi der Überragungsunion des iepasses: G() G(=5Hz)= B H =5 Hz 3. Schri: Rücransormaion (näherunsweise): Ergebnis: u() U p p =4µs 3 U.δ(+ ) U() U.δ(- ) - + =5Hz Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 4

25 FB Eleroechni Lösung Fall C Lösungsvariane - Abürzung Zur Erinnerung: Der Wer der Überragungsunion G() an der Selle = i gib (deiniionsgemäß) das Verhälnis zwischen den Ampliuden des cosinusörmigen Ausgangssignals u ()= U cos(π i ) und des cosinusörmigen Eingangssignals u ()= U cos(π i ) an (=Überragungsaor). U Es gil also: G( = i ) = U = i G() u G(=5Hz)= ()= U cos(π i ) u ()= U cos(π i ) u () u () U B H =5 Hz U p p In der Augabe wir au den Eingang des Sysems ein cosinusörmiges Signal. Am Ausgang muß also wieder ein cosinusörmiges Signal gleicher Frequenz erscheinen. Dessen Ampliude häng von der Frquenz ab. In der Augabe ergib sich die Frequenz der Cosinus-Schwingung aus der Periode, also =/ p =5Hz. Der Wer der Überragungsunion bei =5Hz is l. Sizze gleich G(=5Hz)=. Folglich erschein am Ausgang des Sysems das gleiche Signal wie am Eingang!!! Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 5

26 FB Eleroechni Mulipliaion eines Signals mi einer Cosinus-Folge zeilicher Signalverlau u N () Sperum U N () Nuzsignal u () U () Mulipliaion im Zeibereich u N () rägersignal u () Verschiebung des Sperums u M () modulieres Signal u M () U M () Modulaion Frequenzmuliplex Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 6

27 FB Eleroechni Mulipliaion eines Signals mi einer Abasolge --Abasung zeilicher Signalverlau u N () Sperum U N () Nuzsignal u A () U A () Mulipliaion im Zeibereich u N () Abasolge u A () periodische Folge Verschiebung des Sperums u D () Disrees Signal u D () U D () Periodiizierung Abasheorem bzw. abgeasees Signal Digialisierung Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 7

28 FB Eleroechni Mere: Periodiizierung im Zeibereich bedeue Abasung im Frequenzbereich Abasung im Zeibereich bedeue Periodiizierung im Frequenzbereich Periodiizierung: Periode p =/ Abasung: Abasinervall =/ p P{u()}=u p () u() A{u()}=u a () A{U()}=U a () U() P{U()}=U p () Abasung: Abasinervall =/ p Periodiizierung: Periode p =/ Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 8

29 FB Eleroechni Beispielaugabe: Gegeben is das in der Sizze dargeselle Signal im Zeibereich. Dieses Signal wird periodiizier mi einer Periode p =µs. u () U = V Sizzieren Sie näherungsweise das Sperum des periodiizieren Signals. H =5 µs Lösung:. Schri: Ermilung des Sperums der Originalunion u() u () U = V U() U(=) V/MHz H =5 µs. Schri: B H Hz Periodiizierung im Zeibereich bedeue Abasung im Frequenzbereich. Dabei berechne sich der Absand zwischen den Abasnadeln aus der Periode wie olg: U() U(=) V/MHz µ s = = = p 5Hz Ergebnis: 5Hz B H Hz 5Hz Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 9

30 FB Eleroechni Digialisierung analoger Signale --Abasheorem zeilicher Signalverlau u N () u A () analoges Signal Abasolge Disrees bzw. abgeases Signal u D () G() Sperrbereiche Durchlaßbereich u N () Speren U N () U D () iepass U N () Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 3

31 FB Eleroechni Schri : Abasung Digialisierung analoger Signale Abasimpulse Abasrequenz > g Abasheorem!!! analoge Signalquelle iepaß Grenzrequenz g Abaser iepaß Grenzrequenz g Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 3

32 FB Eleroechni Schri : Quanisierung und binäre Codierung Quanisierer / Codierer Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies anderer Zeimaßsab 3

33 Digiale Signalverarbeiung FB Eleroechni Digiale Signalüberragung Digiale Signalilerung Digiale Signalspeicherung Digiale Signalerennung P Abaser Quan./Coder Digiale Signalverarbeiung Decoder iepaß Grenzrequenz g anderer Zeimaßsab Quanisierungsverzerrung!!! Pro. Dr.-Ing. ajana Lange Signal- und Sysemheorie or Dummies 33

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge

Grundgebiete der Elektrotechnik II Feedbackaufgabe: Transiente Vorgänge heinisch-wesfälische Technische Hochschule Aachen Insiu für Sromricherechni und Elerische Anriebe Universiäsprofessor Dr. ir. i W. De Doncer Grundgebiee der Eleroechni II Feedbacaufgabe: Transiene Vorgänge

Mehr

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ...

Praktikum Grundlagen der Elektrotechnik Versuch 5. Matrikelnummer:... ... FH D FB 3 Fachhochschule Düsseldorf Universiy of Applied Sciences Fachbereich Elekroechnik Deparmen of Elecrical Engineering Prakikum Grundlagen der Elekroechnik Versuch 5 Name Marikelnummer:... Anesa

Mehr

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10

Übungen zur Vorlesung Nachrichtenübertragungstechnik E5iK Blatt 10 Fachhochschule Augsburg SS 20001 Fachbereich Elekroechnik Modulaion digialer Signale Übungen zur Vorlesung Nachrichenüberragungsechnik E5iK Bla 10 Fragen 1. Welche Voreile biee die digiale Überragung von

Mehr

Versuch 1 Schaltungen der Messtechnik

Versuch 1 Schaltungen der Messtechnik Fachhochschule Merseburg FB Informaik und Angewande Naurwissenschafen Prakikum Messechnik Versuch 1 Schalungen der Messechnik Analog-Digial-Umsezer 1. Aufgaben 1. Sägezahn-Umsezer 1.1. Bauen Sie einen

Mehr

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten

V 321 Kondensator, Spule und Widerstand Zeit- u. Frequenzverhalten V 32 Kondensaor, Spule und Widersand Zei- u. Frequenzverhalen.Aufgaben:. Besimmen Sie das Zei- und Frequenzverhalen der Kombinaionen von Kondensaor und Widersand bzw. Spule und Widersand..2 Ermieln Sie

Mehr

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619

Aufgabensammlung. Signale und Systeme 1. Einführung in die Signal- und Systemtheorie. Kontaktinformation: Dr. Mike Wolf, Tel. 2619 Aufgabensammlung Signale und Syseme 1 für die BA-Sudiengänge EIT, II, BT, MTR, OTR, MT, IN (3. FS) Einführung in die Signal- und Sysemheorie für den BA-Sudiengang WIW-ET (5. FS) Konakinformaion: Dr. Mike

Mehr

1 Abtastung, Quantisierung und Codierung analoger Signale

1 Abtastung, Quantisierung und Codierung analoger Signale Abasung, Quanisierung und Codierung analoger Signale Analoge Signale werden in den meisen nachrichenechnischen Geräen heuzuage digial verarbeie. Um diese digiale Verarbeiung zu ermöglichen, wird das analoge

Mehr

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003

Bernhard Geiger, 2004 MODULATION. Unterrichtsskript aus dem TKHF-Unterricht 2003 Bernhard Geiger, 4 MODULATION Unerrichsskrip aus dem TKHF-Unerrich 3 Was is Modulaion? Was is Modulaion? Modulaion is die Veränderung eines Signalparameers (Ampliude, Frequenz, hasenwinkel) eines Trägersignals

Mehr

4. Kippschaltungen mit Komparatoren

4. Kippschaltungen mit Komparatoren 4. Kippschalungen mi Komparaoren 4. Komparaoren Wird der Operaionsversärker ohne Gegenkopplung berieben, so erhäl man einen Komparaor ohne Hserese. Seine Ausgangsspannung beräg: a max für > = a min für

Mehr

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren

Digitale und Analoge Modulationsverfahren. Inhaltsverzeichnis. Abbildungsverzeichnis. ADM I Analoge & Digitale Modulationsverfahren ADM I Analoge & Digiale Modulaionsverfahren Digiale und Analoge Modulaionsverfahren Inhalsverzeichnis 1 Idealisiere analoge und digiale Signale 1 2 Bezeichnungen für digiale Modulaionsverfahren 2 3 Eingriffsmöglichkeien

Mehr

Diskrete Integratoren und Ihre Eigenschaften

Diskrete Integratoren und Ihre Eigenschaften Diskree Inegraoren und Ihre Eigenschafen Whie Paper von Dipl.-Ing. Ingo Völlmecke Indusrielle eglersrukuren werden im Allgemeinen mi Hilfe von Inegraoren aufgebau. Aufgrund des analogen Schalungsaufbaus

Mehr

Vom singenden Draht zum DVB-C

Vom singenden Draht zum DVB-C Vom singenden Drah zum DVB-C Is digiale Kommunikaion effiziener? Gerolf Ziegenhain TU Kaiserslauern Übersich Einleiung Begriffsklärung Ziel Analoge Modulaion AM FM Muliplexverfahren Digiale Modulaion QPSK

Mehr

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik

Grundlagen zeitveränderlicher Signale, Analyse von Systemen der Audio- und Videotechnik 3. Nichperiodische Signale 3.1 ω ω ω dω Nichperiodische Signale endlicher Länge Die Fourierransformaion zerleg nichperiodische Signale endlicher Länge in ein koninuierliches endliches Frequenzspekrum.

Mehr

GRUNDLAGENLABOR CLASSIC RC-GLIED

GRUNDLAGENLABOR CLASSIC RC-GLIED GUNDLAGNLABO LASSI -GLID Inhal: 1. inleing nd Zielsezng...2 2. Theoreische Afgaben - Vorbereing...2 3. Prakische Messafgaben...4 Anhang: in- nd Asschalvorgänge...5 Filename: Version: Ahor: _Glied_2_.doc

Mehr

Überblick über (De-)Modulationsverfahren

Überblick über (De-)Modulationsverfahren Überblick über (De-)Modulaionsverfahren Transmier (Sender) Receiver (Empfänger) Basisbandsignal Modulaor Pfad Demodulaor Basisbandsignal BB BB Roland Pfeiffer 2. Vorlesung Auswahl eines Air Inerfaces Ihre

Mehr

Kondensator und Spule im Gleichstromkreis

Kondensator und Spule im Gleichstromkreis E2 Kondensaor und Spule im Gleichsromkreis Es sollen experimenelle nersuchungen zu Ein- und Ausschalvorgängen bei Kapaziäen und ndukiviäen im Gleichsromkreis durchgeführ werden. Als Messgerä wird dabei

Mehr

Stochastischer Prozess S(t) z.b. Rauschspannung

Stochastischer Prozess S(t) z.b. Rauschspannung s () () s (2) () s (i) () Sochasischer Prozess S() z.b. Rauschspannung 0 Bild : Analoges zufälliges Signal 2 P(S ) 0, P(S s ) P(S s 2 ) s s 2, P(S ). s() P S (s) b a /2 M b s a Bild 2: Sochasisches Signal

Mehr

Analoge CMOS-Schaltungen

Analoge CMOS-Schaltungen Analoge CMOS-Schaltungen PSPICE: Fourier-Analyse 12. Vorlesung Einführung 1. Vorlesung 8. Vorlesung: Inverter-Verstärker, einige Differenzverstärker, Miller-Verstärker 9. Vorlesung: Miller-Verstärker als

Mehr

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2)

SERVICE NEWSLETTER. Einführung in die Mechanik Teil 2: Kinematik (2) Einührung in ie Mechanik Teil : Kinemaik Ausgabe: 9 / 4 In iesem Teil er Reihe wollen wir anhan eines Zahlenbeispiels en Deomaionsgraienen als zenrale Größe zur Beschreibung er Deormaion in er Kinemaik

Mehr

Prof. Dr. Tatjana Lange. Lehrgebiet: Regelungstechnik Laborübung 04/05:

Prof. Dr. Tatjana Lange. Lehrgebiet: Regelungstechnik Laborübung 04/05: Prof. Dr. ajana Lange Lehrgebie: egelungsechnik Laborübung 4/5: hema: Sreckenidenifikaion. Ermilung on egelkennweren aus dem offenen egelkreis. Übungsziele: Veriefung ausgewähler Mehoden der Sreckenidenifikaion

Mehr

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen

Übungsserie: Single-Supply, Gleichrichter Dioden Anwendungen 1. Mai 216 Elekronik 1 Marin Weisenhorn Übungsserie: Single-Supply, Gleichricher Dioden Anwendungen Aufgabe 1. Gleichricher In dieser Gleichricherschalung für die USA sei f = 6 Hz. Der Effekivwer der Ausgangspannung

Mehr

Abb.4.1: Aufbau der Versuchsapparatur

Abb.4.1: Aufbau der Versuchsapparatur 4. xperimenelle Unersuchungen 4. Aufbau der Versuchsanlage Für die Unersuchungen zum Schwingungs- und Resonanzverhalen sowie Soffausauschprozess wurde eine Versuchsanlage aufgebau. In der Abbildung 4.

Mehr

Name: Punkte: Note: Ø:

Name: Punkte: Note: Ø: Name: Punke: Noe: Ø: Kernfach Physik Abzüge für Darsellung: Rundung: 4. Klausur in K am 5. 5. 0 Ache auf die Darsellung und vergiss nich Geg., Ges., Formeln, Einheien, Rundung...! Angaben: e =,60 0-9 C

Mehr

Mathematik für das Ingenieurstudium. 4. Juli 2011

Mathematik für das Ingenieurstudium. 4. Juli 2011 Mahemaik ür das Ingenieursudium Jürgen Koch Marin Sämple 4. Juli 0 .6 Beweise 43 Beispiel.3 (Ungleichungen) a) Die Ungleichung + 4 < 6 is ür alle -Were deinier. Zur Besimmung der Lösungsmenge berechnen

Mehr

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7

HTL Kapfenberg pc_reifeprüfungsaufgaben_ma_11_bsp.31.mcd Seite 1 von 7 HTL Kapfenberg p_reifeprüfungsaufgaben_ma Bsp.3.m Seie von 7 Angaben zu Aufgabe 3: Ein shwingfähiges mehanishes Sysem is mi einem geshwinigeisproporionalem Dämpfer ausgesae. Folgene in iesem Zusammenhang

Mehr

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen

Untersuchung von Gleitentladungen und deren Modellierung durch Funkengesetze im Vergleich zu Gasentladungen Unersuchung von Gleienladungen und deren Modellierung durch Funkengeseze im Vergleich zu Gasenladungen Dipl.-Ing. Luz Müller, Prof. Dr.-Ing. Kur Feser Insiu für Energieüberragung und Hochspannungsechnik,

Mehr

Flip - Flops 7-1. 7 Multivibratoren

Flip - Flops 7-1. 7 Multivibratoren Flip - Flops 7-7 Mulivibraoren Mulivibraoren sind migekoppele Digialschalungen. Ihre Ausgangsspannung spring nur zwischen zwei fesen Weren hin und her. Mulivibraoren (Kippschalungen) werden in bisabile,

Mehr

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen:

Freie ungedämpfte Schwingung eines Massenpunktes (Federschwinger) = 2a. Die allgemeine Lösung der DGL ist dann eine Linearkombination beider Lösungen: Die Schwingungs-Differenilgleichung Freie ungedämpfe Schwingung eines Mssenpunes Federschwinger Bei Auslenung des Mssenpunes: Hooesches Gesez F - Federonsne Die Bewegungsgleichung lue dher: d m oder m

Mehr

GT- Labor. Inhaltsverzeichnis

GT- Labor. Inhaltsverzeichnis Inhaltsverzeichnis Seite 1. Versuchsvorbereitung 2 1.1 Qualitatives Spektrum der Ausgangsspannung des Eintaktmodulators 2 1.2 Spektrum eines Eintaktmodulators mit nichtlinearem Element 2 1.3 Bandbreite

Mehr

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich

Regelungstechnik 1 - Grundglieder: Analyse im Zeit und Frequenzbereich Regelungsechnik - Grundglieder: Analyse im Zei und Frequenzbereich Vorberachungen: Das Überragungsverhalen von linearen Regelkreiselemenen wird vorwiegend durch Sprunganworen bzw. Übergangsfunkionen sowie

Mehr

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung

Leistungselektronik Grundlagen und Standardanwendungen. Übung 3: Kommutierung Lehrsuhl für Elekrische Anriebssyseme und Leisungselekronik Technische Universiä München Arcissraße 1 D 8333 München Email: eal@ei.um.de Inerne: hp://www.eal.ei.um.de Prof. Dr.-Ing. Ralph Kennel Tel.:

Mehr

Labor Übertragungstechnik

Labor Übertragungstechnik Labor Überragngsechnik Pro. Dr. Ing. Lilia Laji Dipl. Ing. Irina Ikker Qadrar Aplidenodlaion Grppenner: eilneher: Nae Vornae Marikelner 3 Osalia Hochschle ür angewande Wissenschaen Hochschle Branschweig/Wolenbüel

Mehr

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung

Wechselspannung. Zeitlich veränderliche Spannung mit periodischer Wiederholung Elekrische Schwingungen und Wellen. Wechselsröme i. Wechselsromgrößen ii.wechselsromwidersand iii.verhalen von LC Kombinaionen. Elekrischer Schwingkreis 3. Elekromagneische Wellen Wechselspannung Zeilich

Mehr

Latente Wärme und Wärmeleitfähigkeit

Latente Wärme und Wärmeleitfähigkeit Versuch 5 Laene Wärme und Wärmeleifähigkei Aufgabe: Nehmen Sie für die Subsanz,6-Hexandiol Ersarrungskurven auf und ermieln Sie daraus die laene Wärme beim Phasenübergang flüssig-fes sowie den Wärmedurchgangskoeffizienen

Mehr

Einleitung. Modulationsverfahren

Einleitung. Modulationsverfahren Pro. Dr.-Ing. W.-P. Bchwald Modlaionsverahren Einleing U Signale über einen Kanal überragen z können, ss i allgeeinen eine Modlaion a eine geeignee rägerreqenz erolgen, deren Lage an die Kanaleigenschaen

Mehr

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2.

5. Flipflops. 5.1 Nicht-taktgesteuerte Flipflops. 5.1.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. AO TIF 5. Nich-akgeseuere Flipflops 5.. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Erklärungen: Im peicherfall behalen die Ausgänge

Mehr

Signale - Fourieranalyse. Roland Küng, 2010

Signale - Fourieranalyse. Roland Küng, 2010 Signale - Fourieranalyse Roland Küng, Moivaion Digial Radio Mondial Analog Modulaion AM/FM Digial Modulaion hp://www.drm.org/?page_id5 Moivaion Grenzfrequenz Filer? Bandbreie MIC?.5. 5.. 5. -.5. 5 -.5..5..5

Mehr

2 Messsignale. 2.1 Klassifizierung von Messsignalen

2 Messsignale. 2.1 Klassifizierung von Messsignalen 7 2 Messsignale Messwere beinhalen Informaionen über physikalische Größen. Die Überragung dieser Informaionen erfolg in Form eines Signals. Allerdings wird der Signalbegriff im äglichen Leben mehrdeuig

Mehr

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor)

Prüfung zum Fach Regelungstechnik für Studierende Lehramt an beruflichen Schulen (Diplom/Bachelor) Technische Universiä München Lehrsuhl für Regelungsechnik Prof. Dr.-Ing. B. Lohmann Prüfung zum Fach Regelungsechnik 14.04.2011 für Sudierende Lehram an beruflichen Schulen (Diplom/Bachelor) Name: Vorname:

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 1. Übung (KW 43) Schwingender Körper ) Notbremse ) Stahlkugel ) 1. Übun KW 43) Aufabe 1 M 1. Schwinender Körper ) Ein schwinender Körper ha die Geschwindiei v x ) = v m cosπ ). Er befinde T sich zur Zei 0 = T am Or x 4 0. Geben Sie den Or x und die Beschleuniun a x

Mehr

Grundlagen: Rechnernetze und Verteilte Systeme

Grundlagen: Rechnernetze und Verteilte Systeme Lehrsuhl für Nezarchiekuren und Nezdiense Insiu für Informaik TU München Prof. Carle Grundlagen: Rechnerneze und Vereile Syseme Kapiel : Nachrichenechnik Daen, Signal, Medien, Physik Prof. Dr.-Ing. Georg

Mehr

Laplacetransformation in der Technik

Laplacetransformation in der Technik Verallgemeinere Funkionen Laplaceransformaion in der echnik Fakulä Grundlagen Februar 26 Fakulä Grundlagen Laplaceransformaion in der echnik Übersich Verallgemeinere Funkionen Verallgemeinere Funkionen

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Fachrichtung Mess- und Regelungstechniker

Fachrichtung Mess- und Regelungstechniker Fachrichung Mess- und egelungsechniker 4.3.2.7-2 chüler Daum:. Tiel der L.E. : Digiale euerungsechnik 3 2. Fach / Klasse : Arbeiskunde, 3. Ausbildungsjahr 3. Themen der Unerrichsabschnie :. -Kippglied

Mehr

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl

Typ A: Separierbare Differentialgleichungen I. Separierbare Differentialgleichungen II. Beispiel einer separierbaren Dgl Typ A: Separierbare Differenialgleichungen I Gegeben sei die Differenialgleichung y () = f () g(y) in einem Bereich D der (, y) Ebene. Gil g(y) 0, so lassen sich die Variablen und y rennen: y () g(y) =

Mehr

Modulation. Frequenzlagen Trägermodulation Amplitudenmodulation Trägerfrequenztechnik Digitale Modulation OFDM CDMA. Martin Werner WS 2010/11

Modulation. Frequenzlagen Trägermodulation Amplitudenmodulation Trägerfrequenztechnik Digitale Modulation OFDM CDMA. Martin Werner WS 2010/11 Modulaion Frequenzlagen modulaion Ampliudenmodulaion requenzechnik Digiale Modulaion OFDM CDMA Marin Werner WS 2010/11 Marin Werner, 11.11.2010 1 Frequenzlagen in der Nachrichenechnik sym. NF Kabel sym.

Mehr

Modulation. Thema: Modulation

Modulation. Thema: Modulation Übun&Prakikum zu diialen Kommunikaionssysemen Thema: Modulaion Modulaion Ziele Mi diesen rechnerischen und experimenellen Übunen wird die prinzipielle Vorehensweise zur Überraun von binären Daensrömen

Mehr

Masse, Kraft und Beschleunigung Masse:

Masse, Kraft und Beschleunigung Masse: Masse, Kraf und Beschleunigung Masse: Sei 1889 is die Einhei der Masse wie folg fesgeleg: Das Kilogramm is die Einhei der Masse; es is gleich der Masse des Inernaionalen Kilogrammprooyps. Einzige Einhei

Mehr

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d)

Digitaltechnik 2. Roland Schäfer. Grundschaltungen der Digitaltechnik. BFH-TI-Biel/Bienne. (Version v1.1d) Digialechnik 2 Grundschalungen der Digialechnik BFH-I-Biel/Bienne (Version v.d) oland Schäfer Inhalsverzeichnis Kombinaorische Schalungen. Muliplexer/Demuliplexer................... Muliplexer (Muliplexers).............

Mehr

Kommunikationstechnik I

Kommunikationstechnik I Kommunikaionsechnik I Prof. Dr. Sefan Weinzierl Muserlösung 5. Aufgabenbla 1. Moden 1.1 Erläuern Sie, was in der Raumakusik uner Raummoden versanden wird. Der Begriff einer sehenden Welle läss sich am

Mehr

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals

Integralrechnung. Grundidee der Integralrechnung. Einführung des Riemann- Integrals 1/8 Grundidee der Inegralrechnung Inegralrechnung Die Inegralrechnung is neben der Differenialrechnung der wichigse Zweig der Analysis. Sie is aus dem Problem der Flächen- und Volumenberechnung ensanden.

Mehr

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital

Kapitel 11 Produktion, Sparen und der Aufbau von Kapital apiel 11 Produkion, Sparen und der Aufbau von apial Vorbereie durch: Florian Barholomae / Sebasian Jauch / Angelika Sachs Die Wechselwirkung zwischen Produkion und apial Gesamwirschafliche Produkionsfunkion:

Mehr

1. Mathematische Grundlagen und Grundkenntnisse

1. Mathematische Grundlagen und Grundkenntnisse 8 1. Mahemaische Grundlagen und Grundkennnisse Aufgabe 7: Gegeben sind: K = 1; = 18; p = 1 (p.a.). Berechnen Sie die Zinsen z. 18 1 Lösung: z = 1 = 5 36 Man beache, dass die kaufmännische Zinsformel als

Mehr

15 Erzwungene Schwingungen

15 Erzwungene Schwingungen 11 Unwuchen in elasischen Rooren oder Fahrbahnunebenheien bei Fahrzeugen führen auf erzwungene Schwingungen. Berache werden soll im Folgenden der Fall der Schwingungserregung durch eingepräge Kräfe. Bei

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Amateurfunkkurs. Modulation. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Modulation. R. Schwarz OE1RSA. Übersicht

Amateurfunkkurs. Modulation. Erstellt: 2010-2011. Landesverband Wien im ÖVSV. Modulation. R. Schwarz OE1RSA. Übersicht saren Amaeurfunkkurs Landesverband Wien im ÖVSV Ersell: 2010-2011 Leze Bearbeiung: 16. Sepember 2012 Themen saren 1 2 saren 3 4 Elekromagneische Welle als Informaionsräger Träger Informaion saren Schwingungen......

Mehr

Versuch Operationsverstärker

Versuch Operationsverstärker Seie 1 1 Vorbereiung 1.1 Allgemeines zu Operaionsversärkern Ein Operaionsversärker is ein Versärker mi sehr großer Versärkung. Er wird in der Regel gegengekoppel berieben, so dass auf Grund seiner großen

Mehr

Kapitel 2: Spektrum periodischer Signale (Fourierreihe)

Kapitel 2: Spektrum periodischer Signale (Fourierreihe) ZHW, SiSy, Rumc, - Kapiel : Sperum periodischer Signale (Fourierreihe) Signale önnen im Zeibereich analysier werden. Es is aber häufig voreilhaf, Signale im Frequenzbereich zu analysieren. In diesem Kapiel

Mehr

Thema : Rendite und Renditemessung

Thema : Rendite und Renditemessung Thema : Rendie und Rendiemessung Lernziele Es is wichig, die Zeigewichung der Rendie als ennzahl zu versehen, den Unerschied zwischen einer koninuierlichen und einer diskreen erzinsung zu begreifen und

Mehr

Ines Rennert Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie

Ines Rennert Bernhard Bundschuh. Signale und Systeme. Einführung in die Systemtheorie Ines Renner Bernhard Bundschuh Signale und Syseme Einführung in die Sysemheorie Renner/Bundschuh Signale und Syseme Bleiben Sie auf dem Laufenden! Hanser Newsleer informieren Sie regel mäßig über neue

Mehr

Seminar Bewertungsmethoden in der Personenversicherungsmathematik

Seminar Bewertungsmethoden in der Personenversicherungsmathematik Seminar Bewerungsmehoden in der Personenversicherungsmahemaik Technische Reserven und Markwere I Sefanie Schüz Mahemaisches Insiu der Universiä zu Köln Sommersemeser 2010 Bereuung: Prof. Hanspeer Schmidli,

Mehr

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002

Analog-Elektronik Protokoll - Transitorgrundschaltungen. Janko Lötzsch Versuch: 07. Januar 2002 Protokoll: 25. Januar 2002 Analog-Elekronik Prookoll - Transiorgrundschalungen André Grüneberg Janko Lözsch Versuch: 07. Januar 2002 Prookoll: 25. Januar 2002 1 Vorberachungen Bei Verwendung verschiedene Transisor-Grundschalungen

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei

Mehr

III.2 Radioaktive Zerfallsreihen

III.2 Radioaktive Zerfallsreihen N.BORGHINI Version vom 5. November 14, 13:57 Kernphysik III. Radioakive Zerfallsreihen Das Produk eines radioakiven Zerfalls kann selbs insabil sein und späer zerfallen, und so weier, sodass ganze Zerfallsreihen

Mehr

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2009 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 www.mahe-aufgaben.com Abiurprüfung Mahemaik 009 (Baden-Würemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (7 Punke) Das Schaubild P einer Polynomfunkion drien Grades ha den Wendepunk W(-/-) und

Mehr

2.2 Rechnen mit Fourierreihen

2.2 Rechnen mit Fourierreihen 2.2 Rechnen mi Fourierreihen In diesem Abschni sollen alle Funkionen als sückweise seig und -periodisch vorausgesez werden. Ses sei ω 2π/. Wir sezen jez aus Funkionen neue Funkionen zusammen und schauen,

Mehr

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen

Mathematische Methoden der klassischen Physik Zusammenfassung Differentialgleichungen Dr. G. Lechner Mahemaische Mehoden der klassischen Physik Zusammenfassung Differenialgleichungen In der Vorlesung wurden drei unerschiedliche Typen von Differenialgleichungen (DGL) besprochen, die jeweils

Mehr

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg

Kosten der Verzögerung einer Reform der Sozialen Pflegeversicherung. Forschungszentrum Generationenverträge Albert-Ludwigs-Universität Freiburg Kosen der Verzögerung einer Reform der Sozialen Pflegeversicherung Forschungszenrum Generaionenverräge Alber-Ludwigs-Universiä Freiburg 1. Berechnungsmehode Die Berechnung der Kosen, die durch das Verschieben

Mehr

3.2 Festlegung der relevanten Brandszenarien

3.2 Festlegung der relevanten Brandszenarien B Anwendungsbeispiel Berechnungen Seie 70.2 Feslegung der relevanen Brandszenarien Eine der wichigsen Aufgaben beim Nachweis miels der Ingenieurmehoden im Brandschuz is die Auswahl und Definiion der relevanen

Mehr

Universität Ulm Samstag,

Universität Ulm Samstag, Universiä Ulm Samsag, 5.6. Prof. Dr. W. Arend Robin Nika Sommersemeser Punkzahl: Lösungen Gewöhnliche Differenialgleichungen: Klausur. Besimmen Sie die Lösung (in möglichs einfacher Darsellung) folgender

Mehr

Kapitel 3 Modulation zweistufiger Stromrichter

Kapitel 3 Modulation zweistufiger Stromrichter Kapiel 3 Modulaion zweisufiger Sromricher Thomas Brückner 3.1 Einführung 3.1.1 Was is Modulaion? Die im vorangegangenen Kapiel vorgesellen U-Sromricher sollen so geseuer werden, dass eine sinusförmige

Mehr

Mathematik III DGL der Technik

Mathematik III DGL der Technik Mahemaik III DGL der Technik Grundbegriffe: Differenialgleichung: Bedingung in der Form einer Gleichung in der Ableiungen der zu suchenden Funkion bis zu einer endlichen Ordnung aufreen. Funkions- und

Mehr

Systemtheorie: Übertragungssystem: Beispiele

Systemtheorie: Übertragungssystem: Beispiele Sysemheorie: lieer mahemaische Werkzeuge, um die Umwandlung einer physikalisch kodieren Inormaion in einer andere Darsellung z.b. vom Orsraum in den Fourierraum ohne Inormaionsverlus zu beschreiben. Überragungssysem:

Mehr

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild:

15. Netzgeräte. 1. Transformator 2. Gleichrichter 3. Spannungsglättung 4. Spannungsstabilisierung. Blockschaltbild: Ein Nezgerä, auch Nezeil genann, is eine elekronische Schalungen die die Wechselspannung aus dem Sromnez (230V~) in eine Gleichspannung umwandeln kann. Ein Nezgerä sez sich meisens aus folgenden Komponenen

Mehr

Musterlösungen zur Klausur. Grundlagen der Regelungstechnik. vom

Musterlösungen zur Klausur. Grundlagen der Regelungstechnik. vom Muserlösungen zur Klausur Grundlagen der Regelungsecni vom 4.9. Aufgabe : Linearisierung Pune A. Linearisierung des niclinearen Terms der Modellgleicungen, wobei und die üllsände im Gleicgewic sind. B.

Mehr

4. Quadratische Funktionen.

4. Quadratische Funktionen. 4-1 Funkionen 4 Quadraische Funkionen 41 Skalierung, Nullsellen Eine quadraische Funkion is von der Form f() = c 2 + b + a mi reellen Zahlen a, b, c; is c 0, so sprechen wir von einer echen quadraischen

Mehr

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1

11. Flipflops. 11.1 NOR-Flipflop. Schaltung: zur Erinnerung: E 1 A 1 A 2 E 2. Funktionstabelle: Fall E 1 E 2 A 1 A 2 1 0 0 2 0 1 3 1 0 4 1 1 TONI T0EL. Flipflops. Flipflops. NO-Flipflop chalung: E A zur Erinnerung: A B A B 0 0 0 0 0 0 0 E 2 A 2 Funkionsabelle: Fall E E 2 A A 2 0 0 2 0 3 0 4 Beobachung: Das NO-Flipflop unerscheide sich von allen

Mehr

11.8 Digitale Filter. Vorteile digitaler Filter

11.8 Digitale Filter. Vorteile digitaler Filter Fachhochschule usbur Fachbereich Elekroechnik Pro. Dr. C. Clemen.8 Diiale Filer Nachrichenüberraunsechnik.8 Diiale Filer ls wichies Beispiel ür diiale Sinalverarbeiun sollen nun diiale Filer behandel werden.

Mehr

Versuche mit Oszilloskop und Funktionsgenerator

Versuche mit Oszilloskop und Funktionsgenerator Fachhochschule für Technik und Wirschaf Berlin EMT- Labor Versuche mi Oszilloskop und Funkionsgeneraor Sephan Schreiber Olaf Drzymalski Messung am 4.4.99 Prookoll vom 7.4.99 EMT-Labor Versuche mi Oszilloskop

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakulä Life Sciences - Physiklabor Physikalisches Prakikum Auf- und Enladungen von Kondensaoren in -Gliedern Messung von Kapaziäen Elekrische Schalungen mi -Gliedern finde man z. B. in Funkionsgeneraoren

Mehr

Netzwerke - Bitübertragungsschicht (1)

Netzwerke - Bitübertragungsschicht (1) Netzwerke - Bitübertragungsschicht (1) Theoretische Grundlagen Fourier-Analyse Jedes Signal kann als Funktion über die Zeit f(t) beschrieben werden Signale lassen sich aus einer (möglicherweise unendlichen)

Mehr

Fourier - Transformation

Fourier - Transformation Fourier - Transformation Kurzversion 2. Sem. Prof. Dr. Karlheinz Blankenbach Hochschule Pforzheim, Tiefenbronner Str. 65 75175 Pforzheim Überblick / Anwendungen / Motivation: Die Fourier-Transformation

Mehr

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch.

Übungen zur Ingenieur-Mathematik III WS 2009/10 Blatt = r cos t. mit 0 t 2π und interpretieren Sie das Ergebnis geometrisch. Übungen zur Ingenieur-Mahemaik III WS 9/ Bla 3 7.. Aufgabe 59: Berechnen Sie die Bogenlänge der Schraubenlinie r γ() := r h mi π und inerpreieren Sie das Ergebnis geomerisch. Lösung: Der Tangenialvekor

Mehr

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997

Versuchsprotokoll zum Versuch Nr.9 Messungen mit dem Elektronenstrahl-Oszilloskop vom 05.05.1997 In diesem Versuch geht es darum, mit einem modernen Elektronenstrahloszilloskop verschiedene Messungen durch zuführen. Dazu kommen folgende Geräte zum Einsatz: Gerät Bezeichnung/Hersteller Inventarnummer

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

3.5 Überlagerung von harmonischen Schwingungen

3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen 3.5 Überlagerung von harmonischen Schwingungen Zwei Schwingungen u 1 und u längs gleicher Richung können superponier werden. u 1 = u sin(ω 1 + ϕ 1 ) (3.9)

Mehr

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse

Durchflussmesser. 4.4 Durchflussmessung. Durchflussmesser. Schwebekörperverfahren. V Q = t. Mengenmessung: Bestimmung des Stoffvolumens oder Masse 4.4 Durchflussmessung Durchflussmesser Mengenmessung: esimmung es Soffvolumens oer Masse Durchfluss, olumen, Zei Durchflussmesser 3 Schwebekörperverfahren 4 Konisches Rohr Schwebekörper Für Gase un Flüssigkeien

Mehr

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt Praktikum Elektronische Messtechnik WS 27/28 Versuch OSZI Tobias Doerffel Andreas Friedrich Heiner Reinhardt Chemnitz, 9. November 27 Versuchsvorbereitung.. harmonisches Signal: Abbildung 4, f(x) { = a

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Operationsverstärker. Teil G: Operationsverstärker. Operationsverstärker 741. Operationsverstärker. 06 / Teil G / Seite 01

Operationsverstärker. Teil G: Operationsverstärker. Operationsverstärker 741. Operationsverstärker. 06 / Teil G / Seite 01 Teil G: Operaionsversärker Wirkprinzip und charakerisische Kennwere Inverierender Spannungsversärker Differenzversärker Schmi-Trigger Addierender Versärker, inverierend Spizenwergleichricher Inegraor Differenzierer

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdeparmen E13 WS 211/12 Übungen zu Physik 1 für Maschinenwesen Prof. Dr. Peer Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körsgens, David Magerl, Markus Schindler, Moriz v. Sivers Vorlesung 1.11.211,

Mehr

Analogmultiplexer als Amplitudenmodulatoren

Analogmultiplexer als Amplitudenmodulatoren Analogmultiplexer als Amplitudenmodulatoren Dipl.-Phys. Jochen Bauer 09.11.014 Einführung und Motivation Mit dem zunehmenden Verschwinden von Mittel- und Langwellensendern ergibt sich die Notwendigkeit

Mehr

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion)

f ( x) = x + x + 1 (quadratische Funktion) f '( x) = x + (Ableitungsfunktion) R. Brinkmann hp://brinkmann-du.de Seie.. Tangene und Normale Tangenenseigung Die Seigung eines Funkionsgraphen in einem Punk P ( f ( ) ) is gleichbedeuend mi der Seigung der Tangene in diesem Punk. Nachfolgend

Mehr

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun?

Aufgabenblatt 1. Lösungen. A1: Was sollte ein Arbitrageur tun? Aufgabenbla 1 Lösungen 1 A1: Was solle ein Arbirageur un? Spo-Goldpreis: $ 5 / Unze Forward-Goldpreis (1 Jahr): $ 7 / Unze Risikoloser Zins: 1% p.a. Lagerkosen: Es gib zwei Handelssraegien, um in einem

Mehr

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff

Abiturprüfung 2017 ff Beispielaufgabe Grundkurs Mathematik; Analysis Beispiel Wirkstoff Die Bioverfügbarkei is eine Messgröße dafür, wie schnell und in welchem Umfang ein Arzneimiel resorbier wird und am Wirkor zur Verfügung seh. Zur Messung der Bioverfügbarkei wird die Wirksoffkonzenraion

Mehr

Abiturprüfung Baden-Württemberg 1986

Abiturprüfung Baden-Württemberg 1986 001 - hp://www.emah.de 1 Abirprüfng Baden-Würemberg 1986 Leisngskrs Mahemaik - Analysis Z jedem > 0 is eine Fnkion f gegeben drch f x x x e x ; x IR Ihr Schabild sei K. a Unersche K af Asympoen, Schnipnke

Mehr

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil

Schriftliche Abiturprüfung Technik/Datenverarbeitungstechnik - Leistungskurs - Hauptprüfung. Pflichtteil Sächsisches Saasminiserium Gelungsbereich: Berufliches Gymnasium für Kulus und Spor Fachrichung: Technikwissenschaf Schuljahr 20/202 Schwerpunk: Daenverarbeiungsechnik Schrifliche Abiurprüfung Technik/Daenverarbeiungsechnik

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwere un Eigenvekoren Vorbemerkung: Is ie n n Marix inverierbar, so ha as lineare Gleichungssysem A x b für jees b genau eine Lösung, nämlich x A b. Grun: i A x A A b b, ii Is y eine weiere Lösung,

Mehr

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer:

Frequenzanalyse. Der Abstand der diskreten Frequenzlinien ist der Kehrwert der Periodendauer: WS 0 Fourier-Reihe: Jede einigrermaßen gutartige 1 periodishe reelle Zeitfuntion x(t) ann mittels einer Fourier-Reihe dargestellt werden als eine Summe omplexer Amplituden (Fourier-Synthese): xt () e n

Mehr