Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner

Größe: px
Ab Seite anzeigen:

Download "Data Mining SAS Mining Challenge Einführung in SAS Enterprise Miner"

Transkript

1 Agenda Universitätsrechenzentrum Heidelberg Data Mining SAS Mining Challenge Einführung in 14. November 2003 Hussein Waly URZ Heidelberg SAS Mining Challenge Generelle Zielsetzung Ausgangslage Aufgabenstellung Data Mining Definition Data Mining-Methoden Web Mining-Prozess Einführung in Beispiel bei einem Online-Shop Beschreibung von Besucher-Profilen Demo Mining Challenge Mining Challenge Generelle Zielsetzung Umgang mit einer Data Mining Software Praktische Umsetzung von Data Mining- Methoden in einem Praxisbeispiel Ermittlung welche Informationen in vorhandenen Daten zu finden sind Welchen speziellen Mehrwert können diese Informationen für Data Mining- Fragestellungen im Marketing generieren? Ausgangslage Aufbereitete Kundendaten von Burda Direct - Dienstleister für Abo-Full-Service - Aufgabenstellung Entwicklung eines Klassifikationsmodells zur Beschreibung der Leser der Freizeit Revue Scoring des Modells Anschreiben der besten Nicht- Freizeit Revue - Abonnenten Mining Challenge Wer dürfen am Mining Challenge teilnehmen? Studenten, Dozenten und Professoren Wissenschaftliche Mitarbeiter Mitglieder des SAS Academic Club Teilnahme Information zum Wettbewerb, zur Aufgabenstellung und zur Registrierung unter: Termine Anmeldung bis 30. November 2003 Bearbeitungszeit bis 06. Januar 2004 Data Mining Definition Data Mining ist der Prozess des Auffindens und der Analyse von Mustern, Zusammenhängen und Trends in großen Datenbeständen Ziele Ermitteln von Klassifikationen und Ähnlichkeiten Analyse von Zusammenhängen Erkennung von Trends, Strukturen Prognosen 1

2 Statistik und Data Mining Wie können sich Statistik und Data Mining ergänzen? Explorative Datenanalyse vor der statistischen Absicherung der Ergebnisse Reduktion des Datenaufwands beim Mining durch statistische Sampling-Theorien Entwicklung von Vorgehensmodellen und Technologien im Umfeld des Data Mining Data Mining Einsatzgebiete Kundenbeziehungsmanagement (CRM) z.b. Web Mining im E-CRM Erkennen von Kündigungen Aufdecken von Cross-Selling Potenzialen Betrugserkennung Credit Scoring Life Sciences Predictive Modeling Data Mining-Methoden Data Mining-Methoden Überwachte Klassifikationsmethoden Regressionen Entscheidungsbäume Neuronale Netze Data Mining-Methoden Web Mining Unüberwachte Klassifikationsmethoden Generelle Zielsetzung Einschätzung der Potenziale des Web Usage Mining im E-CRM Ermittlung welche Informationen in den Webserver-Logfiles zu finden sind Assoziationsanalyse Clusteranalyse SOMs (Self Organizing Maps) Welchen speziellen Mehrwert können diese Informationen für Data Mining-Fragestellungen im Marketing generieren? 2

3 Web Mining Web Mining-Fragestellungen Folgende Fragestellungen sind unter Anwendung verschiedener Data Mining-Verfahren zu bewältigen (Auszug): Lassen sich aus den Logfiles konkrete Besucher- bzw. Navigations-Profile ableiten? Was sind die Einflussfaktoren auf einen Bestellvorgang des Katalogs im Online-Shop? Web Mining-Begriffe Definition Anwendung von Data Mining-Verfahren auf Internet-Daten Web Usage Mining Analyse und Prognose des Besucher-Verhaltens Gängige Quellen sind : Logfiles und Einbindung von Zusatzdaten Web Mining-Prozess Einträge in einem Logfile Interpretation Umsetzung Mustersuche Data Mining-Techniken Datenaufbereitung Daten einlesen bereinigen Datenauswahl Logfiles, Kundendaten Aufgaben Definition Aus Web-Daten Wissen gewinnen Web Mining-Verfahren Web Mining in der Praxis Aufgabenstellung Analyse von Navigationspfaden Welcher Navigationspfad führt zu einer Katalogbestellung? Erkennung von Besuchertypen Welche Besuchergruppe bestellt den Katalog? Vorhersage / Beschreiben von Besucherverhalten Was unterscheidet einen Besucher von einem Katalogbesteller? Web Mining-Verfahren Assoziationsanalyse Sequenzanalyse Clusteranalyse Kohonen SOM Entscheidungsbaum Regressionsanalyse Neuronale Netze Beschreibung von Besucher-Profilen Was sind die Einflussfaktoren auf einen Bestellvorgang des Katalogs im Online-Shop? Einsatz von Data Mining-Verfahren mit dem SAS/Enterprise Miner Anwendung von Web Mining-Segmentierungsmodellen (z.b. Entscheidungsbaum-Verfahren) Weitere Datenaufbereitungs-Schritte werden benötig (Transformation und 0/1- Kodierung) 3

4 Weg zu Trainingsdaten Trainingsdaten 9416 Besucher Sessions Pageviews Flat File Dummy Variablen, Sequenzen etc. Data Cleaning von Spidereinträgen u. Graphikdateien Zielvariable über Katalogbestellung (0/1) kodiert Session-Identifikation IP-Adresse des Besuchers Referrer-Seite des Besuchers Unterscheidung Werktag / Wochentag Verweildauer pro Webseite Datum einer Session Start einer Session Dauer einer Session Anzahl der Klicks 10 Sequenzvariablen 32 Variablen für die Webseiten Hits Rohe Logfiles (ECLF) Webserver-Logfiles Data Mining nach der SEMMA-Methodik von SAS Sample, Explore, Modify, Model, Assess Modellierung Entscheidungsbaum User-Profil Daten einlesen Zielgröße definieren Einteilung in Trainings- und Validierungsdaten Modellierung / Parameter bestimmen u. Modell optimieren Bei Besucher mit BS Win95 steigt die Tendenz der Kat.Bestellung auf 25% Modell-Bewertung mit Lift Chart In Kombination mit einer Session Dauer < 10 minuten erhöht sich die Tendenz Modell-Bewertung Lift Chart Captured Response Bewertung der Güte des Verfahrens Beispiel: bei der Auswahl der besten 20% werden bereits 85% der Katalogbesteller erfasst Der Enterprise Miner bietet eine umfassende Methodensammlung zum Data Mining Über 80 statistische Verfahren sowie Methoden der KI und des maschinellen Lernens Ein Prozessflussdiagramm visualisiert die Anwendung dieser Methoden auf die vorhandenen Daten 4

5 Bevor Sie mit dem Enterprise Miner arbeiten 1. Erstellen Sie einen neuen Ordner z.b. C:\Mining Challenge 2. Legen Sie in den neuen Ordner folgende Verzeichnisse ab: C Mining Challenge Daten Ihre Daten Und C Mining Challenge Projekte Wie rufe ich den Enterprise Miner auf? 1. SAS aufrufen 2. Über Menüleiste Solutions Analysis Enterprise Miner Oder In SAS Command Line miner eingeben Enter Für die Einführung wird die SAS Datei hmeq verwendet Pfad C Programme SAS... dmine sample Anlegen neuer SAS Bibliothek Schaltfläche New Library Der Enterprise Miner zwingt zur Einhaltung eines Analyse-Workflows SEMMA-Technologie (Sample, Explore, Modify, Model, Assess) umfasst die definierten Arbeitsshritte von SAS Stichproben-Bildung Exploration der Daten Modifikation der Variablen Modellierung, Datenanalyse Assessment, Modellbewertung Enterprise Miner 1. Sample Analyseschritt 1. Stichprobenbildung Eingelesene Daten identifizieren, von einer größeren Datei Stichproben ziehen Einteilung der Datenbasis in Trainings-, Validierungs- und Testdateien 5

6 2. Explore 3. Modify Analyseschritt 2. Exploration Daten grafisch darstellen Deskriptive Statistiken erhalten Untersuchung von Assoziation und Sequenzen Analyseschritt 3. Datenbereinigung Daten für die Analyse vorbereiten Transformation von Variablen durchführen Ausreißer ermitteln Missing Values ersetzen Cluster-Analyse durchführen Daten mit SOM- oder Kohonennetzen analysieren 4. Model 5. Assess Analyseschritt 4. Modellbildung Ein Vorhersagemodell bestimmen und anpassen Eine Zielvariable modellieren Entscheidungsbäume Neuronale Netze Regressionen Benutzerdefinierte Methoden Analyseschritt 5. Ergebnisbewertung Vorhersagemodelle miteinander vergleichen Diagramme erstellen (Prozentsatz der Reaktionen grafisch darstellen) Lift Chart Profit-Diagramme Ein Fehler ist aufgetreten!! Und es geht nichts mehr?? Lösung im Projektordner Ordner emproj nach einer Datei mit der Erweiterung.lck suchen und diese Datei löschen. Literatur Help Getting started with Enterprise Miner Software Getting started with Enterprise Miner Software Release 4.1 Data Mining Using Enterprise Miner Software: A Case Study Approach First Edition 6

7 Vielen Dank für Ihre Aufmerksamkeit! Hussein Waly Universitätsrechenzentrum Heidelberg 7

Web Mining effektive Analyse des Nutzer- Verhaltens im Internet

Web Mining effektive Analyse des Nutzer- Verhaltens im Internet Web Mining effektive Analyse des Nutzer- Verhaltens im Internet Dr. Frank Säuberlich Business Unit e-intelligence SAS Deutschland Agenda 1. Begriffsdefinition e-intelligence: Systemdimension Angebotsdimension

Mehr

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr.

Mining the Web. Analyse von Benutzerpfaden und Nutzertypen im Internet. Business Unit CRM Solutions SAS Deutschland. Dr. Mining the Web Analyse von Benutzerpfaden und Nutzertypen im Internet Dr. Frank Säuberlich Business Unit CRM Solutions SAS Deutschland Agenda 1. Einleitung: Der Lebenszyklus eines e-kunden Begriffsdefinition

Mehr

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG

Data Mining mit der SEMMA Methodik. Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining mit der SEMMA Methodik Reinhard Strüby, SAS Institute Stephanie Freese, Herlitz PBS AG Data Mining Data Mining: Prozeß der Selektion, Exploration und Modellierung großer Datenmengen, um Information

Mehr

Künstliche Neuronale Netze und Data Mining

Künstliche Neuronale Netze und Data Mining Künstliche Neuronale Netze und Data Mining Catherine Janson, icasus GmbH Heidelberg Abstract Der Begriff "künstliche Neuronale Netze" fasst Methoden der Informationstechnik zusammen, deren Entwicklung

Mehr

Data Mining im e-commerce am Beispiel der Deutschen Bahn AG

Data Mining im e-commerce am Beispiel der Deutschen Bahn AG Fellowship Data Mining im e-commerce am Beispiel der Deutschen Bahn AG Katja Steuernagel Universität Kaiserslautern Momentan: GIP AG Göttelmannstraße 17 55130 Mainz katja@katja-steuernagel.de Zusammenfassung

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015

MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 MEHR ANALYTICS FÜR MEHR ANWENDER DR. GERHARD SVOLBA COE ANALYTICS DACH WIEN, 11. JUNI 2015 DAS ERWARTET SIE IN MEINEM VORTRAG Neue Anforderungen, neue Herausforderungen, neue Möglichkeiten Software Demo:

Mehr

Data Mining in SAP NetWeaver BI

Data Mining in SAP NetWeaver BI Martin Kießwetter, Dirk Vahl kam p Data Mining in SAP NetWeaver BI Galileo Press Bonn Boston 2.1 Was ist Data Mining? 17 2.2 Data Mining, KDD und Business Intelligence 20 2.3 KDD-Prozessmodelle 22 2.4

Mehr

MS SQL Server 2012 (4)

MS SQL Server 2012 (4) MS SQL Server 2012 (4) Data Mining, Analyse und multivariate Verfahren Marco Skulschus Jan Tittel Marcus Wiederstein Webseite zum Buch: http://vvwvv.comelio-medien.com/buch-kataiog/ms sql_server/ms sql

Mehr

IBM SPSS Justiz-Tage: Datenerhebung, Datenanalyse und Data Mining für Justiz und kriminologische Forschung

IBM SPSS Justiz-Tage: Datenerhebung, Datenanalyse und Data Mining für Justiz und kriminologische Forschung IBM SPSS Justiz-Tage: Datenerhebung, Datenanalyse und Data Mining für Justiz und kriminologische Forschung Evaluieren & Erkennen, Weiterentwickeln & Reporten Datenerhebung, Datenanalyse und Data Mining

Mehr

Anwendung der Predictive Analytics

Anwendung der Predictive Analytics TDWI Konferenz mit BARC@TDWI Track 2014 München, 23. 25. Juni 2014 Anwendung der Predictive Analytics Prof. Dr. Carsten Felden Dipl. Wirt. Inf. Claudia Koschtial Technische Universität Bergakademie Freiberg

Mehr

Entfesseln Sie Ihr Potential als Realzeit-Unternehmen!

Entfesseln Sie Ihr Potential als Realzeit-Unternehmen! Entfesseln Sie Ihr Potential als Realzeit-Unternehmen! CC NOW 2013-19.9.13 in Düsseldorf Klaus-J. Zschaage authensis AG stellen Sie sich vor Seite 2 stellen Sie sich vor was ist dafür zu tun? Seite 3 Geschäftsoptimierung

Mehr

Risikoanalyse. 13. September 2007. Ing. Monika Böhm AMA

Risikoanalyse. 13. September 2007. Ing. Monika Böhm AMA Risikoanalyse 13. September 2007 Ing. Monika Böhm AMA Inhalt des Vortrags AMA Data Mining Datenmanagement Modellierung Scoring Optimierung Reports Auswahlverfahren Ergebnisse und Nutzen Aufgabenstellung

Mehr

Was ist Data Mining... in der Fundraising Praxis?

Was ist Data Mining... in der Fundraising Praxis? Was ist Data Mining...... in der Fundraising Praxis? Erkennen von unbekannten Mustern in sehr grossen Datenbanken (> 1000 GB) wenige und leistungsfähige Verfahren Automatisierung Erkennen von unbekannten

Mehr

9 Resümee. Resümee 216

9 Resümee. Resümee 216 Resümee 216 9 Resümee In der vorliegenden Arbeit werden verschiedene Methoden der Datenreduktion auf ihre Leistungsfähigkeit im sozialwissenschaftlichstatistischen Umfeld anhand eines konkreten Anwendungsfalls

Mehr

Informationsflut bewältigen - Textmining in der Praxis

Informationsflut bewältigen - Textmining in der Praxis Informationsflut bewältigen - Textmining in der Praxis Christiane Theusinger Business Unit Data Mining & CRM Solutions SAS Deutschland Ulrich Reincke Manager Business Data Mining Solutions SAS Deutschland

Mehr

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3

Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Neuerungen im Enterprise Miner 5.2 & Text Miner 2.3 Copyright 2005, SAS Institute Inc. All rights reserved. Ulrich Reincke, SAS Deutschland Agenda Der Neue Enterprise Miner 5.2 Der Neue Text Miner 2.3

Mehr

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc.

Advanced Analytics. Michael Ridder. Copyright 2000-2014 TIBCO Software Inc. Advanced Analytics Michael Ridder Was ist Advanced Analytics? 2 Was heißt Advanced Analytics? Advanced Analytics ist die autonome oder halbautonome Prüfung von Daten oder Inhalten mit ausgefeilten Techniken

Mehr

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation?

Data Mining - Marketing-Schlagwort oder ernstzunehmende Innovation? 1. Konferenz der A Benutzer KFE in Forschung und Entwicklung Data Mining - Marketing-chlagwort oder ernstzunehmende Innovation? Hans-Peter Höschel,, Heidelberg 1. Konferenz der A Benutzer KFE in Forschung

Mehr

Praxisorientierte. Weiterbildung KURSE 2014. dynelytics AG SCHNECKENMANNSTRASSE 25 CH-8044 ZÜRICH

Praxisorientierte. Weiterbildung KURSE 2014. dynelytics AG SCHNECKENMANNSTRASSE 25 CH-8044 ZÜRICH KURSE 2014 Praxisorientierte Weiterbildung dynelytics AG SCHNECKENMANNSTRASSE 25 CH-8044 ZÜRICH TELEFON (+41) 44 266 90 30 FAX (+41) 44 266 90 39 E-MAIL INFO@DYNELYTICS.COM Dynelytics IBM SPSS-Kurse 2014

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben

SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben SAS-Vertiefung zur Statistischen Software im SS 2010 Übungsaufgaben Helmut Küchenhoff, Cornelia Oberhauser, Monia Mahling, Armin Monecke Im Folgenden gibt es 4 Aufgabenblöcke. Block 1: Daten einlesen,

Mehr

Mehr Leistung.. nur mit Daten. www.pepite.biz info@pepite.biz

Mehr Leistung.. nur mit Daten. www.pepite.biz info@pepite.biz Mehr Leistung.. nur mit Daten www.pepite.biz info@pepite.biz bietet oftware und Dienstleistungen PEPITe.A. für eine vollkommen neue Art der Datennutzung um Änderungen in der Betriebsweise, in der Wartung

Mehr

The New Way to do Analytics with SAS

The New Way to do Analytics with SAS make connections share ideas be inspired The New Way to do Analytics with SAS Carmelo Iantosca, Senior Solution Specialist Analytics, SAS Institute AG make connections share ideas be inspired Agenda Kurze

Mehr

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science

TNS EX A MINE BehaviourForecast Predictive Analytics for CRM. TNS Infratest Applied Marketing Science TNS EX A MINE BehaviourForecast Predictive Analytics for CRM 1 TNS BehaviourForecast Warum BehaviourForecast für Sie interessant ist Das Konzept des Analytischen Customer Relationship Managements (acrm)

Mehr

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein

Alles für den Kunden Analyse von Kundendaten. Katrin Plickert, Heiko Hartenstein Alles für den Kunden Analyse von Kundendaten Katrin Plickert, Heiko Hartenstein Zum Verständnis 9. Februar 2007 Heiko Hartenstein, Katrin Plickert 2 Quelle: Heilmann, Kempner, Baars: Business and Competitive

Mehr

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß

Fachgruppe Statistik, Risikoanalyse & Computing. STAT672 Data Mining. Sommersemester 2007. Prof. Dr. R. D. Reiß Fachgruppe Statistik, Risikoanalyse & Computing STAT672 Data Mining Sommersemester 2007 Prof. Dr. R. D. Reiß Überblick Data Mining Begrifflichkeit Unter Data Mining versteht man die Computergestützte Suche

Mehr

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung

Next Best Product. Kundenspezifische Produktangebote in einer Multichannel Umgebung Next Best Product Kundenspezifische Produktangebote in einer Multichannel Umgebung - Mag. Thomas Schierer - Erste Bank der oesterreichischen Sparkassen AG Agenda Erste Bank Allgemeine Information CRM in

Mehr

kurse 2013 Die genauen Kurstermine und Anmeldeformulare finden Sie unter www.dynelytics.com

kurse 2013 Die genauen Kurstermine und Anmeldeformulare finden Sie unter www.dynelytics.com Kurse 2013 SPSS kurse 2013 1 2 3 4 5 6 7 Einführungskurs Arbeiten mit IBM SPSS Statistics IBM SPSS Statistics in der Medizin Praktische Einführung in die quantitative Marktforschung Vertiefungskurs Arbeiten

Mehr

Analytisches CRM in der Automobilindustrie

Analytisches CRM in der Automobilindustrie Analytisches CRM in der Automobilindustrie Dr. Frank Säuberlich Practice Manager European Customer Solutions Urban Science International GmbH Automobilhersteller müssen neue Wege gehen Anforderungen in

Mehr

Industrial Data Intelligence. Datenbasierte Produktionsoptimierung

Industrial Data Intelligence. Datenbasierte Produktionsoptimierung !DI Industrial Data Intelligence Datenbasierte Produktionsoptimierung Industrial Data Intelligence Sammeln Analysieren Mit dem Industrial Data Intelligence-Angebot ermöglicht Softing Industrial die datenbasierte

Mehr

Part I Conceptualization and Definition of Evolutions of Economies in Four General Equilibrium Frameworks

Part I Conceptualization and Definition of Evolutions of Economies in Four General Equilibrium Frameworks Contents 1 General Introduction 1 2 Notations and Mathematical Preliminaries 13 Part I Conceptualization and Definition of Evolutions of Economies in Four General Equilibrium Frameworks 3 Introduction

Mehr

Analytisches Fundraising

Analytisches Fundraising Analytisches Fundraising Vorgehen, Verfahren, Werkzeuge DiaSys. Marketing Engineering AG, Wankdorffeldstr.102, 3014 Bern 031 922 31 50, zuercher@diasys.ch Analytisches Fundraising Inhaltsverzeichnis Datenbankgestütztes

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Angewandte Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines einfachen Beispieles Häufigkeitsauswertungen Grafiken Datenmanipulationen

Mehr

Predictive Analytics 25.06.2014. Prediction is very difficult, especially if it s about the future. (Bohr, Niels)

Predictive Analytics 25.06.2014. Prediction is very difficult, especially if it s about the future. (Bohr, Niels) Predictive Analytics München, 25. Juni 2014 Markus Enderlein, Stefan Jäschke, Gert Jan Feick TDWI Konferenz 2014 Prediction is very difficult, especially if it s about the future. (Bohr, Niels) 25.06.2014

Mehr

Einladung zu den IBM SPSS Data und Text Mining Tagen. Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining

Einladung zu den IBM SPSS Data und Text Mining Tagen. Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining Einladung zu den IBM SPSS Data und Text Mining Tagen Auch in Ihrer Nähe! Gewinnen Sie entscheidungsrelevantes Wissen mit Data und Text Mining Lassen Sie Daten und Texte für sich arbeiten mit Smarter Analytics

Mehr

Treffsichere Absatzprognosen durch Predictive Analytics

Treffsichere Absatzprognosen durch Predictive Analytics Treffsichere Absatzprognosen durch Predictive Analytics Prof. Dr. Michael Feindt, Karlsruhe Institute of Technology KIT Chief Scientific Advisor, Phi-T GmbH und Blue Yonder GmbH & Co KG 3. Europäischer

Mehr

Customer Intelligence. Die 360 - Sicht auf den Kunden

Customer Intelligence. Die 360 - Sicht auf den Kunden Customer Intelligence Die 360 - Sicht auf den Kunden Customer Intelligence unterstützt Versicherungen bei der Steuerung ihres Kundenportfolios. Der Wettbewerb um die Versicherungskunden wird härter und

Mehr

Web-Controlling. Erfolgskontrolle im Internet. Die Grundlagen.

Web-Controlling. Erfolgskontrolle im Internet. Die Grundlagen. Web-Controlling. Erfolgskontrolle im Internet. Die Grundlagen. Kontrolle für den Webauftritt. Zeiten riesiger Gelder und Big Bang`s im Internet sind vorbei Harte Kalkulierung von Budgets Wer einen Etat

Mehr

Response-Analysen im Database Marketing der Bertelsmann Buch AG mit SAS

Response-Analysen im Database Marketing der Bertelsmann Buch AG mit SAS Response-Analysen im Database Marketing der Bertelsmann Buch AG mit SAS Meinert Mellows - Michael Nachtigäller DER CLUB Bertelsmann Database Marketing Der Club in der Bertelsmann Buch AG Bertelsmann AG

Mehr

Preisdynamik im Kaufverhalten - Regularitäten, Formen und Verhaltensmuster im Bereich der Fast Moving Consumer Goods

Preisdynamik im Kaufverhalten - Regularitäten, Formen und Verhaltensmuster im Bereich der Fast Moving Consumer Goods Preisdynamik im Kaufverhalten - Regularitäten, Formen und Verhaltensmuster im Bereich der Fast Moving Consumer Goods von Constance Scheffler Wissenschaftliche Gesellschaft für Innovatives Marketing e.v.

Mehr

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih

Data Mining mit Rapidminer im Direktmarketing ein erster Versuch. Hasan Tercan und Hans-Peter Weih Data Mining mit Rapidminer im Direktmarketing ein erster Versuch Hasan Tercan und Hans-Peter Weih Motivation und Ziele des Projekts Anwendung von Data Mining im Versicherungssektor Unternehmen: Standard

Mehr

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28.

PPC und Data Mining. Seminar aus Informatik LV-911.039. Michael Brugger. Fachbereich der Angewandten Informatik Universität Salzburg. 28. PPC und Data Mining Seminar aus Informatik LV-911.039 Michael Brugger Fachbereich der Angewandten Informatik Universität Salzburg 28. Mai 2010 M. Brugger () PPC und Data Mining 28. Mai 2010 1 / 14 Inhalt

Mehr

Effzienzsteigerung durch intelligentes Datenmanagement

Effzienzsteigerung durch intelligentes Datenmanagement Effzienzsteigerung durch intelligentes Datenmanagement Analyse, Optimierung, Steuerung und Prognose von Prozessen Dr. Thomas Natschläger +43 7236 3343 868 thomas.natschlaeger@scch.at www.scch.at Das SCCH

Mehr

Einführung in Data-Mining mit analytischen Funktionen und R

Einführung in Data-Mining mit analytischen Funktionen und R Einführung in Data-Mining mit analytischen Funktionen und R Vladimir Poliakov Nürnberg Schlüsselworte Analytics, Statistik, OLAP, Data-Mining, R, R Software, R Commander, RStudio, Rattle Package, analytische

Mehr

6 Vorverarbeitung. Kapitel 6 Vorverarbeitung. Einführung der Vorverarbeitung. Einführung in die Vorverarbeitung

6 Vorverarbeitung. Kapitel 6 Vorverarbeitung. Einführung der Vorverarbeitung. Einführung in die Vorverarbeitung 6 Vorverarbeitung 6.1 Einführung in die Vorverarbeitung Zweck der Vorverarbeitung Kapitel 6 Vorverarbeitung Transformiere die Daten so, dass sie optimal vom Miner verarbeitet werden können. Problem: -

Mehr

Predictive Modeling Markup Language. Thomas Morandell

Predictive Modeling Markup Language. Thomas Morandell Predictive Modeling Markup Language Thomas Morandell Index Einführung PMML als Standard für den Austausch von Data Mining Ergebnissen/Prozessen Allgemeine Struktur eines PMML Dokuments Beispiel von PMML

Mehr

Data Mining für die industrielle Praxis

Data Mining für die industrielle Praxis Data Mining für die industrielle Praxis von Ralf Otte, Viktor Otte, Volker Kaiser 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22465 0 Zu Leseprobe schnell und

Mehr

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K.

Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. badger Effektives Empfehlungsmarketing durch Customer Analytics bei der BAWAG P.S.K. Die www.bawagpskfonds.at neue Bank. Die neue BAWAG. www.bawagpsk.com Montag, 25. Februar 2013 BAWAG P.S.K. EINE BANK

Mehr

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models

SAS Predictive Analytics Factory The SAS approach for the production and maintenance of analytical models Predictive Analytics Factory The approach for the production and maintenance of analytical models Dr. Gerhard Svolba Austria Forum Finnland Helsinki September24 h, 2013 Agenda Rationale and idea of a Predictive

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374

DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN. Nr. 374 DISKUSSIONSBEITRÄGE DER FAKULTÄT FÜR BETRIEBSWIRTSCHAFTSLEHRE MERCATOR SCHOOL OF MANAGEMENT UNIVERSITÄT DUISBURG-ESSEN Nr. 374 Eignung von Verfahren der Mustererkennung im Process Mining Sabrina Kohne

Mehr

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten

Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten Prognosen via Datenanalyse Predictive Analytics: Darauf müssen Unternehmen achten von Jürgen Mauerer Foto: Avantum Consult AG Seite 1 von 21 Inhalt Mehrwert aufzeigen nach Analyse des Geschäftsmodells...

Mehr

INFORMATION WORKS Dienstleistungsprofil im Überblick

INFORMATION WORKS Dienstleistungsprofil im Überblick Qualitätskontrolle industrieller Prozesse mit dem SAS Enterprise Miner INFORMATION WORKS GmbH INFORMATION WORKS Dienstleistungsprofil im Überblick 100 % spezialisiert auf die individuelle Konzeption, Realisierung

Mehr

SAS Education. Grow with us. Der richtige Einstieg in SAS

SAS Education. Grow with us. Der richtige Einstieg in SAS 2014 SAS Education Grow with us Der richtige Einstieg in SAS SAS Programmierung I SAS Enterprise Guide SAS Analytics I Data Mining I Business Intelligence Data Integration I Platform Administration sas.de/education

Mehr

Früherkennung mit Business-Intelligence- Technologien

Früherkennung mit Business-Intelligence- Technologien Bernhard Gehra Früherkennung mit Business-Intelligence- Technologien Anwendung und Wirtschaftlichkeit der Nutzung operativer Datenbestände Mit einem Geleitwort von Prof. Dr. Thomas Hess Deutscher Universitäts-Verlag

Mehr

1 Predictive Analytics mit Random Forest

1 Predictive Analytics mit Random Forest Predictive Analytics Demokratie im Wald 1 Agenda 1. Predictive Analytics Übersicht 2. Random Forest Grundkonzepte und Anwendungsfelder 3. Entscheidungsbaum Classification and Regression Tree (CART) 4.

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Grundlagen Statistik Angewandte Statistik 3. Semester

Grundlagen Statistik Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Zur Person Constantin von Craushaar Consultant / Partner Innstat e.u. (www.innstat.com) info@innstat.com Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS

Mehr

Fallbeispiel: Intelligente Steuerung von Geschäftsprozessen auf Basis von Big Data

Fallbeispiel: Intelligente Steuerung von Geschäftsprozessen auf Basis von Big Data Fallbeispiel: Intelligente Steuerung von Geschäftsprozessen auf Basis von Big Data Institut für Finanz- und Aktuarwissenschaften Lise-Meitner-Str. 14 89081 Ulm Oktober 2015 www.ifa-ulm.de Einführung Mit

Mehr

THEMA: BITTE EINSTEIGEN IHR START IN DIE SAS WELT" BERNADETTE FABITS

THEMA: BITTE EINSTEIGEN IHR START IN DIE SAS WELT BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: BITTE EINSTEIGEN IHR START IN DIE SAS WELT" BERNADETTE FABITS EBINAR@LUNCHTIME HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute GmbH Education

Mehr

Analytisches CRM und Data Mining

Analytisches CRM und Data Mining Analytisches CRM und Data Mining Magische Zahlen für das Marketing Computerwoche Initiative CRM 2009 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Mitglied im CRM Expertenrat

Mehr

KURSE 2012. Praxisorientierte. Weiterbildung SPSS

KURSE 2012. Praxisorientierte. Weiterbildung SPSS KURSE 2012 Praxisorientierte Weiterbildung SPSS KURSE 2012 1 2 3 4 5 6 7 EINFÜHRUNGSKURS ARBEITEN MIT IBM SPSS STATISTICS IBM SPSS STATISTICS IN DER MEDIZIN PRAKTISCHE EINFÜHRUNG IN DIE QUANTITATIVE MARKTFORSCHUNG

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

SAS CONTEXTUAL ANALYSIS IN ACTION ERFAHRUNGEN AUS EINEM EIN SELBSTVERSUCH

SAS CONTEXTUAL ANALYSIS IN ACTION ERFAHRUNGEN AUS EINEM EIN SELBSTVERSUCH SAS CONTEXTUAL ANALYSIS IN ACTION ERFAHRUNGEN AUS EINEM EIN SELBSTVERSUCH GERHARD SVOLBA COMPETENCE CENTER ANALYTICS WIEN, 17. NOVEMBER 2015 SAS CONTEXTUAL ANALYSIS 14.1 EIN BLICK IN DIE PRODUKTBESCHREIBUNG

Mehr

Data/Information Quality Management

Data/Information Quality Management Data/Information Quality Management Seminar WI/Informationsmanagement im Sommersemester 2002 Markus Berberov, Roman Eder, Peter Gerstbach 11.6.2002 Inhalt! Daten und Datenqualität! Einführung und Definition!

Mehr

Web Mining und Farming

Web Mining und Farming Web Mining und Farming Shenwei Song Gliederung Übersicht über Web Mining und Farming Web Mining Klassifikation des Web Mining Wissensbasierte Wrapper-Induktion Web Farming Übersicht über Web-Farming-Systeme

Mehr

Data Mining: Modellierung, Methodik und Durchführung. ausgewählter Fallstudien. Diplomarbeit

Data Mining: Modellierung, Methodik und Durchführung. ausgewählter Fallstudien. Diplomarbeit Data Mining: Modellierung, Methodik und Durchführung ausgewählter Fallstudien mit dem SAS Enterprise Miner Diplomarbeit für die Prüfung für Diplom-Volkswirte eingereicht beim Prüfungsausschuss für Diplom-Volkswirte

Mehr

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23

Inhaltsverzeichnis. Fragestellungen und Methoden 11. Vorwort 15. Kapitel 1 Einführung 17. Kapitel 2 Statistische Grundbegriffe 23 Fragestellungen und Methoden 11 Vorwort 15 Kapitel 1 Einführung 17 1.1 KonzeptiondesBuchs... 18 1.2 AufbaudesBuchs... 19 1.3 Programmversionen von PASW bzw. SPSS..... 20 1.4 WiekanndiesesBuchverwendetwerden?...

Mehr

Data Warehousing in der Lehre

Data Warehousing in der Lehre Data Warehousing in der Lehre Prof. Dr.-Ing. Tomas Benz Dipl.-Inform. Med. Alexander Roth Agenda Vorstellung Fachhochschule Heilbronn Vorstellung i3g Vorlesungen im DWH-Bereich Seminare Projekte Studien-

Mehr

DataMining in der polizeilichen Anwendung

DataMining in der polizeilichen Anwendung Hintergrund / Motivation DataMining in der polizeilichen Anwendung Heiko Held, BKA Wiesbaden Zur Zuständigkeit des Fachbereichs KI14 zählt u.a. die Marktbeobachtung und Toolauswahl im Bereich von Analysesoftware.

Mehr

Vorhersagetechniken für zukünftiges Verhalten von Kunden

Vorhersagetechniken für zukünftiges Verhalten von Kunden IBM 360 Grad-Sicht auf den Kunden: Vorhersagetechniken für zukünftiges Verhalten von Kunden Sven Fessler, sven.fessler@de.ibm.com Solution Architect, IBM Germany Business Analytics & Optimization Das Spektrum

Mehr

Optimierung von Direct Marketing-Kampagnen im Fundraising dank Data Mining

Optimierung von Direct Marketing-Kampagnen im Fundraising dank Data Mining 1.22 Optimierung von Direct Marketing-Kampagnen im Fundraising dank Data Mining Raphael Hess WWF Schweiz 28. Oktober 2010 1 Agenda Worum es geht! Data Mining 2 2 WWF Worldwide 1961 Gründungsjahr +5,000

Mehr

Die IBM SPSS Risk & Fraud Roadshow 2013:

Die IBM SPSS Risk & Fraud Roadshow 2013: Die IBM SPSS Risk & Fraud Roadshow 2013: Mit Data Mining Risiken managen, Betrug verhindern Einladung zu der kostenlosen IBM SPSS Risk & Fraud Roadshow Einladung zur kostenlosen IBM SPSS Risk & Fraud Roadshow

Mehr

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh?

Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? Bestandskundenmanagement Wo drückt bei Ihnen der Schuh? best-reactions GmbH Hirschberger Straße 33 D 90559 Burgthann Alle Rechte vorbehalten HRB 23679, Amtsgericht Nürnberg Geschäftsführer Alexander P.

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

Expertise für Ihre Datenanalyse Beratung und Schulungen von StatSoft

Expertise für Ihre Datenanalyse Beratung und Schulungen von StatSoft Expertise für Ihre Datenanalyse Beratung und Schulungen von StatSoft Inhalt Inhalt Consulting / Workshops 2 Programmierung / Automatisierung 3 Validierung 3 Schulungen Softwareunabhängige Methodenschulungen

Mehr

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden

Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Tag der Mathematik 2009 Survival of the Fittest Wie statistische Modelle an Daten angepasst werden Thomas Kneib Fakultät für Mathematik und Naturwissenschaften Carl von Ossietzky Universität Oldenburg

Mehr

Einrichtung Secure-FTP

Einrichtung Secure-FTP Einrichtung Secure-FTP ONEGroup Hochriesstrasse 16 83101 Rohrdorf Steffen Prochnow Hochriesstrasse 16 83101 Rohrdorf Tel.: (08032) 989 492 Fax.: (01212) 568 596 498 agb@onegroup.de 1. Vorwort... 2 2. Einrichtung

Mehr

Data Mining mit Microsoft SQL Server

Data Mining mit Microsoft SQL Server Data Mining mit Microsoft SQL Server Analyse und Mustererkennung in Daten mit Excel 2007 und SQL Server 2005/2008 von Jan Tittel, Manfred Steyer 1. Auflage Data Mining mit Microsoft SQL Server Tittel /

Mehr

Kundenbindung optimieren mit Predictive Analytics und Text Mining

Kundenbindung optimieren mit Predictive Analytics und Text Mining Kundenbindung optimieren mit Predictive Analytics und Text Mining Ein Praxis-Beispiel mit der Analyse-Plattform STATISTICA CeBIT Hannover, 10. März 2014 www.statsoft.de StatSoft (Europe) GmbH 2014 Dr.

Mehr

Jan Ehmke Doktorandenworkshop 2008 St. Andreasberg, 10.03.2008

Jan Ehmke Doktorandenworkshop 2008 St. Andreasberg, 10.03.2008 Ermittlung dynamischer Fahrzeiten für die City-Logistik Jan Ehmke Doktorandenworkshop 2008 St. Andreasberg, 10.03.2008 Inhalt Einführung Planung in der City-Logistik Erhebung dynamischer Fahrzeiten Konzeption

Mehr

Mehrwert und konkreter Nutzen durch Data Mining + Advanced Analytics mit IBM SPSS

Mehrwert und konkreter Nutzen durch Data Mining + Advanced Analytics mit IBM SPSS Mehrwert und konkreter Nutzen durch Data Mining + Advanced Analytics mit IBM SPSS Fachhochschulstudiengänge Burgenland Dr. Maximilian Kobler Mag. Walter Strasser Vorstellung & Kontaktdaten Dr. Maximilian

Mehr

Präsentation zur Diplomprüfung. Thema der Diplomarbeit:

Präsentation zur Diplomprüfung. Thema der Diplomarbeit: Präsentation zur Diplomprüfung Thema der Diplomarbeit: Analyse der Einsatzmöglichkeiten von Data Mining- Verfahren innerhalb einer Unternehmens - Balanced Scorecard und Entwicklung eines Empfehlungskatalogs.

Mehr

Zentrales Anwendungsorientiertes Modulares Informations- und Kommunikationssystem

Zentrales Anwendungsorientiertes Modulares Informations- und Kommunikationssystem Zentrales Anwendungsorientiertes Modulares Informations- und Kommunikationssystem Archivierung Digitaler Tachograph ZWA- Zeitwirtschaftliche Auswertungen Stand: 25.05.2012 Copyright 1998 / 2012 by sz&p

Mehr

Der CRISP-DM Prozess für Data Mining. CRISP-DM Standard CRISP-DM. Wozu einen standardisierten Prozess?

Der CRISP-DM Prozess für Data Mining. CRISP-DM Standard CRISP-DM. Wozu einen standardisierten Prozess? Wozu einen standardisierten Prozess? Der Prozess der Wissensentdeckung muss verlässlich und reproduzierbar sein auch für Menschen mit geringem Data Mining Hintergrundwissen. Der CRISP-DM Prozess für Data

Mehr

Personalisierung und Benutzermodellierung. Aufdecken von Benutzerinteressen und Benutzerbedürfnissen: Mining U s Interests

Personalisierung und Benutzermodellierung. Aufdecken von Benutzerinteressen und Benutzerbedürfnissen: Mining U s Interests Personalisierung und Benutzermodellierung Aufdecken von Benutzerinteressen und Benutzerbedürfnissen: Mining U s Interests Prof. Dr. N. Henze 18. Juni 2007 Inhaltsverzeichnis 6 Aufdecken von Benutzerbedürfnissen

Mehr

Business Intelligence & Machine Learning

Business Intelligence & Machine Learning AUSFÜLLHILFE: BEWEGEN SIE DEN MAUSZEIGER ÜBER DIE ÜBERSCHRIFTEN. AUSFÜHRLICHE HINWEISE: LEITFADEN MODULBESCHREIBUNG Business Intelligence & Machine Learning Kennnummer Workload Credits/LP Studiensemester

Mehr

Große Datenmengen knacken mit SAS High-Performance Analytics

Große Datenmengen knacken mit SAS High-Performance Analytics make connections share ideas be inspired Große Datenmengen knacken mit SAS High-Performance Analytics Martin Schütz CC Analytics SAS Institute GmbH Agenda Terminologie: SAS High-Performance Analytics SAS

Mehr

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML

Data Mining Standards am Beispiel von PMML. Data Mining Standards am Beispiel von PMML Data Mining Standards am Beispiel von PMML Allgemeine Definitionen im Data Mining Data Mining (DM) Ein Prozess, um interessante neue Muster, Korrelationen und Trends in großen Datenbeständen zu entdecken,

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Ein Erfahrungsbericht beim Einsatz von generierenden Ansätzen im Vergleich zu generischen Lösungen

Ein Erfahrungsbericht beim Einsatz von generierenden Ansätzen im Vergleich zu generischen Lösungen Ein Erfahrungsbericht beim Einsatz von generierenden Ansätzen im Vergleich zu generischen Lösungen Tom Krauß Agenda Begriffsdefinition Verfahren Praktische Beispiele Vergleich und Bewertung Begriffsklärung

Mehr

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz

SAS Education. Grow with us. Anmeldung bei SAS Education. Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz 2015 SAS Education Kurstermine Juli Dezember 2015 für Deutschland, Österreich und die Schweiz Anmeldung bei SAS Education Deutschland www.sas.de/education Tel. +49 6221 415-300 education@ger.sas.com Fax

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

Hochleistungsrechnen mit Windows Visual Studio 2005 + Intel Compiler Christian Terboven Rechen- und Kommunikationszentrum RWTH Aachen

Hochleistungsrechnen mit Windows Visual Studio 2005 + Intel Compiler Christian Terboven Rechen- und Kommunikationszentrum RWTH Aachen Hochleistungsrechnen mit Windows Visual Studio 2005 + Intel ompiler hristian Terboven Rechen- und Kommunikationszentrum RWTH Aachen 1 Hochleistungsrechnen mit Windows enter omputing and ommunication Agenda

Mehr

Dominik Pretzsch TU Chemnitz 2011

Dominik Pretzsch TU Chemnitz 2011 Dominik Pretzsch TU Chemnitz 2011 Wir leben im Informationszeitalter und merken es daran, dass wir uns vor Information nicht mehr retten können. Nicht der überwältigende Nutzen der Information, sondern

Mehr

Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion

Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion Big Data als neuer Partner von Six Sigma Optimierung der diskreten Produktion Frank Effenberger, Marco Fischer, 22.06.2015, München Agenda Firmenpräsentation Einführung Anwendungsfall Fazit Zahlen und

Mehr