Grundstrukturen: Speicherorganisation und Zahlenmengen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundstrukturen: Speicherorganisation und Zahlenmengen"

Transkript

1 Zahlendarstellung Zahlen und ihre Darstellung in Digitalrechnern Grundstrukturen: Speicherorganisation und Zahlenmengen Linear organisierter Speicher zu einer Adresse gehört ein Speicher mit 3 Bit-Zellen ( Wort breit ) adresse Linearer Speicher bit MSB LSB Halbwort byte Grundstrukturen: Speicherorganisation und Zahlenmengen Zahlenmengen (N o Z Q R C) natürliche Zahlen ganze Zahlen = natürliche Zahlen und negative ganze Zahlen rationale Zahlen = ganze Zahlen und gebrochene zahlen reelle Zahlen = rationale Zahlen und irrationale Zahlen komplexe Zahlen = reelle Zahlen und echt imaginäre Zahlen

2 Ganzzahlendarstellung Basis-Zahlendarstellung: zahl = a i b n i= die Basis b ist aus den natürlichen Zahlen die Ziffer a i ist aus den natürlichen Zahlen a i b- die Darstellung ist eindeutig Schreibweise: zahl = (a n... a ) b Beispiel: (4) = gebräuchliche Zahlenbasen: (Binär-System) 8 (Oktal-System) (Dezimal-System) 6 (Hexadezimal-System) i Multiplikation/Division mit b: shift der Zahl-Ziffernfolge um Stelle nach links/rechts Ganzzahlendarstellung Konvertierung zwischen zwei Basen: n i n zahl = ai b = anb + an i= n n zahl = ( L( a b + a ) b + K) b + a n b + K+ a b + a ( Horner-Schema) Basis b Basis Eingabe: b, Feld a[..k] Ausgabe: Dezimalzahl vorwärts: von links nach rechts Basis Basis b Eingabe: Dezimalzahl, neue Basis b Ausgabe: Feld a[..k] (neue Ziffernfolge) rückwärts: von rechts nach links zahl := ; FOR i:=n TO BY - DO; zahl := zahl b + a[i] END; i := ; a[i] := ; WHILE zahl> DO a[i] := zahl MOD b; zahl := zahl DIV b; i := i+ END;

3 Ganzzahlendarstellung Konvertierung zwischen zwei Basen: (cont d) Beispiel: (36) 8 (?) 3 Schritt : (36) 8 Dezimalzahl n = : (36) 8 = (( 8 + ) ) = 58 = (58) Schritt : Dezimalzahl (?) 3 b = 3 (58) : 58 / 3 = 5 Rest 5 / 3 = 7 Rest 7 / 3 = 5 Rest 5 / 3 = Rest / 3 = Rest also: (58) = (((( 3 + ) 3 + ) 3 + ) 3 + ) 3 + = () 3 wobei: (... ) = 5, (... ) = 7, (... ) = 5, (... ) =, Ganzzahlendarstellung Spezialfall: Konvertierung zwischen Basen k : von rechts nach links: Zusammenfassen von jeweils k benachbarten Ziffern Beispiel mit der Zahl (3) : Die Darstellung zur Basis b= soll in die zur Basis b=8 umgewandelt werden, d.h. k=3: ( ) = = ( + + ) + ( + ) + ( + + ) = = (454) 8 Spezialfall: Konvertierung zwischen Basen k : selbst nachdenken! 3

4 Negative Zahlen im Binärsystem (Dualsystem) Allgemeines Die Anzahl der darstellbaren Zahlen ist beschränkt! (abhängig von der Wortlänge) Wortlänge = 8bit N = 8 = 56 versch. /-Kombinationen 56 verschiedene Zahlen darstellbar, z.b (= N - ) Unser Rechner kann nur addieren, besitzt lediglich ein Addierwerk, kein Subtrahierwerk; letztlich heisst das, auch Multiplikationen und Divisionen muss das Addierwerk erledigen! Frage: Kann man sich im Bereich der Dezimalzahlen einen Algorithmus vorstellen, der mittels Addition eine Subtraktion durchführt? (unter der Nebenbedingung, dass die Anzahl der darstellbaren Zahlen beschränkt ist) Idee: falls x >, dann nix: x x falls x <, dann: x N - x Negative Zahlen im Binärsystem (Dualsystem) 4 Möglichkeiten der Darstellung Vorzeichen und Betrag ( signed magnitude ) das fällt einem sofort ein: nehme das Bit ganz links als Vorzeichen: + ; die restlichen Bits stellen den Betrag der Zahl dar. Beispiel: Wortlänge n = 4 Bit N = 4 = 6 versch. /-Kombinationen 6 verschiedene Zahlen darstellbar, bisher (kardinal)... 5 (= N - ), jetzt (integer) , also -( n- - )... +( n- - ) Problem : es gibt zwei Nullen: + ; - also: Eine Zahl aber zwei unterscheidbare(!) Bitfolgen Problem : Bei dieser Darstellung ist eine Addierwerk und ein Subtrahierwerk notwendig; es gibt keinen Algorithmus der Subtraktion per Addition erledigt für diese Darstellung. Problem 3: Es ist eine Logik erforderlich zur Entscheidung ob Addition oder Subtraktion auszuführen (4 Vorzeichenfälle) 4

5 Negative Zahlen im Binärsystem (Dualsystem) 4 Möglichkeiten der Darstellung (cont d) Einer-Komplement (One s Complement) gebildet durch stellenweises Invertieren der Originalzahl:, addiert man zur Originalzahl ihr Einer-Komplement (= Invertierte) so ergibt sich immer eine Folge von Einsen. Eine Folge von Einsen ist nichts anderes als (die Invertierte der) Null, also - (+ Folge von Nullen), d.h. man hat zur Originalzahl deren Negatives addiert. Beispiel: Wortlänge n = 4 Bit N = 4 = 6 versch. /-Kombinationen 6 verschiedene Zahlen darstellbar, bisher (kardinal)... 5 (= N - ), jetzt (integer) , also -( n- - )... +( n- - ) Problem besteht noch: es gibt zwei Nullen: + ; - also: Eine Zahl aber zwei unterscheidbare(!) Bitfolgen Problem ist gelöst: Bei dieser Darstellung genügt ein Addierwerk; Subtraktion bedeutet Addition des Negativen. Problem 3 (Logik) stellt sich nicht mehr. Problem 4: = -4 oder +?? durch beschränkten Zahlenbereich gelöst. Bit ganz links: negative Zahl, positive Zahl Negative Zahlen im Binärsystem (Dualsystem) 4 Möglichkeiten der Darstellung (cont d) Zweier-Komplement (Two s Complement) gebildet durch das Einer-Komplement mit nachfolgender Addition von addiert man zur Originalzahl ihr Zweier-Komplement (= Invertierte + ) so ergibt sich immer eine mit nachfolgenden Nullen; die Anzahl der Stellen ist um eine gewachsen. Streicht man die führende, so sind die nachfolgenden Nullen nichts anderes als Null, man hat zur Originalzahl deren Negatives addiert. Beispiel: Wortlänge n = 4 Bit N = 4 = 6 versch. /-Kombinationen 6 verschiedene Zahlen darstellbar, bisher (kardinal)... 5 (= N - ), jetzt (integer) , also -( n- )... +( n- - ) Problem besteht nicht mehr: ; - Problem ist gelöst: Bei dieser Darstellung genügt ein Addierwerk; Subtraktion bedeutet Addition des Negativen. Problem 3 (Logik) stellt sich nicht mehr. Problem 4: = -5 oder +?? durch beschränkten Zahlenbereich gelöst. Bit ganz links: negative Zahl, positive Zahl 5

6 Negative Zahlen im Binärsystem (Dualsystem) 4 Möglichkeiten der Darstellung (cont d) Zweier-Komplement (cont d) übrigens: Im Zweier-Komplement stimmt die Dualdarstellung von -5 mit der von 4-5 = 6-5 = überein: (5) = () Zweier-Komplement von (5) : () + = () = () Beispiel mit Dezimalzahlen (b = ): Es sei n = N = = verschiedene Dezimalzahlen, entweder kardinal (= N - ) oder (integer) , also -5 n n- - Originalzahl sei (z.b.): 3 Ihr Zehner-Komplement: - 3 = ist nicht im Zahlenbereich ; 77 ist die Darstellung von -3 im Zehner-Komplement (x<: x N - x ). addiert man zur Originalzahl ihr Zehner-Komplement, so ergibt sich immer eine mit nachfolgenden Nullen (hier ); die Anzahl der Stellen ist um eine gewachsen. Streicht man die führende, so sind die nachfolgenden Nullen nichts anderes als Null, man hat zur Originalzahl deren Negatives addiert, also eine Darstellung von -3. Statt (z.b) 36-3 = 3 kann man auch rechnen: = 3 Statt (z.b) 4-3 = - 9 kann man auch rechnen: = 9 = - 9 Negative Zahlen im Binärsystem (Dualsystem) 4 Möglichkeiten der Darstellung (cont d) Zweier-Komplement (cont d) häufigst genutzte rechnerinterne Darstellung negativer ganzer Zahlen. Beispiel mit Dualzahlen (b = ): Dual zu berechnen: 85-3 = -8 (85) = () Es sei n = 8 N = 8 = 56 verschiedene Dezimalzahlen: Aus der Subtraktion -3 soll eine Addition werden: Originalzahl ist: (3) = () Ihr Zweier-Komplement: + =. Subtraktion Addition: + = Anzahl der Stellen nicht gewachsen Keine Streichung der führenden, die ganz links zeigt ein negatives Ergebnis, d.h. Ergebnis liegt als Zweier-Komplement vor Übersetzung = Bildung Zweier-Komplement: + = = (8) Das negative Ergebnis lautet -8 6

7 Negative Zahlen im Binärsystem (Dualsystem) 4 Möglichkeiten der Darstellung (cont d) Exzess n- der gesamte darstellbare Zahlenbereich (positive und negative Halbachse) wird auf die positive Halbachse abgebildet exzess-zahl = zahl + n- Beispiel mit n = 8, d.h. Exzess = Shift = 8- = 7 (-3) = (5) = () Die Darstellungen sind mit denjenigen der Zweier-Komplement- Darstellung bis auf das invertierte linke Bit ( Vorzeichen ) identisch Negative Zahlen im Binärsystem (Dualsystem) Vergleich der 4 Systeme (n=4) Dual Vorz./Betrag Einer-Kompl. Zweier-Kompl. Exzess

8 Negative Zahlen im Binärsystem (Dualsystem) Zahlenring (n=8) für Dualzahlen und Zweier-Komplement Gleitkommazahlen: Darstellung und Arithmetik Gleitkommazahlen Zahlenmenge rationale Zahlen: r = a/b b r=a/b a Zahlenstrahl reelle Zahlen: Hinzunahme von nicht-rationalen Zahlen: π, e, Die reellen Zahlen in ihrer mathematischen Bedeutung stellen ein Kontinuum dar (jedes beliebig große Intervall auf dem Zahlenstrahl enthält unendlich viele Werte) 8

9 Gleitkommazahlen Zahlenmenge (cont d) Wertebereich REAL (Gleitkommazahlen) im Rechner stellt eine endliche Menge von Repräsentanten von Intervallen des Kontinuums dar. Diskretisierung numerische Darstellung Verarbeitung von Daten des Typs REAL nicht exakt ( numerische Mathematik) Gleitkommazahlen mathematisch reelle Zahlen mathematisch rationale Zahlen Gleitkommazahlen Zahlendarstellung (Konrad Zuse, 937) zahl = m b m : Mantisse, -M < m < +M Normalform: /b m < oder m = b : Basis, z.b., aber auch kleine Potenz von :, 4, 8, 6 e : Exponent, -E e +E, auch -E e +E alle Werte M, b, E sind rechnerabhängig Aufbau: zahl = ±.a a...a µ b e e. = / = /b ist kleinstmöglicher Mantissenbetrag! Warum? Der nächstkleinere Zahlenbetrag wäre: wegen normierter Darstellung: Das ist unmöglich wegen zweiziffrigem Exponent! mit a (normalisierte Darstellung) und a i b- Beispiel: b =, Mantisse m: 3 Ziffern, Exponent e: Ziffern Mantisse: / m < oder Exponent: -99 e +99 darstellbarer Bereich: Multiplikation/Division mit b: shift der Zahl-Ziffernfolge um Stelle nach links/rechts oder e e+ / e e- 9

10 Gleitkommazahlen Die Mantisse ist somit um Bit länger als gedacht, weil a nicht gespeichert werden muss! Normalisierung Darstellung der Mantisse in Normalform: /b m < eine Mantisse mit gesetztem Führungsbit a heisst normalisiert zahl = ±.a a...a µ b e mit a = durch die Normalisierung wird die Gleitpunktdarstellung eindeutig Rechnerinterne Repräsentation der verfügbare Platz (hier Byte) wird in Felder aufgeteilt Vorzeichen Exponent Mantisse Für arithmetische Operationen muss bei hardwaremäßiger Realisierung hoher Aufwand betrieben werden, daher Software-Realisierung Spezialprozessoren Leistungsdaten: MIPS, FLOPS Gleitkommazahlen Beispiel einer 3 Byte breiten Zahlendarstellung (Basis b = ) Vorzeichen Exponent Mantisse Vorzeichen:, also + Exponent e: Breite: 7 Bit Exzess 64(= 7- ) - Darstellung () = (84) = b e = = Mantisse m: Breite: 6 Bit Darstellung der Mantisse: 6 a j j= m = j = = ( + 4 = 7 6 Zahl: zahl = = ) 6

11 Gleitkommazahlen Beispiel (cont d) Normalisierung: zahl = = ( + ) 3 4 ( ( + 5 = ( Vorzeichen: bleibt, also + Exponent e: Breite: 7 Bit Exzess 64(= 7- ) - Darstellung = 73 (73) = () Exponent e um dekrementiert Mantisse m: Breite: 6 Bit Mantisse um Bit nach links geschoben ) ) Vorzeichen Exponent Mantisse Zahl bleibt erhalten: zahl = = + 43 Gleitkommazahlen REAL-Zahlen auf dem Zahlenstrahl Beispiel: b =, Mantisse m: 3 Ziffern, Exponent e: Ziffern negative overflow negative underflow NULL ausdrückbare negative Zahlen positive underflow ausdrückbare positive Zahlen positive overflow jede REAL-Zahlen repräsentiert ein Intervall der reellen Zahlen; das Intervall wächst mit zunehmendem Betrag der Zahl, d.h. die Dichte der Repräsentation nimmt mit zunehmendem Betrag der Zahl ab. Eine Abschätzung des Einflusses der Ungleichverteilung der Repräsentanten auf die rechenoperationen ist nicht trivial. Behandlung von overflow/underflow, Null, undefiniert? IEEE Floating-Point Standard 754 (985) (siehe A.S. Tanenbaum)

12 Gleitkommazahlen Probleme Test: Assoziativgesetz (Beispiel mit 4-stelliger Arithmetik) x = 9.9, y =., z = (x+y) + z =.9 + (-.999) = 9.9 x + (y+z) = = 9.9 Test: Distributivgesetz (Beispiel mit 4-stelliger Arithmetik) x =., y = -5., z = 5. (x y) + (x z) = (-55) + 55 =. x (y+z) =.. =. Auslöschung Bei der Subtraktion zweier fast gleich großer Werte heben sich die signifikanten Ziffern auf und die Differenz verliert dadurch an Signifikanz (z.b. Differenzenquotient) Überlaufgefahr... bei Division durch kleine Werte Gleitkommazahlen Rechnerarithmetik x = m, y = m x Addition e e x y y x + y = ( m Subtraktion x y = ( m Multiplikation x x ex ey ex ey x y = ( m x m y ) Division + m m e x + e y x y = ( m x m y ) y y e x e y ) ) ey ey falls falls e e x x e e y y

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71)

Zahlensysteme. Formale Methoden der Informatik WiSe 2010/2011 Folie 1 (von 71) Zahlensysteme Formale Methoden der Informatik WiSe / Folie (von 7) Teil I: Zahlensysteme. Einführung und Zahlensysteme. Zahlensysteme / Algorithmik. Zahlendarstellung im Rechner. Gleitkommazahlen / Fließpunktzahlen

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Das Rechnermodell - Funktion

Das Rechnermodell - Funktion Darstellung von Zahlen und Zeichen im Rechner Darstellung von Zeichen ASCII-Kodierung Zahlensysteme Dezimalsystem, Dualsystem, Hexadezimalsystem Darstellung von Zahlen im Rechner Natürliche Zahlen Ganze

Mehr

Zahlendarstellungen und Rechnerarithmetik*

Zahlendarstellungen und Rechnerarithmetik* Zahlendarstellungen und Rechnerarithmetik* 1. Darstellung positiver ganzer Zahlen 2. Darstellung negativer ganzer Zahlen 3. Brüche und Festkommazahlen 4. binäre Addition 5. binäre Subtraktion *Die Folien

Mehr

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen

Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen Darstellung ganzer Zahlen 3 Zahlendarstellung - Zahlensysteme - b-adische Darstellung natürlicher Zahlen - Komplementbildung - Darstellung ganzer und reeller Zahlen Inhaltsangabe 3.1 Zahlensysteme und Darstellung natürlicher Zahlen......

Mehr

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird.

Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. Zahlensysteme Definition: Ein polyadisches Zahlensystem mit der Basis B ist ein Zahlensystem, in dem eine Zahl x nach Potenzen von B zerlegt wird. In der Informatik spricht man auch von Stellenwertsystem,

Mehr

Binäre Gleitkommazahlen

Binäre Gleitkommazahlen Binäre Gleitkommazahlen Was ist die wissenschaftliche, normalisierte Darstellung der binären Gleitkommazahl zur dezimalen Gleitkommazahl 0,625? Grundlagen der Rechnerarchitektur Logik und Arithmetik 72

Mehr

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1

Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 Lösungen: zu 1. a.) 0 0 1 1 b.) 1 1 1 1 c.) 0 1 1 0 + 1 1 0 0 + 0 0 1 1 + 0 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 vorzeichenlose Zahl: 15 vorzeichenlose Zahl: 18 vorzeichenlose Zahl: 13 Zweierkomplement: - 1

Mehr

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013

Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Rechnerarithmetik Ganzzahlen und Gleitkommazahlen Ac 2013 Im folgenden soll ein Überblick über die in Computersystemen bzw. Programmiersprachen verwendeten Zahlen inklusive ausgewählter Algorithmen (in

Mehr

Das Maschinenmodell Datenrepräsentation

Das Maschinenmodell Datenrepräsentation Das Maschinenmodell Datenrepräsentation Darstellung von Zahlen/Zeichen in der Maschine Bit (0/1) ist die kleinste Informationseinheit Größere Einheiten durch Zusammenfassen mehrerer Bits, z.b. 8 Bit =

Mehr

Kapitel 5: Darstellung von Daten im Rechner

Kapitel 5: Darstellung von Daten im Rechner Kapitel 5: Darstellung von Daten im Rechner Kapitel 5 Darstellung von Daten im Rechner und Rechnerarithmetik Literatur: Oberschelp/Vossen, Kapitel 5 Kapitel 5: Darstellung von Daten im Rechner Seite Kapitel

Mehr

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen

Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Großübung 1: Zahlensysteme Repräsentation von Daten: Binär-, Oktal- u. Hexadezimalcodierung von ganzen und rationalen Zahlen Lehrender: Dr. Klaus Richter, Institut für Informatik; E-Mail: richter@informatik.tu-freiberg.de

Mehr

2 Darstellung von Zahlen und Zeichen

2 Darstellung von Zahlen und Zeichen 2.1 Analoge und digitale Darstellung von Werten 79 2 Darstellung von Zahlen und Zeichen Computer- bzw. Prozessorsysteme führen Transformationen durch, die Eingaben X auf Ausgaben Y abbilden, d.h. Y = f

Mehr

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme

Grundlagen der Informatik 2 Grundlagen der Digitaltechnik. 1. Zahlensysteme Grundlagen der Informatik 2 Grundlagen der Digitaltechnik 1. Zahlensysteme Prof. Dr.-Ing. Jürgen Teich Dr.-Ing. Christian Haubelt Lehrstuhl für Hardware-Software Software-Co-Design Grundlagen der Digitaltechnik

Mehr

2 Rechnen auf einem Computer

2 Rechnen auf einem Computer 2 Rechnen auf einem Computer 2.1 Binär, Dezimal und Hexadezimaldarstellung reeller Zahlen Jede positive reelle Zahl r besitzt eine Darstellung der Gestalt r = r n r n 1... r 1 r 0. r 1 r 2... (1) := (

Mehr

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer?

21.10.2013. Vorlesung Programmieren. Agenda. Dezimalsystem. Zahlendarstellung. Zahlendarstellung. Oder: wie rechnen Computer? Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 2 Grundlegende Konzepte. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 2 Grundlegende Konzepte 1 2.1 Zahlensysteme Römisches System Grundziffern I 1 erhobener Zeigefinger V 5 Hand mit 5 Fingern X 10 steht für zwei Hände L 50 C 100 Centum heißt Hundert D 500 M 1000

Mehr

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme

Dipl.-Ing. Halit Ünver Datenbanken/Künstliche Intelligenz FAW/n. Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Datenbanken/Künstliche Intelligenz FAW/n Zahlensysteme Seite Zahlensysteme Dipl.-Ing. Halit Ünver 7.. Inhalt I. Informatik und Zahlen für Wirtschaftswissenschaftler? II. III.

Mehr

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen

2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen 2.0 Zahlendarstellung, Konvertierungsalgorithmen und arithmetische Algorithmen Ziele dieses Kapitels Kennenlernen wesentlicher Zahlensysteme und die Konvertierung von Zahlen zwischen unterschiedlichen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 2007 3. Vorlesung Inhalt Zahlensysteme Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag Binary Offset 1er-Komplement 2er-Komplement Addition und Subtraktion binär dargestellter

Mehr

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen:

1. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis 10 darstellen: Zahlensysteme. Das dekadische Ziffernsystem (Dezimalsystem) Eine ganze Zahl z kann man als Summe von Potenzen zur Basis darstellen: n n n n z a a... a a a Dabei sind die Koeffizienten a, a, a,... aus der

Mehr

Computerarithmetik ( )

Computerarithmetik ( ) Anhang A Computerarithmetik ( ) A.1 Zahlendarstellung im Rechner und Computerarithmetik Prinzipiell ist die Menge der im Computer darstellbaren Zahlen endlich. Wie groß diese Menge ist, hängt von der Rechnerarchitektur

Mehr

Kapitel 2. Zahlensysteme, Darstellung von Informationen

Kapitel 2. Zahlensysteme, Darstellung von Informationen Kapitel 2 Zahlensysteme, Darstellung von Informationen 1 , Darstellung von Informationen Ein Computer speichert und verarbeitet mehr oder weniger große Informationsmengen, je nach Anwendung und Leistungsfähigkeit.

Mehr

Teil II. Schaltfunktionen

Teil II. Schaltfunktionen Teil II Schaltfunktionen 1 Teil II.1 Zahlendarstellung 2 b-adische Systeme Sei b IN mit b > 1 und E b = {0, 1,..., b 1} (Alphabet). Dann ist jede Fixpunktzahl z (mit n Vorkomma und k Nachkommastellen)

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2014/2015 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

TOTAL DIGITAL - Wie Computer Daten darstellen

TOTAL DIGITAL - Wie Computer Daten darstellen TOTAL DIGITAL - Wie Computer Daten darstellen Computer verarbeiten Daten unter der Steuerung eines Programmes, das aus einzelnen Befehlen besteht. Diese Daten stellen Informationen dar und können sein:

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Ausgabe: 2005-02-21 Abgabe: 2005-02-21 Technische Informatik - Eine

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Das Rechnen in Zahlensystemen zur Basis b=2, 8, 10 und 16 Prof. Dr. Nikolaus Wulff Zahlensysteme Neben dem üblichen dezimalen Zahlensystem zur Basis 10 sind in der Informatik

Mehr

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik

Kapitel 1. Zahlendarstellung. Prof. Dr. Dirk W. Hoffmann. Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Kapitel 1 Zahlendarstellung Prof. Dr. Dirk W. Hoffmann Hochschule Karlsruhe w University of Applied Sciences w Fakultät für Informatik Zahlensystemkonvertierung Motivation Jede nichtnegative Zahl z lässt

Mehr

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär

Zahlensysteme. Digitale Rechner speichern Daten im Dualsystem 435 dez = 1100110011 binär Zahlensysteme Menschen nutzen zur Angabe von Werten und zum Rechnen vorzugsweise das Dezimalsystem Beispiel 435 Fische aus dem Teich gefischt, d.h. 4 10 2 + 3 10 1 +5 10 0 Digitale Rechner speichern Daten

Mehr

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc.

Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Fixpunktdarstellung Fixed-point numbers Bsp. Dezimaldarstellung Dezimalkomma (decimal point) rechts von Stelle mit Wertigkeit 100 nachfolgende Stellen haben Wertigkeit 10-1, 10-2, etc. Binärdarstellung

Mehr

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit

Informationsmenge. Maßeinheit: 1 Bit. 1 Byte. Umrechnungen: Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit Informationsmenge Maßeinheit: 1 Bit Informationsmenge zur Beantwortung einer Binärfrage kleinstmögliche Informationseinheit 1 Byte Zusammenfassung von 8 Bit, kleinste Speichereinheit im Computer, liefert

Mehr

Repräsentation von Daten Binärcodierung ganzer Zahlen

Repräsentation von Daten Binärcodierung ganzer Zahlen Kapitel 3: Repräsentation von Daten Binärcodierung ganzer Zahlen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Repräsentation von Daten im Computer (dieses und nächstes

Mehr

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14

1 Dualsystem Dualzahlen mit Vorzeichen 4. 2 Hexadezimalsystem Hexadezimalzahlen mit Vorzeichen Oktalsystem 13 4 Zahlenring 14 Zahlensysteme Inhalt: 1 Dualsystem 1 1.1 Dualzahlen mit Vorzeichen 4 2 Hexadezimalsystem 8 2.1 Hexadezimalzahlen mit Vorzeichen 10 3 Oktalsystem 13 4 Zahlenring 14 Definition: Ein polyadisches Zahlensystem

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 4. Vorlesung Inhalt Binäre Darstellung von Integer-Zahlen Vorzeichen-Betrag 2er-Komplement BCD Addition und Subtraktion binär dargestellter Zahlen Carry und Overflow Little Endian

Mehr

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt

Technische Grundlagen der Informatik Kapitel 8. Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Technische Grundlagen der Informatik Kapitel 8 Prof. Dr. Sorin A. Huss Fachbereich Informatik TU Darmstadt Kapitel 8: Themen Zahlensysteme - Dezimal - Binär Vorzeichen und Betrag Zweierkomplement Zahlen

Mehr

Zahlensysteme und Kodes. Prof. Metzler

Zahlensysteme und Kodes. Prof. Metzler Zahlensysteme und Kodes 1 Zahlensysteme und Kodes Alle üblichen Zahlensysteme sind sogenannte Stellenwert-Systeme, bei denen jede Stelle innerhalb einer Zahl ein besonderer Vervielfachungsfaktor in Form

Mehr

Informationsdarstellung im Rechner

Informationsdarstellung im Rechner Informationsdarstellung im Rechner Dr. Christian Herta 15. Oktober 2005 Einführung in die Informatik - Darstellung von Information im Computer Dr. Christian Herta Darstellung von Information im Computer

Mehr

Vertiefungsstoff zum Thema Darstellung von Zahlen

Vertiefungsstoff zum Thema Darstellung von Zahlen Vertiefungsstoff zum Thema Darstellung von Zahlen Addition von Zahlen in BCD-Kodierung Einerkomplementdarstellung von ganzen Zahlen Gleitpunktdarstellung nach dem IEEE-754-Standard 1 Rechnen mit BCD-codierten

Mehr

Motivation 31. Mai 2005

Motivation 31. Mai 2005 Motivation 31. Mai 25 Zuletzt behandelt: Zahlendarstellung und Rechnerarithmetik Festkommazahlen: Vorzeichen/Betrag-Darstellung Einerkomplement, Zweierkomplement Rückführung der Subtraktion auf die Addition

Mehr

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner

Programmieren. Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 2008/2009. Prof. Dr. Christian Werner Institut für Telematik Universität zu Lübeck Programmieren Kapitel 3: Wie funktioniert ein moderner Computer? Wintersemester 8/9 Prof. Dr. Christian Werner 3- Überblick Typische Merkmale moderner Computer

Mehr

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79

Multiplikation. Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation Grundlagen der Rechnerarchitektur Logik und Arithmetik 79 Multiplikation nach der Schulmethode Gegeben seien die Binärzahlen A und B. Was ist a * b? Beispiel: Multiplikand A: 1 1 0 1 0 Multiplikator

Mehr

Technische Informatik I

Technische Informatik I Technische Informatik I Vorlesung 2: Zahldarstellung Joachim Schmidt jschmidt@techfak.uni-bielefeld.de Übersicht Geschichte der Zahlen Zahlensysteme Basis / Basis-Umwandlung Zahlsysteme im Computer Binärsystem,

Mehr

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert Binäre Repräsentation von Information Bits und Bytes Binärzahlen ASCII Ganze Zahlen Rationale Zahlen Gleitkommazahlen Motivation Prinzip 8 der von-neumann Architektur: (8) Alle Daten werden binär kodiert

Mehr

Einführung in die Computerorientierte Mathematik

Einführung in die Computerorientierte Mathematik Einführung in die Computerorientierte Mathematik Wintersemester 2014/15 Thomas Gerstner Institut für Mathematik Goethe-Universität Frankfurt 17. Oktober 2014 Inhaltsverzeichnis Inhaltsverzeichnis ii 1

Mehr

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1

Musterlösung 2. Mikroprozessor & Eingebettete Systeme 1 Musterlösung 2 Mikroprozessor & Eingebettete Systeme 1 WS2013/2014 Hinweis: Die folgenden Aufgaben erheben nicht den Anspruch, eine tiefergehende Kenntnis zu vermitteln; sie sollen lediglich den Einstieg

Mehr

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik

Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Lektion 1: Von Nullen und Einsen _ Die binäre Welt der Informatik Helmar Burkhart Departement Informatik Universität Basel Helmar.Burkhart@unibas.ch Helmar Burkhart Werkzeuge der Informatik Lektion 1:

Mehr

Informatik I Modul 2: Rechnerarithmetik (1)

Informatik I Modul 2: Rechnerarithmetik (1) Fall Term 2010, Department of Informatics, IFI, UZH, Switzerland Informatik I Modul 2: Rechnerarithmetik (1) 2010 Burkhard Stiller M2 1 Modul 2: Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 2010

Mehr

Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2)

Modul 2: Rechnerarithmetik (1) Informatik I. Modul 2: Rechnerarithmetik (1) Rechnerarithmetik. Formale Grundlagen. Zahlensysteme (1) Zahlensysteme (2) Fall Term 1, Department of Informatics, IFI, UZH, Switzerland Modul : Rechnerarithmetik (1) Informatik I Modul : Rechnerarithmetik (1) Zahlensysteme Zahlendarstellung 1 Burkhard Stiller M 1 1 Burkhard

Mehr

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik)

Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Zahlen im Computer (Klasse 7 Aufbaukurs Informatik) Die Bildauswahl erfolgte in Anlehnung an das Alter der Kinder Prof. J. Walter Bitte römische Zahlen im Geschichtsunterricht! Messsystem mit Mikrocontroller

Mehr

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10

Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754. Berechnung von Gleitkommazahlen aus Dezimalzahlen. HSLU T&A Informatik HS10 Informationssysteme Gleitkommazahlen nach dem IEEE-Standard 754 Berechnung von Gleitkommazahlen aus Dezimalzahlen Die wissenschaftliche Darstellung einer Zahl ist wie folgt definiert: n = f * 10 e. f ist

Mehr

6.2 Kodierung von Zahlen

6.2 Kodierung von Zahlen 6.2 Kodierung von Zahlen Neue Begriffe é Festkommadarstellungen é Zahlendarstellung durch Betrag und Vorzeichen é Einer-/Zweierkomplement-Darstellung é Gleitkommadarstellung é IEEE-754 Format BB TI I 6.2/1

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen

Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Kapitel 4: Repräsentation von Daten Binärcodierung von rationalen Zahlen und Zeichen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Codierung von rationalen Zahlen Konvertierung

Mehr

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127.

a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. Übung 2, Aufgabe 4) a) Da die Zahlen im IEEE-32Bit-Format dargestellt werden sollen, ist der Bias = 127. 1,125 in IEEE 754 (32Bit) 0,125 2 = 0,25 0,25 2 = 0,5 0,5 2 = 1 1,125 10 = 1,001 2 Da die Zahl bereits

Mehr

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2

Leseprobe. Taschenbuch Mikroprozessortechnik. Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-42331-2 Leseprobe Taschenbuch Mikroprozessortechnik Herausgegeben von Thomas Beierlein, Olaf Hagenbruch ISBN: 978-3-446-4331- Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4331-

Mehr

Datendarstellung Teil 2

Datendarstellung Teil 2 Informatik 1 für Nebenfachstudierende Grundmodul Datendarstellung Teil 2 Kai-Steffen Hielscher Folienversion: 08. November 2016 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel

Mehr

Basisinformationstechnologie I

Basisinformationstechnologie I Basisinformationstechnologie I Wintersemester 2012/13 24. Oktober 2012 Grundlagen III Universität zu Köln. Historisch-Kulturwissenschaftliche Informationsverarbeitung Jan G. Wieners // jan.wieners@uni-koeln.de

Mehr

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke

bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke Rechnerarithmetik Rechnerarithmetik 22 Prof. Dr. Rainer Manthey Informatik II Übersicht bereits in A,3 und A.4: Betrachtung von Addierschaltungen als Beispiele für Schaltnetze und Schaltwerke in diesem

Mehr

Information in einem Computer ist ein

Information in einem Computer ist ein 4 Arithmetik Die in den vorhergehenden Kapiteln vorgestellten Schaltungen haben ausschließlich einfache, Boole sche Signale verarbeitet. In diesem Kapitel wird nun erklärt, wie Prozessoren mit Zahlen umgehen.

Mehr

Fehler in numerischen Rechnungen

Fehler in numerischen Rechnungen Kapitel 1 Fehler in numerischen Rechnungen Analyse numerischer Rechnungen: - Welche möglichen Fehler? - Einfluss auf Endergebnis? - Nicht alles in der Comp.Phys./Numerical Analysis dreht sich um Fehler

Mehr

Inhalt: Binärsystem 7.Klasse - 1 -

Inhalt: Binärsystem 7.Klasse - 1 - Binärsystem 7.Klasse - 1 - Inhalt: Binärarithmetik... 2 Negative Zahlen... 2 Exzess-Darstellung 2 2er-Komplement-Darstellung ( two s complement number ) 2 Der Wertebereich vorzeichenbehafteter Zahlen:

Mehr

Zahlen in Binärdarstellung

Zahlen in Binärdarstellung Zahlen in Binärdarstellung 1 Zahlensysteme Das Dezimalsystem Das Dezimalsystem ist ein Stellenwertsystem (Posititionssystem) zur Basis 10. Das bedeutet, dass eine Ziffer neben ihrem eigenen Wert noch einen

Mehr

Hochschule Fakultät Technologie und Management Informationsverarbeitung Ravensburg-Weingarten Vorlesung zur Datenverarbeitung 1 Zahlensysteme Inhalt

Hochschule Fakultät Technologie und Management Informationsverarbeitung Ravensburg-Weingarten Vorlesung zur Datenverarbeitung 1 Zahlensysteme Inhalt Inhalt 2 ZAHLENSYTEME...2-2 2.1 ZAHL...2-2 2.2 ZAHLENDARSTELLUNG...2-3 2.2.1 Zahlensysteme für die EDV...2-5 2.2.2 Umwandlung (Konvertierung)...2-6 2.2.2.1 Konvertierung von Dualzahlen in Oktal- bzw. Hexadezimalzahlen...2-7

Mehr

Datendarstellung Teil 2

Datendarstellung Teil 2 Informatik 1 für Nebenfachstudierende Grundmodul Datendarstellung Teil 2 Kai-Steffen Hielscher Folienversion: 24. Oktober 2017 Informatik 7 Rechnernetze und Kommunikationssysteme Inhaltsübersicht Kapitel

Mehr

Wertebereiche, Overflow und Underflow

Wertebereiche, Overflow und Underflow Wertebereiche, Overflow und Underflow s exponent fraction 1 Bit 8 Bits 23 Bits Kleinste darstellbare nicht negative Zahl annähernd 2,0 * 10 38 Größte darstellbare Zahl annähernd 2,0 * 10 38 Was, wenn die

Mehr

Zahlensysteme Seite -1- Zahlensysteme

Zahlensysteme Seite -1- Zahlensysteme Zahlensysteme Seite -- Zahlensysteme Inhaltsverzeichnis Dezimalsystem... Binärsystem... Umrechnen Bin Dez...2 Umrechnung Dez Bin...2 Rechnen im Binärsystem Addition...3 Die negativen ganzen Zahlen im Binärsystem...4

Mehr

3 Rechnen und Schaltnetze

3 Rechnen und Schaltnetze 3 Rechnen und Schaltnetze Arithmetik, Logik, Register Taschenrechner rste Prozessoren (z.b. Intel 4004) waren für reine Rechenaufgaben ausgelegt 4 4-Bit Register 4-Bit Datenbus 4 Kbyte Speicher 60000 Befehle/s

Mehr

Binärdarstellung von Fliesskommazahlen

Binärdarstellung von Fliesskommazahlen Binärdarstellung von Fliesskommazahlen 1. IEEE 754 Gleitkommazahl im Single-Format So sind in Gleitkommazahlen im IEEE 754-Standard aufgebaut: 31 30 24 23 0 S E E E E E E E E M M M M M M M M M M M M M

Mehr

2.Vorlesung Grundlagen der Informatik

2.Vorlesung Grundlagen der Informatik Christian Baun 2.Vorlesung Grundlagen der Informatik Hochschule Darmstadt WS1112 1/16 2.Vorlesung Grundlagen der Informatik Christian Baun Hochschule Darmstadt Fachbereich Informatik christian.baun@h-da.de

Mehr

Vorlesung Programmieren

Vorlesung Programmieren Vorlesung Programmieren Zahlendarstellung Prof. Dr. Stefan Fischer Institut für Telematik, Universität zu Lübeck http://www.itm.uni-luebeck.de/people/pfisterer Agenda Zahlendarstellung Oder: wie rechnen

Mehr

Binär- und Hexadezimal-Zahl Arithmetik.

Binär- und Hexadezimal-Zahl Arithmetik. Binär- und Hexadezimal-Zahl Arithmetik. Prof. Dr. Dörte Haftendorn, MuPAD 4, http://haftendorn.uni-lueneburg.de Aug.06 Automatische Übersetzung aus MuPAD 3.11, 24.04.02 Version vom 12.10.05 Web: http://haftendorn.uni-lueneburg.de

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java 1 / 34 Einstieg in die Informatik mit Java Zahldarstellung und Rundungsfehler Gerd Bohlender Institut für Angewandte und Numerische Mathematik Gliederung 2 / 34 1 Überblick 2 Darstellung ganzer Zahlen,

Mehr

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen?

Zum Nachdenken. Welche Eigenschaften einer Vorzeichendarstellung. erreichen? Wie könnte man Vorzeichenzahlen darstellen? TECHNISCHE HOCHSCHULE NÜRNBERG GEORG SIMON OHM Zum Nachdenken Welche Eigenschaften einer Vorzeichendarstellung könnte man versuchen zu erreichen? Wie könnte man Vorzeichenzahlen darstellen? Grundlagen

Mehr

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik

Grundlagen der Rechnerarchitektur. Binäre Logik und Arithmetik Grundlagen der Rechnerarchitektur Binäre Logik und Arithmetik Übersicht Logische Operationen Addition, Subtraktion und negative Zahlen Logische Bausteine Darstellung von Algorithmen Multiplikation Division

Mehr

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben

Zwischenklausur Informatik, WS 2016/17. Lösungen zu den Aufgaben Zwischenklausur Informatik, WS 206/7 4.2.206 Lösungen zu den Aufgaben. Gegeben sind folgende Dualzahlen in Zweierkomplementdarstellung. Geben Sie den jeweils zugehörigen Dezimalwert an! a) entspricht der

Mehr

1 Einführung. 1.1 Analog - Digital Unterscheidung

1 Einführung. 1.1 Analog - Digital Unterscheidung 1 Einführung Was ist eigentlich Digitaltechnik? Wird der Begriff Digitaltechnik getrennt, so ergeben sich die Worte DIGITAL und TECHNIK. Digital kommt von digitus (lat. der Finger) und deutet darauf hin,

Mehr

2 Einfache Rechnungen

2 Einfache Rechnungen 2 Einfache Rechnungen 2.1 Zahlen Computer, auch bekannt als Rechner, sind sinnvoller eingesetzt, wenn sie nicht nur feste Texte ausgeben, sondern eben auch rechnen. Um das Rechnen mit Zahlen zu verstehen,

Mehr

Grundlagen der Technischen Informatik. 4. Übung

Grundlagen der Technischen Informatik. 4. Übung Grundlagen der Technischen Informatik 4. Übung Christian Knell Keine Garantie für Korrekt-/Vollständigkeit 4. Übungsblatt Themen Aufgabe 1: Aufgabe 2: Polyadische Zahlensysteme Gleitkomma-Arithmetik 4.

Mehr

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik

Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Computergrundlagen Boolesche Logik, Zahlensysteme und Arithmetik Institut für Computerphysik Universität Stuttgart Wintersemester 2012/13 Wie rechnet ein Computer? Ein Mikroprozessor ist ein Netz von Transistoren,

Mehr

4. Digitale Datendarstellung

4. Digitale Datendarstellung 4 Digitale Datendarstellung Daten und Codierung Textcodierung Codierung natürlicher Zahlen - Stellenwertsysteme - Konvertierung - Elementare Rechenoperationen Codierung ganzer Zahlen - Komplementdarstellung

Mehr

Computerarithmetik (1)

Computerarithmetik (1) Computerarithmetik () Fragen: Wie werden Zahlen repräsentiert und konvertiert? Wie werden negative Zahlen und Brüche repräsentiert? Wie werden die Grundrechenarten ausgeführt? Was ist, wenn das Ergebnis

Mehr

TI II: Computer Architecture Data Representation and Computer Arithmetic

TI II: Computer Architecture Data Representation and Computer Arithmetic Prof. Dr.-Ing. Jochen Schiller Computer Systems & Telematics 31 30 23 22 0 Sg Characteristic Mantissa TI II: Computer Architecture Data Representation and Computer Arithmetic Systems Representations Basic

Mehr

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften:

BB/CS- SS00 Rechner im Überblick 1/1. Ein Stellenwertsystem (Zahlensystem) ist ein Tripel S = (b, Z, δ) mit den folgenden Eigenschaften: Neue Begriffe Festkommadarstellungen Zahlendarstellung durch Betrag und Vorzeichen Einer-/Zweierkomplement-Darstellung Gleitkommadarstellung IEEE-754 Format BB/CS- SS00 Rechner im Überblick 1/1! Definition

Mehr

2. Zahlendarstellung und Rechenregeln in Digitalrechnern

2. Zahlendarstellung und Rechenregeln in Digitalrechnern Zahlendarstellung und Rechenregeln in Digitalrechnern Folie. Zahlendarstellung und Rechenregeln in Digitalrechnern. Zahlensysteme Dezimales Zahlensystem: Darstellung der Zahlen durch Ziffern 0,,,..., 9.

Mehr

Binäre Division. Binäre Division (Forts.)

Binäre Division. Binäre Division (Forts.) Binäre Division Umkehrung der Multiplikation: Berechnung von q = a/b durch wiederholte bedingte Subtraktionen und Schiebeoperationen in jedem Schritt wird Divisor b testweise vom Dividenden a subtrahiert:

Mehr

Kapitel 6 Darstellung von Daten im Rechner. Kapitel 6: Darstellung von Daten im Rechner Seite 1 / 63

Kapitel 6 Darstellung von Daten im Rechner. Kapitel 6: Darstellung von Daten im Rechner Seite 1 / 63 Kapitel 6 Darstellung von Daten im Rechner Kapitel 6: Darstellung von Daten im Rechner Seite / 63 Darstellung von Daten im Rechner Inhaltsverzeichnis 6. Darstellung ganzer Zahlen 6.2 Darstellung reeller

Mehr

01 - Zahlendarstellung

01 - Zahlendarstellung 01 - Zahlendarstellung Technische Grundlagen der Informatik Automation Systems Group E183-1 Institute of Computer Aided Automation Vienna University of Technology email: tgi@auto.tuwien.ac.at Zahlendarstellung

Mehr

2.1.2 Gleitkommazahlen

2.1.2 Gleitkommazahlen .1. Gleitkommazahlen Überblick: Gleitkommazahlen Gleitkommadarstellung Arithmetische Operationen auf Gleitkommazahlen mit fester Anzahl von Mantissen- und Exponentenbits Insbesondere Rundungsproblematik:

Mehr

Einführung in Informatik 1

Einführung in Informatik 1 Einführung in Informatik Prof. Dr.-Ing. Andreas Penningsfeld Zahlensysteme Allgemein: Zahl b := zn * bn +... + z * b + z ( ) * b (-) +... + z (-m) * b (-m) ; zi: Koeffizienten b: Basis Dezimalsystem Dualsystem

Mehr

Skript Zahlensysteme

Skript Zahlensysteme Skript Zahlensysteme Dieses Skript enthält die Themen meiner Unterrichtseinheit Zahlensysteme. Hier sollen die Grundlagen für das Verständnis der darauf folgenden Inhalte zu den Abläufen innerhalb des

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Grundlagen der Informatik Teil II Speicherung und Interpretation von Information Seite 1 Speicherung und Interpretation von Information Beginn der Datenverarbeitung => Erfindung von Zahlensystemen Quantifizierung

Mehr

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck

Arithmetik. Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Arithmetik Einführung in die Technische Informatik Falko Dressler, Stefan Podlipnig Universität Innsbruck Übersicht Zahlendarstellung Addition und Subtraktion Multiplikation Division Fest- und Gleitkommazahlen

Mehr

2 Repräsentation von elementaren Daten

2 Repräsentation von elementaren Daten 2 Repräsentation von elementaren Daten Alle (elemtaren) Daten wie Zeichen und Zahlen werden im Dualsystem repräsentiert. Das Dualsystem ist ein spezielles B-adisches Zahlensystem, nämlich mit der Basis

Mehr

Grundlagen der Betriebssysteme

Grundlagen der Betriebssysteme Grundlagen der Betriebssysteme [CS2100] Sommersemester 2014 Heiko Falk Institut für Eingebettete Systeme/Echtzeitsysteme Ingenieurwissenschaften und Informatik Universität Ulm Kapitel 2 Zahlendarstellungen

Mehr

Rechnergrundlagen SS Vorlesung

Rechnergrundlagen SS Vorlesung Rechnergrundlagen SS 27 5. Vorlesung Inhalt Interpretation hexadezimal dargestellter Integer-Zahlen Little Endian / Big Endian Umrechnung in eine binäre Darstellung Ausführung von Additionen Optimierte

Mehr

1 Zahlen im Dezimalsystem

1 Zahlen im Dezimalsystem 1 Zahlen im Dezimalsystem Es gibt verschiedene Arten Zahlen aufzuschreiben. Zunächst gibt es verschiedene Zahlzeichen wie chinesische, römische oder arabische. Im deutschsprachigen Raum ist die Verwendung

Mehr

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK

GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK 1 GTI ÜBUNG 4 BINÄR-, HEX- UND GLEITKOMMAZAHLEN-ARITHMETIK Aufgabe 1 Bin- und Hex Arithmetik 2 Führen Sie die folgenden Berechnungen im angegebenen Zahlensystem aus, ohne die Zahlen ins Dezimalsystem umzuwandeln:

Mehr

5 Zahlenformate und deren Grenzen

5 Zahlenformate und deren Grenzen 1 5 Zahlenformate und deren Grenzen 5.1 Erinnerung B-adische Zahlendarstellung Stellenwertsystem: Jede Ziffer hat ihren Wert, und die Stelle der Ziffer in der Zahl modifiziert den Wert. 745 = 7 100 + 4

Mehr