14. Strömende Flüssigkeiten und Gase

Größe: px
Ab Seite anzeigen:

Download "14. Strömende Flüssigkeiten und Gase"

Transkript

1 14. Strömende Flüssigkeiten und Gase orbemerkungen Es gibt viele Analogien zwischen Flüssigkeiten und Gasen (wegen der freien erschiebbarkeit der Teilchen); Hauptunterschied liegt in der Kompressibilität jedoch: Bei v << v Schall verhalten sich auch strömende Gase praktisch inkompressibel, d.h. es erfolgt kein Aufbau von ruckwellen.! aher im folgenden Annahme eines inkompressiblen Fluids. Beschreibung von Strömungen nach EULER ( ) anhand des Geschwindigkeitsfeldes v(r r ). Sonderfall: v(r r ) zeitlich const. stationäre Strömung stationäres Strömungsfeld beschrieben durch Stromlinien: Stromröhre Bündel von Stromlinien Tangente an der Stromlinie Richtung von v r ichte der Stromlinien Betrag von v r ie Abbildung zeigt, dass pro Zeiteinheit t ein strömendes olumenelement an jeder Stelle der Stromröhre konstant ist & A v const. (innerhalb der Stromröhre) (1) t &... olumenstrom Gl. (1) heißt Kontinuitätsgleichung: Wenn in der Stromröhre kein Medium erzeugt oder vernichtet wird, muss I konstant bleiben und v sich entsprechend A einstellen. Kommentar: Hier ist die Quellen- und Senkenfreiheit eigentlich fast selbstverständlich (ein Beispiel für eine Ausnahme wäre eine chemische Reaktion im strömenden Gas, die das olumen verändert). In der Elektrodynamik ist das anders, obwohl ansonsten viele Analogien existieren!! 85

2 14.. Innere Reibung... in strömenden Medien Beispiel: Löffel aus Honig herausziehen Geschwindigkeitsübergang... von v 0 (entfernt vom Löffel) auf v v Löffel (an der Löffel-Oberfläche) Es zeigt sich, dass für die Reibungskraft F R gilt dv F R ~ A dx mit: A... Wechselwirkungsfläche dv 1 F R η A dx mit: η... iskosität, dynamische Zähigkeit F dv τ R R η A dx τ R... Reibungs-Schubspannung; viskose Schubspannung () (3) Maßeinheit: N s [η] m SI Gl. (), (3) heißen NEWTONsches Gesetz der inneren Reibung. Beispiele: Substanz h in Nsm - Glycerin 0 C 1,53 H O 0 C 0, C 0, C 0,0003 (typisch: Abnahme mit steigendem T!) Luft 0 C 0,0000 H 0 C 0, dv orzeichen in Gl. () stimmt, da < 0! dx 86

3 eutung: Überwindung der Potentialhügel beim Gegeneinander-erschieben der Flüssigkeitsschichten Strömungen, deren erhalten durch die innere Reibung bestimmt ist, d.h., bei denen sich nicht vermischende Schichten des Mediums gegeneinander verschoben werden, heißen laminare Strömungen.! Beispiele für laminare Strömungen Laminare Rohströmung ie Flüssigkeit haftet an der Wand und hat in der Mitte des Rohres maximale Geschwindigkeit Wir betrachten nun einen Flüssigkeitszylinder um die Rohrachse: An der Mantelfläche wirkt die Reibungskraft (mit Gl. ()) F R dv πrl η dr ( A Mantel ) (4) Auf seine Grund- und eckflächen wirkt die Netto-ruckkraft Fp πr (p1 p ) ( A Grund/eck ) (5) F p treibt die Flüssigkeit voran und überwindet genau F R : F p F R. 87

4 aus (4), (5) erhalten wir dv p1 p dr ηl r und nach Integration v(r) p 4ηl ( R r ) (6) ies ist ein parabolisches Geschwindigkeitsprofil v(r) A - B r, wie in der Skizze schon gezeigt. Interessant ist die urchflussmenge & (olumen/zeit) bei gegebenen p, η, R. Wir betrachten einen Hohlzylinder mit der icke dr: er olumenstrom im Querschnitts-Flächenelement da ist d dt Fl. Element (dz da d!) dz da v(r) πr dr dt Gesamt-olumenstrom im Rohr durch Integration über alle Flächen-Elemente: R & v(r) πr dr mit v(r) lt. Gl. (6) folgt 0 & π p R 8ηl 4 (7) ies ist das HAGEN-POISEUILLEsche Gesetz. Kommentar: Radius geht mit 4. Potenz ein! Gl. (7) stellt das OHMsche Gesetz für die laminare Rohströmung dar: I & U R Triebkraft (Strömungs )Widerstan d p 8ηl 4 πr 88

5 Laminares Umströmen einer Kugel An diesem Beispiel soll eine in der Strömungsmechanik häufig verwendete, sehr nützliche Betrachtungsweise erläutert werden: die Unterteilung in einen Nahbereich, in dem das Fluid anhaftet, und den unbeeinflussten Außenbereich der Strömung. Experiment: Wir ziehen eine Kugel mit der Geschwindigkeit v durch eine Flüssigkeit. Nahe Kugel-Oberfläche ist Strömungsgeschwindigkeit v (Anhaften der Flüssigkeit) In einiger Entfernung von der Kugel ruht die Flüssigkeit ( merkt nichts ) 1 dv v ; Wechselwirkungs-Fläche A Kugel-OF 4πr dr r amit ergibt sich für Gl. () F R F R dv η A dx 4πrηv η 4πr v r ie ungleich schwierigere korrekte Herleitung lieferte F R 6πrηv (3-19) Turbulente Strömungen, Ähnlichkeit, Strömungsgrenzschicht Experiment zeigt: Bei bestimmter Geschwindigkeit bricht laminare Strömung zusammen: Wirbelbildung; Nichtlinearität, chaotisches erhalten Turbulenz! Es zeigt sich, dass v krit in Abhängigkeit von... ichte η... iskosität l... Abmessung (z.b. Kugel-urchmesser) unterschiedliche Werte annehmen kann also: entscheidend ist nicht v, sondern eine Größe Re v l Re (8) η Re... REYNOLsche Zahl! 1 ie hier betrachete "r-umgebung" ist nicht identisch mit der Grenzschichtdicke in <14.4>. 89

6 l ist eine typische Abmessung des strömenden Systems. Re ist dimensionslos: Mechanik Strömende Flüssigkeiten und Gase Maßeinheit: kg m m m s [Re] 1 3 SI m s 1 kg Re hat die physikalische Bedeutung des Quotienten aus kinetischer Energie und Reibungsenergie. Bei einem bestimmten Re schlägt die Strömung um. er Übergang ist jedoch nicht scharf, sondern ein Bereich (z.b. Re )! 1 Gründe: Einfluss der Oberflächen-Rauheit, u.ä. Strömung kann instabil-laminar sein (gewisse Analogie zur unterkühlten Flüssigkeit) Strömungen mit gleicher Re sind ähnlich Modellierung im Wind- oder Strömungskanal kleines l (Schiffsmodell) Anpassung von v sowie gegebenenfalls, η damit gleiches Re herauskommt. Strömungsgrenzschicht: Fluid haftet an umströmten Oberflächen (Kugel, Rohrwandung), d.h. v 0, und gleicht sich dann allmählich an die in einiger Entfernung herrschende ungestörte Strömung an. Beispiel:! Fluid an einer Wand Herausziehen einer Platte aus ruhendem Fluid ie beiden dargestellten Fälle sind völlig analog! 1 eswegen ist die Frage Was ist die typische Länge bei einer bestimmten unregelmäßigen Form? auch nicht so kritisch! 90

7 Übergangsbereich wird durch Grenzschicht definierter icke mit linearem Geschwindigkeitsübergang angenähert (s. Abbildung zur bewegten Platte): v(x) x v 0 1 für x < 0 für x (9) Mit Gl. (9) vereinfacht sich das NEWTONsche Reibungsgesetz (Gl. ()) zu F R v0 η A dv ( - ) dx (10) Um die Platte herauszuziehen, muss stetig eine Kraft F - F R aufgewandt werden. iese führt lt. Gl. (3-6) zu einem Impulsübertrag an das Fluid: dp F dt (3-6) Wenn F - F R die Zeit t lang wirkt, wird übertragen: p F t F R t ( v 0 t l... herausgezogene Länge) v0 +η A t (11) p findet sich im Fluid wieder, das - in seinen einzelnen Schichten unterschiedlich beschleunigt wurde: Aufintegration des im Fluid steckenden Impulses: p 0 v(x) dm p A 0 v(x) dx dm d A dx x v(x) v0 1 lt. Gl. (9) x p A v0 1 dx p A v 0 0 (1) 91

8 Wegen der Impulserhaltung müssen (11) und (1) gleich sein Mechanik Strömende Flüssigkeiten und Gase mit η l A A v ηl v 0 0 (13) ist die icke der (PRANTLschen) Strömungsgrenzschicht. Kommentar: Gl. (13) ist eine Näherung, gibt die Tendenz der Abhängigkeit von η, l,, v 0. l hat die Bedeutung einer charakteristischen Länge. ie Annahme, dass v(x) linear ist, gilt natürlich besonders für << l, wenn das Fluid nur eine große ebene Wand sieht : ηl << l [ ] v 0 η l << l v 0 η v l << 0 Re (8) η v 0 Also: ie Näherung des linearen v(x)-erlaufs gilt für große Re, wo unter Umständen bereits Turbulenz auftritt. Bedeutung der Strömungsgrenzschicht a) als Modell: b) physikalisch: urch das Anhaften der Strömung wird der Transport beeinflusst: Feuchtigkeit, Wärme usw. müssen durch hindurch diffundieren; die Möglichkeiten des zwangsweisen Anoder Abtransports enden am Grenzschichtrand. Jedoch: großes v 0 kleines Transport erleichtert! Reibungsfreies Fluid: BERNOULLIsche Gleichung Wir betrachten jetzt ein reibungsfreies Fluid, d. h. eine existierende ruckdifferenz (p 1 p ) wird nicht zur Aufrechterhaltung der Strömung benötigt. 9

9 as Rohr weise eine erengung auf: Wegen der Gültigkeit der Kontinuitätsgleichung (Gl. (1)) ist & A v1 A v t 1 const. (1 ) Im Beispiel lt. Abbildung nimmt v zu! Ebenfalls verändert sich an der erengung der ruck von p 1 auf p : ruckarbeit links: ruckarbeit rechts: W p1a1 x1 p1 ( F 1 ) 1 W pa x p ( F ) W 1 wird zum Teil verwendet, den ruck p zu überwinden, also W zu leisten. er Rest ( W 1 - W ) wird zur Beschleunigung des Fluids aufgewendet: 1 W1 W (p1 p ) (v v ( m) 1 ) (14) nach Umstellung folgt p verallgemeinert 1 + v1 p1 + v p + v p ges const. (15) ies ist die BERNOULLIsche Gleichung. 93

10 v hat die imension eines ruckes 1 und heißt Staudruck. p heißt statischer ruck. Kommentar: Für v 0 ist p p ges, der (maximale) statische ruck. Mit zunehmendem v sinkt p. Bei p 0 ( druckloser Ausfluss ) wird der Staudruck maximal. Wird v reduziert, baut sich wieder zunehmender p auf. Bisher betrachtet: Waagerechte Strömung, d.h. potentielle Energie im Erdschwerefeld war konstant. Wenn wir unterschiedliche Höhen einbeziehen wollen, müssen wir noch den Schweredruck g h berücksichtigen und erhalten: p + v + g h p ges const. (16) ies ist die verallgemeinerte BERNOULLIsche Gleichung. ie BERNOULLIsche Gleichung ist der Energiesatz (bezogen auf das olumen) für das Fluid. iesbezügliche Bedeutung der einzelnen Glieder:! m gh g h m v v A x p p E pot (Schweredruck) E kin (Staudruck) ruckarbei t (statischer ruck) Beispiele zur BERNOULLIschen Gleichung hydrodynamisches Paradoxon Bunsenbrenner Wasserstrahlpumpe Zerstäuber "v p " Kavitation: Wir betrachten Gl. (15) und formen um p ges v entspricht p 0 p ges v > entspricht einem statischen ruck p < 0! 1 kg m m 1 N Kraft kg! m s s m m Fläche kg m m 1 N Kraft imension von g h : kg! 3 m s s m m Fläche 94

11 ies unter Umständen leicht erreicht, z.b. bei H O für v 14m s -1 Bildung von ampf-/gasbläschen (z.b. verdampfte Flüssigkeit) die bei Reduzierung von v implosionsartig zusammenbrechen ruckwellen Materialzerstörung (Kavitation) ynamischer Auftrieb: Infolge der Anfahrtswirbel entsteht Tragflächenumströmung: v o > v u p o < p u Auftrieb Strömungswiderstand... kann über die BERNOULLIsche Gleichung verstanden werden: a) langsame Strömung völlig symmetrisches Bild v-erteilung vor und hinter der Kugel gleich keine resultierende Kraft b) schnelle Strömung Bildung von Wirbeln hinter dem Hindernis: v hinter der Kugel erhöht (ie unregelmäßige Richtung von v spielt keine Rolle, die BERNOULLI sche Gleichung ist eine Energieangelegenheit!) statischer ruck p hinter der Kugel ist reduziert Kraft, die die Kugel mitreißen will iese ruckwiderstandskraft ist dem Staudruck proportional. Kommentar: ( Staudruck) 1 F cw v A A... Querschnittsfläche c w... Widerstandsbeiwert Wir sind wieder ein mal am Rand der Gültigkeit des Modells. ie Initiierung des Wirbelfeldes setzt natürlich Reibung voraus, wenn auch dann die Argumentation wieder auf der BERNOULLIschen Gleichung beruht. (17) 95

12 eutung: Staudruckabhängigkeit (Staudruck korreliert mit E kin, s.o.) deshalb, weil infolge Wirbelbildung diese E kin der Kugel nur von vorn, nicht auch von hinten zugeführt wird resultierende Kraft! c w ist abhängig von der Körperform. Beispiele (Strömung von links): 1,35! 1,1 0,40 0,056 (PKW 0,5... 0,50) 96

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1

I. Mechanik. I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen. Physik für Mediziner 1 I. Mechanik I.4 Fluid-Dynamik: Strömungen in Flüssigkeiten und Gasen Physik für Mediziner Stromdichte Stromstärke = durch einen Querschnitt (senkrecht zur Flussrichtung) fließende Menge pro Zeit ( Menge

Mehr

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm

σ ½ 7 10-8 cm = 7 10-10 m σ ½ 1 nm Zahlenbeispiele mittlere freie Weglänge: Λ = 1 / (σ n B ) mittlere Zeit zwischen Stößen τ = Λ / < v > Gas: Stickstoff Druck: 1 bar = 10 5 Pa Dichte n = 3 10 19 cm -3 σ = 45 10-16 cm 2 σ ½ 7 10-8 cm = 7

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Übung : Vorlesung: Tutorials: Montags 13:15 bis 14 Uhr, Liebig-HS Montags 14:15 bis 15:45, Liebig HS Montags

Mehr

Strömungen. Kapitel 10

Strömungen. Kapitel 10 Kapitel 10 Strömungen In Kapitel 9 behandelten wir die statistische Bewegung einzelner Moleküle in einem Gas, aber noch keine makroskopische Bewegung des Mediums. Der Mittelwert der Impulse aller Teilchen

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Hydrodynamik y II - Viskosität

Hydrodynamik y II - Viskosität Physik A VL9 (..0) Hydrodynamik y II - Viskosität Die Viskosität ität Das Gesetz on Hagen-Poiseuille Die Stokes sche Reibung Die Reynolds-Zahl Viskose Fluide Viskosität bisher: Kräfte zwischen dem strömenden

Mehr

Aerodynamik von Hochleistungsfahrzeugen. Gliederung.

Aerodynamik von Hochleistungsfahrzeugen. Gliederung. WS10/11, Folie 2.1 Hochleistungsfahrzeugen. Gliederung. 1. Einführung (Typen, Rennserien) 2. Aerodynamische Grundlagen 3. Aerodynamik und Fahrleistung 4. Entwicklung im Windkanal 5. Entwicklung mit CFD

Mehr

Physik I im Studiengang Elektrotechnik

Physik I im Studiengang Elektrotechnik hysik I im Studiengang Elektrotechnik - Mechanik deformierbarer Körper - rof. Dr. Ulrich Hahn WS 015/016 Deformation Starrer Körper: Kraftwirkung Translation alle Massenpunkte: gleiches Rotation alle Massenpunkte:

Mehr

df Druck p 1.5 Fluide: Mechanik der Flüssigkeiten und Gase 1.5.1 Ruhende Flüssigkeiten und Gase 1.5.1.1 Druck

df Druck p 1.5 Fluide: Mechanik der Flüssigkeiten und Gase 1.5.1 Ruhende Flüssigkeiten und Gase 1.5.1.1 Druck .5 Fluide: Mechanik der Flüssigkeiten und Gase Wir haben im Kaitel Mechanik bisher behandelt: ) Masseunkte ) Feste Körer (Starre Körer, elastische Körer siehe Vorl. techn. Mechanik!) Feste Körer haben

Mehr

9.Vorlesung EP WS2008/9

9.Vorlesung EP WS2008/9 9.Vorlesung EP WS2008/9 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v

Hydrodynamik Kontinuitätsgleichung. Massenerhaltung: ρ. Massenfluss. inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms : v Hydrodynamik Kontinuitätsgleichung A2, rho2, v2 A1, rho1, v1 Stromröhre Massenerhaltung: ρ } 1 v {{ 1 A } 1 = ρ } 2 v {{ 2 A } 2 m 1 inkompressibles Fluid: (ρ 1 = ρ 2 = konst) Erhaltung des Volumenstroms

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

12.1 Fluideigenschaften

12.1 Fluideigenschaften 79 Als Fluide bezeichnet man Kontinua mit leicht verschieblichen Teilen. Im Unterschied zu festen Körpern setzen sie langsamen Formänderungen ohne Volumenänderung nur geringen Widerstand entgegen. Entsprechend

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14)

Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Ergänzungsübungen zur Physik für Ingenieure (Maschinenbau) (WS 13/14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung J Hydrodynamik In der Hydrodynamik beschreibt man die

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Einführung in die Technische Strömungslehre

Einführung in die Technische Strömungslehre Einführung in die Technische Strömungslehre Bearbeitet von Gerd Junge 1. Auflage 2011. Buch. 288 S. Hardcover ISBN 978 3 446 42300 8 Format (B x L): 16,7 x 240,3 cm Gewicht: 546 g Weitere Fachgebiete >

Mehr

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320)

10.3.1 Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 2320) 0.3-0.3 Rohrströmung 0.3. Druckverlust in Rohrleitungen bei laminarer Strömung (Re < 30) Bei laminarer Rohrströmung läßt sich der Reibungsverlust theoretisch berechnen, as bei der turbulenten Strömung

Mehr

Kapillarität und Viskosität

Kapillarität und Viskosität Physikalisches Praktikum für das Hauptfach Physik Versuch 05 Kapillarität und Viskosität Sommersemester 2005 Name: Daniel Scholz Mitarbeiter: Hauke Rohmeyer EMail: physik@mehr-davon.de Gruppe: 13 Assistent:

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Grundpraktikum der Physik. Versuch 05. Viskosität von Flüssigkeiten. Durchführung am 09.11.2007. Gruppe D12 Betreuer: Anne Kröske

Grundpraktikum der Physik. Versuch 05. Viskosität von Flüssigkeiten. Durchführung am 09.11.2007. Gruppe D12 Betreuer: Anne Kröske Grundpraktikum der Physik Versuch 05 Viskosität von Flüssigkeiten Durchführung am 09.11.2007 Gruppe D12 Betreuer: Anne Kröske Nadine Kremer nadine.kremer@uni-ulm.de Rainer Pfeiffer rainer.pfeiffer@uni-ulm.de

Mehr

3. Innere Reibung von Flüssigkeiten

3. Innere Reibung von Flüssigkeiten IR1 3. Innere Reibung von Flüssigkeiten 3.1 Einleitung Zwischen den Molekülen in Flüssigkeiten wirken anziehende Van der Waals Kräfte oder wie im Falle des Wassers Kräfte, die von sogenannten Wasserstoffbrückenbindungen

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Strömung realer inkompressibler Fluide

Strömung realer inkompressibler Fluide 4 STRÖMUNG REALER INKOMPRESSIBLER FLUIDE 4.1 EIGENSCHAFTEN REALER FLUIDE 4.1.1 Fluidreibung und Viskosität Wesentlichstes Merkmal realer Fluide ist die Fluidreibung. Sie wurde erstmals von I. Newton (engl.

Mehr

Physik 1 für Chemiker und Biologen 9. Vorlesung

Physik 1 für Chemiker und Biologen 9. Vorlesung Physik 1 für Chemiker und Biologen 9. Vorlesung 19.12.2016 "I am an old man now, and when I die and go to heaven there are two matters on which I hope for enlightenment. One is quantum electrodynamics,

Mehr

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.)

lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) lokaler und globaler konvektiver Wärmeübergang (Oberflächentemperatur T s = const.) Temperaturgrenzschicht Geschwindigkeitsgrenzschicht Vergleich von Geschwindigkeits- und Temperaturgrenzschicht laminare

Mehr

5. Hydro- und Aerodynamik

5. Hydro- und Aerodynamik Hydro- und Aerodynamik: 5. Hydro- und Aerodynamik (Strömung von Fluiden, also flüssigen und gasförmigen Substanzen) blaue Linien Bahnen von Partikeln der Flüssigkeit Dichte der Linien ist ein Maß für die

Mehr

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor

Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Spannungstensor Vektoren, Tensoren, Operatoren Tensoren Rang 0 Skalar p,ρ,t,... Rang 1 Vektor F, v, I,... Rang 2 Dyade }{{} σ, τ,... Spannungstensor Differential-Operatoren Nabla- / x Operator / y in kartesischen / Koordinaten

Mehr

Oberflächenspannung Dichte

Oberflächenspannung Dichte Versuch 1 1 Versuch 1A: Oberflächenspannung Dichte Physikalische Grundbegriffe Druck Schweredruck, hydrostatischer Druck, Auftrieb spezifische Oberflächenenergie, Oberflächenspannung Kapillarität Dichte

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

3.4. Oberflächenspannung und Kapillarität

3.4. Oberflächenspannung und Kapillarität 3.4. Oberflächenspannung und Kapillarität Aus dem Experiment: Flüssigkeitsfaden, Moleküle der Flüssigkeit zeigen Zusammenhalt. Eigenschaften kondensierter Materie: Zwischen den Molekülen herrschen starke

Mehr

Versuch 5 Kapillarität und Viskosität

Versuch 5 Kapillarität und Viskosität Physikalisches A-Praktikum Versuch 5 Kapillarität und Viskosität Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 24.04.2012 Unterschrift: Inhaltsverzeichnis

Mehr

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ******

3.5.6 Geschwindigkeitsprofil (Hagen-Poiseuille) ****** 3.5.6 ****** 1 Motivation Bei der Strömung einer viskosen Flüssigkeit durch ein Rohr ergibt sich ein parabolisches Geschwindigkeitsprofil. 2 Experiment Abbildung 1: Versuchsaufbau zum Der Versuchsaufbau

Mehr

3 Erzwungene Konvektion 1

3 Erzwungene Konvektion 1 3 Erzwungene Konvektion 3. Grunlagen er Konvektion a) erzwungene Konvektion (Strömung angetrieben urch Pumpe oer Gebläse) b) freie Konvektion (Dichteunterschiee aufgrun von Temperaturunterschieen) c) Konensation

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr

1. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Bernoulli - Gleichung. Bernoulli - Gleichung für ideale Flüssigkeiten (reibungsfrei) und ohne Energiezu- und -abfuhr Sie sagt aus, dass jedes Teilchen in einer Stromröhre denselben Wert der spezifischen

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Klausur Strömungsmechanik 1 WS 2009/2010

Klausur Strömungsmechanik 1 WS 2009/2010 Klausur Strömungsmechanik 1 WS 2009/2010 03. März 2010, Beginn 15:00 Uhr Prüfungszeit: 90 Minuten Zugelassene Hilfsmittel sind: Taschenrechner (nicht programmierbar) TFD-Formelsammlung (ohne handschriftliche

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen 1. Mechanismen der Wärmeübertragung Wärmeübertragung ist die Übertragung von Energie in Form eines Wärmestromes. ie erfolgt stets dort, wo Temperaturunterschiede innerhalb eines

Mehr

M 7 Innere Reibung von Flüssigkeiten

M 7 Innere Reibung von Flüssigkeiten M 7 Innere Reibung von Flüssigkeiten 1. Aufgabenstellung 1.1 Bestimmen Sie die dynamische Viskosität von Glyzerin bei Zimmertemperatur nach der Kugelfallmethode. 1.2 Überprüfen Sie, ob für die verwendeten

Mehr

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet:

Auf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: uf vielfachen Wunsch Ihrerseits gibt es bis auf weiteres die Vorlesungen und Übungen und Lösung der Testklausur im Internet: http://www.physik.uni-giessen.de/dueren/ User: duerenvorlesung Password: ******

Mehr

Formel X Leistungskurs Physik 2005/2006

Formel X Leistungskurs Physik 2005/2006 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung

Mehr

Vorlesung STRÖMUNGSLEHRE Zusammenfassung

Vorlesung STRÖMUNGSLEHRE Zusammenfassung Lehrstuhl für Fluiddynamik und Strömungstechnik Vorlesung STRÖMUNGSLEHRE Zusammenfassung WS 008/009 Dr.-Ing. Jörg Franke Bewegung von Fluiden ( Flüssigkeiten und Gase) - Hydro- und Aerostatik > Druckverteilung

Mehr

laminare Grenzschichten Wofür Grenzschichttheorie?

laminare Grenzschichten Wofür Grenzschichttheorie? laminare Grenzschichten Wofür Grenzschichttheorie? mit der Potentialtheorie können nur Druckverteilungen berechnet werden Auftriebskraft Die Widerstandskräfte können nicht berechnet werden. Reibungskräfte

Mehr

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände

Mehr

Technische Strömungslehre Formelsammlung

Technische Strömungslehre Formelsammlung Formelammlung Strömunglehre Seite von 4 Tehnihe Strömunglehre Formelammlung Komreibilität K von Flüigkeiten E FL V V K E Fl Komreibilität von Gaen V Bei Gaen entriht E V Ga vonϑ C ;, 35bar für den Normzutand

Mehr

15 Eindimensionale Strömungen

15 Eindimensionale Strömungen 97 Durch Druckunterschiede entstehen Strömungen, die sich auf unterschiedliche Weise beschreiben lassen. Bei der Lagrange schen oder materiellen Beschreibung betrachtet man das einelne Fluidteilchen, das

Mehr

Einfache Differentialgleichungen

Einfache Differentialgleichungen Differentialgleichungen (DGL) spielen in der Physik eine sehr wichtige Rolle. Im Folgenden behandeln wir die grundlegendsten Fälle 1, jeweils mit einer kurzen Herleitung der Lösung. Dann schliesst eine

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Kugelfallviskosimeter Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

Fahrzeug- und Windradaerodynamik

Fahrzeug- und Windradaerodynamik Fahrzeug- und Windradaerodynamik Geometrisch einfache Körper Dr.-Ing. A. Henze, Prof. Dr.-Ing. W. Schröder Institute of Aerodynamics, RWTH Aachen University Versuchsbedingungen für große Re-Zahlen braucht

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

2. Arbeit und Energie

2. Arbeit und Energie 2. Arbeit und Energie Die Ermittlung der Bewegungsgrößen aus der Bewegungsgleichung erfordert die Berechnung von mehr oder weniger komplizierten Integralen. Für viele Fälle kann ein Teil der Integrationen

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2

Strömung im Rohr. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Physikalisches Grundpraktikum. 1 Aufgabenstellung 2 Fachrichung Physik Physikalisches Grundprakikum Ersell: Bearbeie: Versuch: L. Jahn SR M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Akualisier: am 29. 03. 2010 Srömung im Rohr Inhalsverzeichnis

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner M1 Viskose Strömung durch Kapillaren Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Oberflächenspannung I

Oberflächenspannung I Oberflächenspannung I In einer Flüssigkeit wirkt auf ein Molekül von allen Seiten die gleiche Wechselwirkungskraft mit anderen Molekülen. Diese Symmetrie ist an der Oberfläche verletzt. Ein Molekül hat

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 8. Vorlesung Stefan Hickel Visualisierung Prinzipien zur sinnvollen Ergebnisdarstellung! Achsen immer beschriften Einheiten angeben! Bei Höhenliniendarstellungen und Konturdarstellungen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten

Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten Hydrostatik auch genannt: Mechanik der ruhenden Flüssigkeiten An dieser Stelle müssen wir dringend eine neue physikalische Größe kennenlernen: den Druck. SI Einheit : Druck = Kraft Fläche p = F A 1 Pascal

Mehr

Intermezzo: Das griechische Alphabet

Intermezzo: Das griechische Alphabet Intermezzo: Das griechische Alphabet Buchstaben Name Buchstaben Name Buchstaben Name A, α Alpha I, ι Iota P, ρ Rho B, β Beta K, κ Kappa Σ, σ sigma Γ, γ Gamma Λ, λ Lambda T, τ Tau, δ Delta M, µ My Υ, υ

Mehr

Physik für Mediziner Flüssigkeiten II

Physik für Mediziner  Flüssigkeiten II Modul Physikalische und physiologische Grundlagen der Medizin I Physik für Mediziner http://www.mh-hannover.de/physik.html Flüssigkeiten II Andre Zeug Institut für Neurophysiologie zeug.andre@mh-hannover.de

Mehr

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften

Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Warum braucht ein Flugzeug eine Start- und Landebahn? Wolfgang Oehme, Jens Gabke, Axel Märcker Fakultät für Physik und Geowissenschaften Wettstreit zwischen Gewicht und Auftrieb U-Boot Wasser in den Tanks

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Stoßgesetze Anfänger-Praktikum I WS 11/12 Michael Seidling Timo Raab Praktikumsbericht: Stoßgesetze 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Die Zykloide 4 2. Das Trägheitsmoment

Mehr

254 15. ORDNUNG UND UNORDNUNG

254 15. ORDNUNG UND UNORDNUNG 54 15. ORDNUNG UND UNORDNUNG 15.4 Ordnungsdomänen Da die verschiedenen Untergitter im llgemeinen gleichwertig sind, können die - oder B-tome bei einer an verschiedenen Stellen beginnenden Keimbildung das

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme. Vektorbild Stromlinienbild gerichtetes Stromlinienbild

Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme. Vektorbild Stromlinienbild gerichtetes Stromlinienbild Nur für Lehrzwecke Siehe www.tfh-berlin.de/emr/rechtliche Hinweise 006 Darstellung von Teilchenbewegungen SL/Krz Momentaufnahme Langzeitaufnahme Kurzzeitaufnahme Vektorbild Stromlinienbild gerichtetes

Mehr

Zusammenfassung 23.10.2006, 0. Einführung

Zusammenfassung 23.10.2006, 0. Einführung Zusammenfassung 23.10.2006, 0. Einführung - Umrechnung der gebräuchlichen Einheiten - Teilung/Vervielfachung von Einheiten - Kenngrößen des reinen Wassers (z.b. Dichte 1000 kg/m 3 ) Zusammenfassung 30.10.2006,

Mehr

Wie man sieht ist der Luftwiderstand -abgesehen von der Fahrgeschwindigkeit- nur von Werten abhängig, die sich während der Messung nicht ändern.

Wie man sieht ist der Luftwiderstand -abgesehen von der Fahrgeschwindigkeit- nur von Werten abhängig, die sich während der Messung nicht ändern. Wie hoch ist der - und Luftwiderstand eines Autos? Original s. http://www.arstechnica.de/index.html (Diese Seite bietet außer dieser Aufgabe mehr Interessantes zur Kfz-Technik) Kann man den Luftwiderstand

Mehr

2. Potentialströmungen

2. Potentialströmungen 2. Potentialströmungen Bei der Umströmung schlanker Körper ist Reibung oft nur in einer dünnen Schicht um den Körper signifikant groß. Erinnerung: Strömung um ein zweidimensionales Tragflügelprofil: 1

Mehr

Innere Reibung von Flüssigkeiten

Innere Reibung von Flüssigkeiten Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: Bearbeitet: Versuch: L. Jahn RF M. Kreller J. Kelling F. Lemke S. Majewsky i. A. Dr. Escher Aktualisiert: am 29. 03. 2010 Innere Reibung von

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer Kraft F von

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen:

Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: Gasdynamik Die Gasdynamik beschreibt kompressible Strömungen, d.h. Strömungen mit Dichteänderungen: ρ ρ 0; t x 0;etc. Als Unterscheidungskriterium zwischen inkompressibel und kompressibel wird die Machzahl

Mehr

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor

Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor Strömung mit Ablösung Eine Grenzschicht, der ein positiver Druckgradient aufgeprägt ist, kann ablösen: z.b.: Strömung in einem Diffusor reibungsfreie Strömung: Grenzschicht A(x) u a ρu a x = p x A(x) x

Mehr

Biophysik für Pharmazeuten

Biophysik für Pharmazeuten Transportprozesse II. III. Diffusion (Volumentransport) (Stofftransport) Biophysik für Pharmazeuten 11. 4. 016. Transportprozesse Elektrischer Strom en I. Elektrischer Strom (el. Ladungstransport) IV.

Mehr

Was ist Turbulenz? Max Camenzind Senioren Uni

Was ist Turbulenz? Max Camenzind Senioren Uni Was ist Turbulenz? Max Camenzind Senioren Uni Würzburg @WS2013 Themen Einige Beispiele aus dem täglichen Leben. 1755 leitete Leonhard Euler die Euler- Gleichungen her für ideale Flüssigkeiten; Das mathematische

Mehr

Phasengrenzschichten

Phasengrenzschichten Vortrag im Rahmen der Vorlesung Grenzschichttheorie Phasengrenzschichten Thomas Koller 21. Januar 2011 Technische Universität München Lehrstuhl für Aerodynamik Inhaltsverzeichnis Abbildungsverzeichnis

Mehr

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit

1.9. Hydrodynamik Volumenstrom und Massenstrom Die Strömungsgeschwindigkeit 1.9.1. Volumenstrom und Massenstrom 1.9. Hydrodynamik Strömt eine Flüssigkeit durch ein Gefäss, so bezeichnet der Volumenstrom V an einer gegebenen Querschnittsfläche das durchgeströmte Volumen dv in der

Mehr

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016

Die Brücke ins Studium. Vorkurs Physik. Dr. Oliver Sternal Dr. Nils-Ole Walliser September 2016 Die Brücke ins Studium Vorkurs Physik Dr. Oliver Sternal Dr. Nils-Ole Walliser 19.-23. September 2016 2. Fluidmechanik 2. Fluidmechanik 2.1 Fluidstatik 2. Fluidmechanik 2.1 Fluidstatik 2.1.1 Druck in ruhenden

Mehr

Bachelorarbeit. Untersuchung des Druckverlaufs laminarer und turbulenter Strömungen in gekrümmten Rohren

Bachelorarbeit. Untersuchung des Druckverlaufs laminarer und turbulenter Strömungen in gekrümmten Rohren Bachelorarbeit Untersuchung des Druckverlaufs laminarer und turbulenter Strömungen in gekrümmten Rohren ausgeführt zum Zwecke der Erlangung des akademischen Grades Bachelor of Science unter der Leitung

Mehr

Vordiplomsklausur Physik

Vordiplomsklausur Physik Institut für Physik und Physikalische Technologien der TU-Clausthal; Prof. Dr. W. Schade Vordiplomsklausur Physik 14.Februar 2006, 9:00-11:00 Uhr für den Studiengang: Maschinenbau intensiv (bitte deutlich

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Wellen, Dispersion, Brechnung, stehende Wellen Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 7. Feb. 016 Bernoulli-Gleichung Die Reynoldszahl

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik 1 Kapitel 5: Elektrisches Strömungsfeld 5 Elektrisches Strömungsfeld 5.1 Definition des Feldbegriffs 5. Das elektrische Strömungsfeld 3 5..1 Strömungsfeld in einer zylindrischen

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Materialien WS 2014/15 Dozent: Dr. Andreas Will.

Materialien WS 2014/15 Dozent: Dr. Andreas Will. Master Umweltingenieur, 1. Semester, Modul 42439, Strömungsmechanik, 420607, VL, Do. 11:30-13:00, R. 3.21 420608, UE, Do. 13:45-15:15, R. 3.17 Materialien WS 2014/15 Dozent: Dr. Andreas Will will@tu-cottbus.de

Mehr

(27) (28) 16. Büsching, F.: Küsteningenieurwesen 2002/13.1

(27) (28) 16. Büsching, F.: Küsteningenieurwesen 2002/13.1 . 8. Wellenenergien Für die nergie einer fortschreitenden regulären Sinuswelle liefert die Wellentheorie von AIRY-APAC einfache rgebnisse. s wird dabei die Gesamtenergie aus den Anteilen der potentiellen

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes.

Klausur Strömungslehre a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. ......... (Name, Matr.-Nr, Unterschrift) Klausur Strömungslehre 20. 08. 2004 1. Aufgabe (11 Punkte) a) Beschreiben Sie kurz in Worten das Prinzip des hydrostatischen Auftriebs nach Archimedes. b) Nennen

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Einführung in die Technische Strömungslehre

Einführung in die Technische Strömungslehre Einführung in die Technische Strömungslehre Bearbeitet von Gerd Junge 1. Auflage 2011. Buch. 288 S. Hardcover ISBN 978 3 446 42300 8 Format (B x L): 16,7 x 240,3 cm Gewicht: 546 g Weitere Fachgebiete >

Mehr

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals:

1 Arbeit und Energie. ~ F d~r: (1) W 1!2 = ~ F ~s = Beispiel für die Berechnung eines Wegintegrals: 1 Arbeit und Energie Von Arbeit sprechen wir, wenn eine Kraft ~ F auf einen Körper entlang eines Weges ~s einwirkt und dadurch der "Energieinhalt" des Körpers verändert wird. Die Arbeit ist de niert als

Mehr

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik

Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Trägheit, Masse, Kraft Eine systematische Grundlegung der Dynamik Die grundlegenden Gesetze der Physik sind Verallgemeinerungen (manchmal auch Extrapolationen) von hinreichend häufigen und zuverlässigen

Mehr

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Gerd Junge. Einführung in die Technische Strömungslehre ISBN: Weitere Informationen oder Bestellungen unter Inhaltsverzeichnis Gerd Junge Einführung in die Technische Strömungslehre ISBN: 978-3-446-42300-8 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42300-8 sowie im Buchhandel.

Mehr

Elektrischer Strom S.Alexandrova 1

Elektrischer Strom S.Alexandrova 1 Elektrischer Strom S.Alexandrova 1 Elektrischer Strom Wichtiger Begriff: Strom als Ladungs Transport Jeder Art: - in ioniziertem Gas - in Elektrolytlösung - im Metall - im Festkörper Enstehet wenn elektrisches

Mehr