4. Dynamische Optimierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "4. Dynamische Optimierung"

Transkript

1 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme 4. Dynamische Optimierung Die dynamische Optimierung (DO) betrachtet Entscheidungsprobleme als eine Folge voneinander abhängiger Einzelentscheidungen. Sequentielle Lösung eines über mehrere Stufen bzw. Perioden aufgeteilten Entscheidungsprozesses, wobei auf jeder Stufe jeweils nur die dort existierenden Entscheidungsalternativen betrachtet werden. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 89

2 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme DO-Probleme sind schwieriger zu handhaben als LP, da 1. die Modellierung eines Problems als DO-Problem Übung und Erfahrung voraussetzt und 2. kein allgemeiner Algorithmus für die Lösung von DO-Problemen zur Verfügung steht. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 90

3 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme Allgemeine Form der dynamischen Optimierung Minimiere F(x 1,...,x n ) = unter den Nebenbedingungen: n f k (z k 1,x k ) k=1 z k = t k (z k 1,x k ) für k = 1,...,n z 0 = α, z n = ω z k Z k für k = 1,...,n 1 x k X k (z k 1 ) für k = 1,...,n Operations Research FH Bonn-Rhein-Sieg, WS 08/09 91

4 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme Bezeichnungen: n z k Z k z 0 = α z n = ω x k X k (z k 1 ) t k (z k 1,x k ) f k (z k 1, x k ) Anzahl der Stufen bzw. Perioden Zustand in Periode k Zustandsmenge für Periode k vorgegebener Anfangszustand vorgegebener Endzustand Entscheidungsvariable Entscheidungsmenge für den Zustand z k 1 Transformationsfunktion, beschreibt den Zustandsübergang stufenbezogene Zielfunktion, beschreibt Kosten bzw. Gewinn abhängig von Periode, Zustand und Entscheidung Operations Research FH Bonn-Rhein-Sieg, WS 08/09 92

5 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme Beispiel 4.1. Wir betrachten ein Bestellmengenmodell: Periode k Preis q k Bedarf b k Der Lieferant kann in einer Periode maximal den Bedarf für zwei Perioden liefern. Die Lagerkapazität ist auf den Bedarf von zwei Perioden beschränkt. Das Lager ist zu Beginn und am Ende leer (z 0 = 0, z 4 = 0). Welche Mengen sind einzukaufen, so daß möglichst geringe Beschaffungskosten entstehen? Operations Research FH Bonn-Rhein-Sieg, WS 08/09 93

6 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme Variablen und Mengenbezeichungen: z k Lagerbestand am Ende der Periode k Z k Menge der Möglichen Lagerbestände am Ende von Periode k. Eine genauere Analyse der Nebenbedingungen liefert: Z 0 = {0}, Z 1 = {0, 1},Z 2 = {0, 1,2}, Z 3 = {0, 1}, Z 4 = {0}. x k Zu Beginn von Periode k einzukaufende Mengeneinheiten des Rohstoffs. X k (z k 1 ) Mögliche Bestellmengen für Periode k. Durch die Nebenbedingungen werden die X k wie folgt beschränkt: X 1 = {0, 1, 2} und X k (z k 1 ) = {x k 0 x k 2 z k 1 +b k und x k 2} für k = 2, 3,4. Die X k werden zusätzlich durch die Bedingung, daß am Ende von Periode 4 das Lager leer sein soll, beschränkt. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 94

7 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme f k periodenabhängige Kostenfunktion mit f k = q k x k. t k Die Transformationsfunktionen lauten z k = z k 1 + x k b k für k = 1,...,4. Der Bedarf b k, der innerhalb der Transformationsfunktion auftritt, ist eine sogenannte Störgröße. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 95

8 4. Dynamische Optimierung Allgemeine Form dynamischer Optimierungsprobleme Minimiere 4 F(x 1,x 2,x 3,x 4 ) = q k x k unter den Nebenbedingungen k=1 z k { = z k 1 + x k b k für k = 1,2, 3,4 = 0 für k = 0,4 z k {0, 1,2} für k = 1,2, 3 x k {0,1, 2} für k = 1,2, 3,4 Operations Research FH Bonn-Rhein-Sieg, WS 08/09 96

9 4. Dynamische Optimierung Klassifizierung von DO-Modellen Klassifizierung von DO-Modellen Zeitabstände der Perioden diskretes Modell, wenn Entscheidungen und Zustandsänderungen zu diskreten Zeitpunkten stattfinden, andernfalls kontinuierliches Modell. Bei kontinuierlichen Modellen findet permanent ein Entscheiden (Steuern) statt. Mit diesem Thema befasst sich speziell die Kontrolltheorie. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 97

10 4. Dynamische Optimierung Klassifizierung von DO-Modellen Informationsgrad über die Störgrößen b k Kann die Störgröße nur einen Wert annehmen, dann liegt ein deterministisches Modell vor. Bei einem stochastischen Modell sind die Störgrößen Zufallsvariable. Zustands- und Entscheidungsvariablen können auch Vektoren sein. Z k und X k können endlich oder unendlich sein. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 98

11 4. Dynamische Optimierung Klassifizierung von DO-Modellen Graphische Darstellung des Beispiels (2,18) 2 (0,0) (1,9) (1,12) (2,14) (0,0) (0,0) (0,0) 0 0 (2,18) (2,24) (1,7) (1,10) (1,9) (1,12) Operations Research FH Bonn-Rhein-Sieg, WS 08/09 99

12 4. Dynamische Optimierung Bellmansches Optimalitätsprinzip Bellmansches Optimalitätsprinzip Definition 4.1. Eine Folge (x h, x h+1,...,x k ) von zulässigen Entscheidungen, die einen Zustand z h 1 Z h 1 in einen Zustand z k Z k überführt, heißt Politik. Eine Folge (x h, x h+1,...,x k ) von zulässigen Entscheidungen, die unter Minimierung der Zielfunktion einen Zustand z h 1 Z h 1 in einen Zustand z k Z k überführt, heißt optimale Politik. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 100

13 4. Dynamische Optimierung Bellmansches Optimalitätsprinzip Satz 4.1. [Bellmansches Optimalitätsprinzip] Sei (x 1,...,x k 1,x k,...,x n) eine optimale Politik, die den Anfangszustand z 0 = α in den Endzustand z n = ω überführt. Es sei z k 1 dabei der Zustand in Periode k 1. Dann gilt: (x k,...,x n) ist eine optimale (Teil-)Politik für die Überführung von z k 1 nach z n = ω. (x 1,...,x k 1 ) ist eine optimale (Teil-)Politik für die Überführung von z 0 = α nach z k 1. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 101

14 4. Dynamische Optimierung Bellmansches Optimalitätsprinzip Definition 4.2. P k 1 (z k 1 ) bezeichne das Problem, eine optimale Politik für die Überführung von z k 1 nach z n = ω zu bestimmen. Das Gesamtproblem wird demnach als P 0 (z 0 = α) bezeichnet. F k (z k) bezeichne den optimalen Zielfunktionswert für P k (z k ). Dynamische Optimierung durch Rückwärtsrekursi- Algorithmus 4.1. on. Start: Bestimme für jedes Problem P n 1 (z n 1 ) mit z n 1 Z n 1 die Politik x n, die z n 1 in ω überführt. Iterationen: Für k = n 1,...,1: Bestimme für jedes der Probleme P k 1 (z k 1 ) mit z k 1 Z k 1 eine optimale Politik, die z k 1 in ω überführt sowie den zugehörigen Zielfunktionswert F k 1 (z k 1). Operations Research FH Bonn-Rhein-Sieg, WS 08/09 102

15 4. Dynamische Optimierung Bellmansches Optimalitätsprinzip Hierzu benutzen wir die Bellmansche Funktionalgleichung: F k 1(z k 1 ) = min {f k (z k 1,x k ) + F k(t k (z k 1,x k )) x k X k (z k 1 )} Terminierung: Nach Abschluss von Iteration 1 haben wir den optimalen Zielfunktionswert für das Gesamtproblem berechnet. Die damit verbundene optimale Politik haben wir entweder geeignet abgespeichert oder wir ermitteln sie in einer anschließenden Vorwärtsrechnung. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 103

16 4. Dynamische Optimierung Beispiele Rucksackproblem als DO Maximiere F(x 1,x 2,x 3,x 4 ) = x 1 + 4x 2 + 2x 3 + 3x 4 unter den Nebenbedingungen 3x 1 + 2x 2 + 4x 3 + x 4 9 Die x k sind die Entscheidungsvariablen. x k {0,1} Der Zustand ergibt sich durch die noch verfügbare Kapazität. Also z 0 = 9, sowie Z 1 = {6, 9}, Z 2 = {4,6, 7, 9}, Z 3 = {0, 2,3, 4,5, 6,7, 9} und Z 4 = {0,...,9}. Jeder Zustand aus Z 4 ist ein möglicher Endzustand. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 104

17 4. Dynamische Optimierung Beispiele Wenn w k das Gewicht von Gegenstand k ist, so lautet die Transformationsfunktion z k = z k 1 w k x k. Nur Entscheidungen mit z k = z k 1 w k x k 0 sind zulässig. Also X k (z k 1 ) = {x k {0, 1} z k 1 w k x k 0} Da wir ein Maximierungsproblem haben, ersetzen wir in der Bellmanschen Funktionalgleichung min durch max. Operations Research FH Bonn-Rhein-Sieg, WS 08/09 105

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Operations Research II (Nichtlineare und dynamische Optimierung)

Operations Research II (Nichtlineare und dynamische Optimierung) Operations Research II (Nichtlineare und dynamische Optimierung) 5. April 007 Frank Köller,, Hans-Jörg von Mettenheim & Michael H. Breitner 8.4.007 # Nichtlineare Optimierung: Überblick Allgemeine Form:

Mehr

3. Grundlagen der Linearen Programmierung

3. Grundlagen der Linearen Programmierung 3. Grundlagen der linearen Programmierung Inhalt 3. Grundlagen der Linearen Programmierung Lineares Programm Grafische Lösung linearer Programme Normalform Geometrie linearer Programme Basislösungen Operations

Mehr

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298

Einführung. Kapitel 1. Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Kapitel 1 Einführung Peter Becker (H-BRS) Operations Research I Sommersemester 2015 14 / 298 Inhalt Inhalt 1 Einführung Was ist Operations Research? Planungsprozess im OR Peter Becker (H-BRS) Operations

Mehr

Die Verbindung von Linearer Programmierung und Graphentheorie

Die Verbindung von Linearer Programmierung und Graphentheorie Die Verbindung von Linearer Programmierung und Graphentheorie Definition 5.9. Ein kombinatorisches Optimierungsproblem entspricht einem LP, bei dem statt der Vorzeichenbedingungen x i 0 Bedingungen der

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung

Teil II Optimierung. Peter Buchholz 2016. Modellgestützte Analyse und Optimierung Kap. 9 Einführung Optimierung Teil II Optimierung Gliederung 9 Einführung, Klassifizierung und Grundlagen 10 Lineare Optimierung 11 Ganzzahlige und kombinatorische Optimierung 12 Dynamische Optimierung Literatur: zu 10-12: Neumann,

Mehr

Dynamische Optimierung

Dynamische Optimierung Motivation/Einführung: zwei mögliche Pfade 8 Dynamische Optimierung Dynamische Optimierung Sequentielle Optimierung Stufenoptimierung Für Planungsprobleme, deren Entscheidungsgrundlagen problemseitig nicht

Mehr

Nichtlineare Optimierung ohne Nebenbedingungen

Nichtlineare Optimierung ohne Nebenbedingungen Kapitel 2 Nichtlineare Optimierung ohne Nebenbedingungen In diesem Abschnitt sollen im wesentlichen Verfahren zur Bestimmung des Minimums von nichtglatten Funktionen in einer Variablen im Detail vorgestellt

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen!

Prüfung: Produktion, Logistik und Operations Research SS 2009. Prüfungsbogen. Vom Klausurteilnehmer auszufüllen! Klausur: 1122 1 von 12 Prüfung: Produktion, Logistik und Operations Research SS 29 Prüfer: Prof. Dr. Karl Inderfurth Prüfungsbogen Vom Klausurteilnehmer auszufüllen! Name, Vorname : Fakultät : Matrikelnummer

Mehr

Optimal Control in Air Traffic Management

Optimal Control in Air Traffic Management Optimal Control in Air Traffic Management DGLR Workshop Bestimmung optimaler Trajektorien im Air Traffic Management 23.04.2013 Deutsche Flugsicherung GmbH, Langen 23.04.2013 1 Inhalt. Hintergrund und Motivation.

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Lineare Programmierung

Lineare Programmierung Lineare Programmierung WS 2003/04 Rolle der Linearen Programmierung für das TSP 1954: Dantzig, Fulkerson & Johnson lösen das TSP für 49 US-Städte (ca. 6.2 10 60 mögliche Touren) 1998: 13.509 Städte in

Mehr

Teil II. Nichtlineare Optimierung

Teil II. Nichtlineare Optimierung Teil II Nichtlineare Optimierung 60 Kapitel 1 Einleitung In diesem Abschnitt wird die Optimierung von Funktionen min {f(x)} x Ω betrachtet, wobei Ω R n eine abgeschlossene Menge und f : Ω R eine gegebene

Mehr

(Lineare) stochastische Optimierung

(Lineare) stochastische Optimierung (Lineare) stochastische Optimierung Bsp: Aus zwei Sorten Rohöl wird Benzin und Heizöl erzeugt. Die Produktivität sowie der Mindestbedarf (pro Woche) und die Kosten sind in folgender Tabelle angegeben:

Mehr

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen

Lineare Programmierung. Beispiel: Wahlkampf. Beispiel: Wahlkampf. Mathematische Schreibweise. Lineares Programm. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Einführung Standard- und Schlupfformen Simplex Algorithmus Matthias Zwicker Universität Bern Frühling 2009 2 Beispiel: Wahlkampf Ziel: mit möglichst wenig Werbung eine gewisse

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Sitzplatznr.: Wiederholungsklausur zur Vorlesung Operations Research im Wintersemester

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) 1 Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Einleitung Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom 11. Oktober 2013) 2 Kommunikationsnetzwerke...

Mehr

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf

Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005. Paradigmen im Algorithmenentwurf Babeș-Bolyai Universität Cluj Napoca Fakultät für Mathematik und Informatik Grundlagen der Programmierung MLG5005 Paradigmen im Algorithmenentwurf Problemlösen Problem definieren Algorithmus entwerfen

Mehr

Lineare Optimierung Ergänzungskurs

Lineare Optimierung Ergänzungskurs Lineare Optimierung Ergänzungskurs Wintersemester 2015/16 Julia Lange, M.Sc. Literatur Werner, F.; Sotskov, Y.N. (2006): Mathematics of Economics and Business; Routledge; London Bemerkungen Diese Unterlagen

Mehr

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg

Optimierung I. 1 Einführung. Luise Blank. Wintersemester 2012/13. Universität Regensburg Universität Regensburg Wintersemester 2012/13 1 Einführung Anwendungen Finanzwirtschaft: maximale Gewinnrate unter Beschränkungen an das Risiko; Portfolio von Investments Produktion: maximiere Gewinn bei

Mehr

Exkurs: Dynamische Optimierung

Exkurs: Dynamische Optimierung Exkurs: Dynamische Optimierung Kapitel 4 Literatur Optimierung Mathematical Methods and Models for Economists, Angel de la Fuente, Cambridge University Press Bibliothekssignatur: QH 000FUE Seite 549 580

Mehr

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme

Newton-Verfahren zur gleichungsbeschränkten Optimierung. 1 Gleichungsbeschränkte Optimierungsprobleme Newton-Verfahren zur gleichungsbeschränkten Optimierung Armin Farmani Anosheh (afarmani@mail.uni-mannheim.de) 3.Mai 2016 1 Gleichungsbeschränkte Optimierungsprobleme Einleitung In diesem Vortrag geht es

Mehr

Einführung in die Lineare Optimierung

Einführung in die Lineare Optimierung Kapitel 2 Einführung in die Lineare Optimierung lineare Modelle der relevanten Umwelt werden wegen ihrer Einfachheit häufig gegenüber nichtlinearen Ansätzen vorgezogen, lineare Optimierungsprobleme können

Mehr

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht

Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Anwendungen der Wirtschaftsmathematik und deren Einsatz im Schulunterricht Beispiele wirtschaftsmathematischer Modellierung Lehrerfortbildung, Speyer, Juni 2004-1- Beispiele wirtschaftsmathematischer Modellierung

Mehr

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung

Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Optimierung und Simulation ökonomischer Problemlagen privater Haushalte 3. Vorlesung Rainer Hufnagel / Laura Wahrig 2006 Diese Woche LO - Sensitivitätsanalyse Simulation Beispiel Differenzengleichungen

Mehr

Dynamische Optimierung

Dynamische Optimierung Dynamische Optimierung Michaela Nettekoven Abteilung für Quantitative Betriebswirtschaftslehre und Operations Research Wirtschaftsuniversität Wien 21. Januar 2005 Unter dynamischer Optimierung versteht

Mehr

Mathematik 1 für Wirtschaftsinformatik

Mathematik 1 für Wirtschaftsinformatik Mathematik 1 für Wirtschaftsinformatik Wintersemester 2012/13 Hochschule Augsburg : Gliederung 7 Folgen und Reihen 8 Finanzmathematik 9 Reelle Funktionen 10 Differenzieren 1 11 Differenzieren 2 12 Integration

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Optimalitätskriterien

Optimalitätskriterien Kapitel 4 Optimalitätskriterien Als Optimalitätskriterien bezeichnet man notwendige oder hinreichende Bedingungen dafür, dass ein x 0 Ω R n Lösung eines Optimierungsproblems ist. Diese Kriterien besitzen

Mehr

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis

Optimierungsprobleme. B. Langfeld, M. Ritter, B. Wilhelm Diskrete Optimierung: Fallstudien aus der Praxis Optimierungsprobleme Instanz eines Optimierungsproblems zulässiger Bereich (meist implizit definiert) Zielfunktion Optimierungsrichtung opt {max, min} Optimierungsproblem Menge von Instanzen meist implizit

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Optimierung für Wirtschaftsinformatiker: Lineare Programme

Optimierung für Wirtschaftsinformatiker: Lineare Programme Optimierung für Wirtschaftsinformatiker: Lineare Programme Dr. Nico Düvelmeyer Dienstag, 31. Mai 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Lineare Programme Allgemeine Form 2 Spezielle Darstellungen

Mehr

Lineare Optimierungsmodelle

Lineare Optimierungsmodelle Lineare Optimierungsmodelle Simplex-Methode Vortragender: Michael Schneider Agenda Motivation Operations Research Aufbau linearer Optimierungsmodelle Simplex-Methode Ausblick 2 Problemstellung Futtermischung

Mehr

Der Simplex-Algorithmus

Der Simplex-Algorithmus 5 Lineare Programmierung Simplex-Algorithmus Der Simplex-Algorithmus Standardverfahren zur Lösung von LPs, von G B Dantzig entwickelt Grundidee: Versuche ausgehend von einer Startecke mit einer Ausgangsbasis

Mehr

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus

5. Lokale Suchverfahren. Beispiel TSP: k-change Nachbarschaft. Nachbarschaft. k-opt Algorithmus 5. Lokale Suchverfahren Lokale Suche 5. Lokale Suchverfahren Beispiel TSP: k-change Nachbarschaft Optimale Lösungen können oft nicht effizient ermittelt werden. Heuristiken liefern zwar zulässige Lösungen,

Mehr

Data Mining: Einige Grundlagen aus der Stochastik

Data Mining: Einige Grundlagen aus der Stochastik Data Mining: Einige Grundlagen aus der Stochastik Hagen Knaf Studiengang Angewandte Mathematik Hochschule RheinMain 21. Oktober 2015 Vorwort Das vorliegende Skript enthält eine Zusammenfassung verschiedener

Mehr

Codeoptimierung mit linearer Programmierung

Codeoptimierung mit linearer Programmierung Seminarvortrag Codeoptimierung mit linearer Programmierung Hannes Jaschitsch unh@rz.uni-arlsruhe.de 4.6.003 Inhalt Digitale Signalprozessoren (DSPs) Befehlsanordnung mit dem ritchen Pfad Lineare Programme

Mehr

Lösungen zu den Übungsaufgaben aus Kapitel 5

Lösungen zu den Übungsaufgaben aus Kapitel 5 Lösungen zu den Übungsaufgaben aus Kapitel 5 Ü5.1: Die entsprechende Bellman sche Funktionalgleichung kann angegeben werden als: Vct (, ) = max qt D { r rt t ( min{ q t, c} ) min{ q t, c} Vc ( min{ q t,

Mehr

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Kapitel 5. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 5 Dualität Peter Becker (H-BRS) Operations Research I Sommersemester 2014 241 / 298 Inhalt 5 Dualität Dualitätssätze Zweiphasen-Simplexalgorithmus Peter Becker (H-BRS) Operations Research I Sommersemester

Mehr

Operations Research. Vorlesungsskript

Operations Research. Vorlesungsskript Prof. Dr. Frank Werner Fakultät für Mathematik Institut für Mathematische Optimierung http://math.uni-magdeburg.de/ werner/or-ma.html Operations Research Vorlesungsskript (auszugsweise) Wintersemester

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

2.2 Systeme des Bestandsmanagements

2.2 Systeme des Bestandsmanagements . Systeme des Bestandsmanagements Was ist Bestandsmanagement? Grob gesagt, wird im Bestandsmanagement festgelegt, welche Mengen eines Produktes zu welchem Zeitpunkt zu bestellen sind Hierdurch wird der

Mehr

Lösung allgemeiner linearer Programme

Lösung allgemeiner linearer Programme Lösung allgemeiner linearer Programme Bisher: Für Anwendung des Simplexalgorithmus muss eine primal oder eine dual zulässige Basislösung vorliegen. Für allgemeine lineare Programme können wir dies direkt

Mehr

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206

Unimodularität. Kapitel 1. Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Kapitel 1 Unimodularität Peter Becker (H-BRS) Operations Research II Wintersemester 2015/16 11 / 206 Inhalt 1 Unimodularität Total unimodulare Matrizen Inzidenzmatrix Optimierungsprobleme auf Graphen Peter

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 1_Fallstudie) (Die Thesen zur Vorlesung 1_Fallstudie) das Thema der Vorlesung Grundlagen der Methode der linearen Optimierung (Lineares Optimierungsmodell der Wahl der Produktionsstrategie des ) Prof. Dr. Michal Fendek

Mehr

LINGO: Eine kleine Einführung

LINGO: Eine kleine Einführung LINGO: Eine kleine Einführung Jun.-Prof.Dr. T. Nieberg Lineare und Ganzzahlige Optimierung, WS 2009/10 LINDO/LINGO ist ein Software-Paket, mit dessen Hilfe (ganzzahlige) lineare Programme schnell und einfach

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

Master Planning mit Advanced Planning Systems

Master Planning mit Advanced Planning Systems Horst Tempelmeier Master Planning mit Advanced Planning Systems Modelle und Beispiele Vorwort Vorwort Der vorliegende Text soll einen Einblick in die Grundstruktur der mathematischen Modelle verschaffen,

Mehr

Zugeordneter bipartiter Graph

Zugeordneter bipartiter Graph Zugeordneter bipartiter Graph Für ein Transportproblem sei A = {A 1,...,A m } die Menge der Fabriken und B = {B 1,...,B n } sei die Menge der Warenhäuser. Wir ordnen nun einem Transportproblem einen bipartiten

Mehr

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik

Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Präsenzübungsaufgaben zur Vorlesung Elementare Sachversicherungsmathematik Dozent: Volker Krätschmer Fakultät für Mathematik, Universität Duisburg-Essen, WS 2012/13 1. Präsenzübung Aufgabe T 1 Sei (Z 1,...,

Mehr

Schranken für zulässige Lösungen

Schranken für zulässige Lösungen Schranken für zulässige Lösungen Satz 5.9 Gegeben seien primales und duales LP gemäß der asymmetrischen Form der Dualität. Wenn x eine zulässige Lösung des primalen Programms und u eine zulässige Lösung

Mehr

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1

Übungen zur Linearen Optimierung Sommersemester 2011. Übungsblatt 1 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Graduiertenschule HGS MathComp Dr. Stefan Körkel Magdalena Gottfried Übungen zur Linearen Optimierung Sommersemester 2011

Mehr

Wintersemester 2010/2011

Wintersemester 2010/2011 Methoden des Production and Operations Management Wintersemester 2010/2011 Wintersemester 2010/2011 1 Production and Operations Management 2 Vorlesungszeit: donnerstags, 12-14 14 Uhr Vorlesungsbeginn:

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung mit Ungleichungsnebenbedingungen Dr. Nico Düvelmeyer Freitag, 8. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 NLP Aufgabe KKT 2 Nachtrag

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig)

Tilgungsrechnung. (K n + R n = ln. / ln(q) (nachschüssig) + R. / ln(q) (vorschüssig) (K n + R n = ln n = ln q 1 K 0 + R q 1 (K n q + R q 1 K 0 q + R q 1 ) / ln(q) (nachschüssig) ) / ln(q) (vorschüssig) Eine einfache Formel, um q aus R,n,K n und K 0 auszurechnen, gibt es nicht. Tilgungsrechnung

Mehr

TEILWEISE ASYNCHRONE ALGORITHMEN

TEILWEISE ASYNCHRONE ALGORITHMEN TEILWEISE ASYNCHRONE ALGORITHMEN FRANK LANGBEIN Literatur: D. Berseas, J. Tsitsilis: Parallel and distributed computatoin, pp. 48 489 URI: http://www.langbein.org/research/parallel/ Modell teilweiser asynchroner

Mehr

Probleme aus NP und die polynomielle Reduktion

Probleme aus NP und die polynomielle Reduktion Probleme aus NP und die polynomielle Reduktion Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 15. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl

Operations Research. Linearoptimierung. Bearbeitet von Peter Stingl Operations Research Linearoptimierung earbeitet von Peter Stingl Auflage 22 uch 76 S Hardcover ISN 978 446 228 8 Format ( x L): 4,5 x 2 cm Gewicht: 26 g Wirtschaft > etriebswirtschaft: Theorie & Allgemeines

Mehr

1.2 Wachstum bei endogener Sparquote

1.2 Wachstum bei endogener Sparquote TU Dortmund, WS 2/3, Konjunktur, Wachstum und Beschäftigung 43.2 Wachstum bei endogener Sparquote Das Ramsey-Modell Im Ramsey-Modell, genauer im Ramsey (928) Cass(965) Koopmans (965) Modell, ist die Sparquote

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269

A 95 223 B 125 396 C 75 169 D 105 277 E 115 421 F 85 269 Fachhochschule Köln Fakultät für Wirtschaftswissenschaften Prof. Dr. Arrenberg Raum 221, Tel. 3914 jutta.arrenberg@fh-koeln.de Übungen zur Vorlesung Wirtschaftsstatistik Wiederholungsaufgaben für die Klausur

Mehr

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4)

Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) Modelle und Methoden der Linearen Optimierung (Die Thesen zur Vorlesung 4) das Thema der Vorlesung Die Anwendung der Methoden der Mehrkriterienoptimierung bei der Lösung der ökonomischen Entscheidungsprobleme

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls

4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls 4.9 Deterministische Kellerautomaten Wir haben bereits definiert: Ein PDA heißt deterministisch (DPDA), falls δ(q, a, Z) + δ(q, ɛ, Z) 1 (q, a, Z) Q Σ. Die von einem DPDA, der mit leerem Keller akzeptiert,

Mehr

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1

Doing Economics with the Computer Sommersemester 2002. Excel Solver 1 Universität Bern Kurt Schmidheiny / Manuel Wälti Doing Economics with the Computer Sommersemester 2002 Excel Solver 1 Mit dem Solver unterstützt Excel eine Funktion, mit der u.a. komplex verschachtelte

Mehr

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz

Mathematik für Bioinformatik und Systembiologie. - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz Mathematik für Bioinformatik und Systembiologie - Kapitel Einführung in die Optimierung - Roland Herzog und Dirk Lebiedz WS 2009/10 Universität Freiburg Dieses Vorlesungsskript ist auf der Basis von Vorlesungen

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Operations Research für Logistik

Operations Research für Logistik Operations Research für Logistik Lineare Optimierung (170.202) Ao. Univ. - Prof. Norbert SEIFTER Dipl. - Ing. Stefanie VOLLAND Sommersemester 2012 Lehrstuhl Industrielogistik Lineare Optimierung Inhalte:

Mehr

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 1

Ganzzahlige OR-Methoden: Operations Research II a. Übungsblatt 1 Operations Research und Wirtschaftsinformatik Prof. Dr. P. Recht // Dr. Eva-Maria Sprengel Ganzzahlige OR-Methoden: Operations Research II a Übungsblatt 1 Aufgabe 1 a) Erläutern Sie bitte die allgemeine

Mehr

Optimierung mit Matlab

Optimierung mit Matlab Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof. Dr. L. Cromme Computerbasierte Mathematische Modellierung für Mathematiker, Wirtschaftsmathematiker, Informatiker im Wintersemester

Mehr

Software-Engineering SS03. Zustandsautomat

Software-Engineering SS03. Zustandsautomat Zustandsautomat Definition: Ein endlicher Automat oder Zustandsautomat besteht aus einer endlichen Zahl von internen Konfigurationen - Zustände genannt. Der Zustand eines Systems beinhaltet implizit die

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Outer Approximation für konvexe MINLP-Probleme

Outer Approximation für konvexe MINLP-Probleme Outer Approximation für konvexe MINLP-Probleme im Rahmen des Sears Globale Optimierung unter Leitung von Dr. Johannes Schlöder und Dr. Ekaterina Kostina, Sommersemester 2005, Universität Heidelberg Hans

Mehr

Mathematik-Klausur vom 2. Februar 2006

Mathematik-Klausur vom 2. Februar 2006 Mathematik-Klausur vom 2. Februar 26 Studiengang BWL DPO 1997: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang B&FI DPO 21: Aufgaben 1,2,3,5,6 Dauer der Klausur: 12 Min Studiengang BWL DPO 23:

Mehr

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13

Übungen zur Numerischen Mathematik 2 Sommersemester 2014. Übungsblatt 13 Universität Heidelberg Interdisziplinäres Zentrum für Wissenschaftliches Rechnen Prof. Dr. Dres. h.c. Hans Georg Bock Dr. Christian Kirches Dipl.-Phys. Simon Lenz Übungen zur Numerischen Mathematik 2 Sommersemester

Mehr

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298

Simplex-Verfahren. Kapitel 4. Simplex-Verfahren. Peter Becker (H-BRS) Operations Research I Sommersemester / 298 Kapitel 4 Simplex-Verfahren Peter Becker (H-BRS) Operations Research I Sommersemester 24 86 / 298 Inhalt Inhalt 4 Simplex-Verfahren Dualer Simplexalgorithmus Vermeidung von Zyklen Peter Becker (H-BRS)

Mehr

ANGEBOT FÜR DAS WASSERNETZSYSTEM Projektseminar: Diskrete Optimierung in Wirtschaft und Industrie bei Prof. Dr. Hofmeister

ANGEBOT FÜR DAS WASSERNETZSYSTEM Projektseminar: Diskrete Optimierung in Wirtschaft und Industrie bei Prof. Dr. Hofmeister ANGEBOT FÜR DAS WASSERNETZSYSTEM Projektseminar: Diskrete Optimierung in Wirtschaft und Industrie bei Prof. Dr. Hofmeister Diskrete Optimierung in Wirtschaft und Industrie 07.05.2010 Kaffenberger Rebakovski

Mehr

Optimierung I. Dr. Ulf Lorenz F2.413

Optimierung I. Dr. Ulf Lorenz F2.413 Optimierung I Dr. Ulf Lorenz F2.413 flulo@upb.de Organisation Dozent: Dr. Ulf Lorenz F2.413 Fürstenallee 11 email: flulo@upb.de WWW: http://www.upb.de/cs/flulo (hier auch aktuelle Infos + Ü-Zettel) Vorlesungen:

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit)

3.2 Lineare Optimierung (Entscheidungen unter Sicherheit) 3. Lineare Optimierung (Entscheidungen unter Sicherheit) Betrachtet wird hier der Fall Θ = (bzw. die Situation u(a, ϑ) bzw. l(a,ϑ) konstant in ϑ Θ für alle a A). Da hier keine Unsicherheit über die Umweltzustände

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

Was muss man wissen? Operations Research II. Patrick Elftmann und Matthias Sondermann studium@sp3cialman.net

Was muss man wissen? Operations Research II. Patrick Elftmann und Matthias Sondermann studium@sp3cialman.net Was muss man wissen? Operations Research II Patrick Elftmann und Matthias Sondermann studium@sp3cialman.net 24. Oktober 2005 Vorbemerkung Dies ist eine kleine Zusammenfassung des prüfungsrelevanten Stoffes

Mehr

Lineare Programmierung

Lineare Programmierung Seminar: Intelligente Algorithmen Stefan Kopp, Alfred Kranstedt, Nadine Leßmann Lineare Programmierung Frank Schönmann WS 2003/04 Inhaltsverzeichnis 1 Motivation 3 2 Lineare Programmierung (LP) 4 2.1 Einführendes

Mehr

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1

IV. Spieltheorie. H. Weber, FHW, OR SS07, Teil 7, Seite 1 IV. Spieltheorie 1. Gegenstand der Spieltheorie 2. Einführung in Matrixspiele 3. Strategien bei Matrixspielen 4. Weitere Beispiele 5. Mögliche Erweiterungen H. Weber, FHW, OR SS07, Teil 7, Seite 1 1. Gegenstand

Mehr

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!.

Würfelt man dabei je genau 10 - mal eine 1, 2, 3, 4, 5 und 6, so beträgt die Anzahl. der verschiedenen Reihenfolgen, in denen man dies tun kann, 60!. 040304 Übung 9a Analysis, Abschnitt 4, Folie 8 Die Wahrscheinlichkeit, dass bei n - maliger Durchführung eines Zufallexperiments ein Ereignis A ( mit Wahrscheinlichkeit p p ( A ) ) für eine beliebige Anzahl

Mehr

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling

Approximationsalgorithmen: Klassiker I. Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling Approximationsalgorithmen: Klassiker I Kombinatorische Optimierung Absolute Gütegarantie Graph-Coloring Clique Relative Gütegarantie Scheduling VO Approximationsalgorithmen WiSe 2011/12 Markus Chimani

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Aufgabenblatt 6 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015

Aufgabenblatt 6 zur Lehrveranstaltung Quantitative Methoden der Betriebswirtschaftslehre I Frühjahrssemester 2015 Universität Bern Bern, den. März Professur für Quantitative Methoden der BWL Schützenmattstr., Bern Prof. Dr. Norbert Trautmann, Oliver Strub E-Mail: oliver.strub@pqm.unibe.ch Aufgabenblatt 6 zur Lehrveranstaltung

Mehr

Periodische Fahrpläne und Kreise in Graphen

Periodische Fahrpläne und Kreise in Graphen Periodische Fahrpläne und Kreise in Graphen Vorlesung Algorithmentechnik WS 2009/10 Dorothea Wagner Karlsruher Institut für Technologie Eisenbahnoptimierungsprozess 1 Anforderungserhebung Netzwerkentwurf

Mehr

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Büchi-Automaten. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Diskrete Optimierung

Diskrete Optimierung Diskrete Optimierung Mi 10-12, C118, Sand Dr. Stephanie Reifferscheid Universität Tübingen, WSI 12. Oktober 2011 Dr. Stephanie Reifferscheid Diskrete Optimierung 12. Oktober 2011 1 / 17 Technisches Erreichbarkeit

Mehr

Mathematische Optimierung. Volker John

Mathematische Optimierung. Volker John Mathematische Optimierung Volker John Sommersemester 2007 Inhaltsverzeichnis 1 Einführung 3 I Lineare Optimierung 6 1 Grundlagen 7 2 Geometrische Deutung des Linearen Programms 10 3 Basislösungen eines

Mehr

Inhaltsverzeichnis. 3.1 Beliebige Standorte 103 3.1.1 Ein Standort 103 3.1.2 Mehrere Standorte 114. Kapitel 3 Standortplanung 99

Inhaltsverzeichnis. 3.1 Beliebige Standorte 103 3.1.1 Ein Standort 103 3.1.2 Mehrere Standorte 114. Kapitel 3 Standortplanung 99 Inhaltsverzeichnis Kapitel 1 Einleitung 25 1.1 Operations Management und der Funktionalbereich Operations 26 1.2 Die Inhalte des Buches 28 1.3 Eigenschaften des Buches 29 1.4 Nutzung des Buches 30 1.5

Mehr

8. Planung optimaler Bestellmengen ausgewählte praxisrelevante Bedingungen

8. Planung optimaler Bestellmengen ausgewählte praxisrelevante Bedingungen 8. Planung optimaler Bestellmengen ausgewählte praxisrelevante Bedingungen Definitionen, Grundsätzliches Fertigungslos (Fertigungsauftrag) Als Losgröße wird die Menge gleichartiger Materialien (z.b. Rohmaterial,

Mehr

Wissensbasierte Systeme

Wissensbasierte Systeme WBS4 Slide 1 Wissensbasierte Systeme Vorlesung 4 vom 03.11.2004 Sebastian Iwanowski FH Wedel WBS4 Slide 2 Wissensbasierte Systeme 1. Motivation 2. Prinzipien und Anwendungen 3. Logische Grundlagen 4. Suchstrategien

Mehr