Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Größe: px
Ab Seite anzeigen:

Download "Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH"

Transkript

1 Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg München Stuttgart Wien

2 Was heisst Performance im DWH? Projekt-Performance Kurze Entwicklungszyklen eines DWH-Projekts ETL-Performance Kurze Laufzeiten beim Laden des Data Warehouses Abfrageperformance Kurze Antwortzeiten bei Abfragen auf Data Warehouse Data Warehouse schnell gemacht 2

3 Performance Tuning Mythen Phase Performance Tuning am Ende des Projekts Performance während Design und Implementierung noch unwichtig Kurz vor Produktivsetzung wird das DWH noch getuned Performance-Probleme mit Hardware erschlagen Hardware wird immer schneller und günstiger Mit genügend CPUs und Memory ist Performance kein Problem Tuning-Spezialist macht Datenbank schneller Konfigurationsparameter fast _oracle_enable= true Optimizer-Hint /*+ go_faster */ Data Warehouse schnell gemacht 3

4 Performance Tuning Realität Oft werden grundlegende Architekturgrundsätze missachtet Keine Unterscheidung Core / Data Marts Abfragen direkt auf Core Ungeeignetes Datenmodell ETL-Prozesse werden row-based ausgeführt Updates auf Fakten Unklare Anforderungen an DWH DWH ist Quellsystem-getrieben Sammeln auf Vorrat Falsche Granularität Keine spezifischen Data Marts Performance Tuning beginnt bereits bei Analyse und Design Data Warehouse schnell gemacht 4

5 DWH Architektur Data Warehouse Quellsysteme Staging Area Cleansing Area Core Marts BI-Plattform ETL Goldene Regeln der DWH-Architektur 1. Jedes Data Warehouse besitzt ein Core 2. Benutzer greifen nie direkt aufs Core zu 3. Pro Anwendungsbereich Metadaten wird ein Data Mart erstellt Data Warehouse schnell gemacht 5

6 1. Jedes Data Warehouse besitzt ein Core Data Marts nie direkt aus Quellsystemen laden Einzige Datenquelle für Data Marts ist Core CORE Data Warehouse schnell gemacht 6

7 2. Benutzer greifen nie direkt aufs Core zu Core ist Integrations- und Historisierungsdatenbank Core ist nicht für Benutzerabfragen optimiert Staging Area Data Warehouse Cleansing Area Core Area Mart Area Metadaten Data Warehouse schnell gemacht 7

8 3. Pro Anwendungsbereich ein Data Mart Data Mart ELWMS vermeiden Viele Dimensionen, feine Granularität hohe Komplexität, schlechte Performance Pro Benutzergruppe / Fachbereich spezifische Data Marts Data Marts sind für Benutzergruppe zugeschnitten Für Benutzer einfacher verständlich Problem: Formulierung der Anforderungen Fachbereich muss genaue Anforderungen kennen und auch formulieren können Data Warehouse schnell gemacht 8

9 Projekt-Performance Problemstellung Data Warehouse schnell gemacht 9

10 Projekt-Performance Benutzeranforderungen klar definieren Requirement-Analyse zu Beginn des Projekts Enge Zusammenarbeit zwischen Business und IT Umsetzen, was notwendig ist Wir machen nicht, was der Kunde will sondern was er braucht Anforderungsgetriebene Datenmodellierung ( Top-down ) Saubere DWH-Architektur Integration in Core, nicht in Data Marts Pro Anwendungsbereich ein Data Mart Projektziele etappieren Überschaubare und planbare Releases Data Warehouse schnell gemacht 10

11 Benutzeranforderungen klar formulieren Data Warehouse schnell gemacht 11

12 Datenmodellierung: Bottom-up oder Top-down Data Warehouse Quellsysteme Staging Area Cleansing Area Core Marts BI-Plattform Metadaten Bottom-up Top-down Data Warehouse schnell gemacht 12

13 Releaseplanung: Projektziele etappieren Data Warehouse schnell gemacht 13

14 ETL-Performance Problemstellung Data Warehouse schnell gemacht 14

15 ETL-Performance Überschaubare Transformationsschritte ETL in Teilschritte aufteilen (Layer-Konzept) Vermeidung von komplexen ETL-Mappings Überschaubare Datenmengen Delta Extraction und Incremental Loads Partitionenweises Laden (Partition Exchange) Fast Refreshes von Materialized Views Mengenbasierte Verarbeitung Set-based statt Row-based Vermeidung von prozeduraler Logik Data Warehouse schnell gemacht 15

16 ETL: Transformationsschritte Quellsysteme Staging Area Cleansing Area Core Marts - nur Leserechte - Zugriff über Views oder Files - Deltaextraktion - fachl. Normalis. - Lang-/Kurz-Bez. - NULL-Singleton DWH Unbekannt für ForeignKeys - Versionierung - Filtrierung - Fachl. Aufbereitung - Aggregation Data Warehouse schnell gemacht 16

17 ETL: Set-based vs. Row-based Verarbeitung Set-based ETL Row-based ETL INSERT INTO cor_sales SELECT * from stg_sales; DECLARE CURSOR cur_sales IS SELECT * FROM stg_sales; BEGIN FOR c IN cur_sales LOOP INSERT INTO cor_sales VALUES c; END LOOP; END; / Data Warehouse schnell gemacht 17

18 Abfrageperformance Problemstellung Data Warehouse schnell gemacht 18

19 Abfrageperformance: Dimensionales Modell Anzahl Dimensionen beschränken Skalierung des Data Marts Aktualisierungshäufigkeit Granularität Historyfenster High granularity High granularity High Performance of User Queries OLAP Source Large History Window High Performance of User Queries DSS System Large History Window High Timeliness High Timeliness Data Warehouse schnell gemacht 19

20 Abfrageperformance: Physisches DB-Design Dimensionstabellen: Pro Dimension eine Tabelle (Star Schema) Primary Key Index auf jeder Dimensionstabelle Fakttabellen: Fakttabellen nach Datum partitionieren Foreign Key auf Dimensionstabellen Bitmap Index pro Foreign Key ev. zusätzliche Bitmap Join Indexes Aggregationstabellen: Materialized Views für Hierarchiestufen ev. Bitmap Indexes auf Materialized Views Dimension Dimension Fact Table Dimension Dimension Data Warehouse schnell gemacht 20

21 Performanceaspekte im DWH Kernaussagen Performanceaspekte immer beachten, nicht erst am Ende des Projekts Saubere DWH-Architektur ist Grundlage für gute Performance Daten sind immer im Spiel. Zahlreiche Oracle-Features für Performanceoptimierung wenn man sie richtig einsetzt Data Warehouse schnell gemacht 21

22 Weiterführende Informationen Artikel Data Warehouse schnell gemacht Trivadis Download Area Trivadis-Kurs Data Warehousing mit Oracle (O-DWH) Data Warehouse schnell gemacht 22

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

Oracle In-Memory & Data Warehouse: Die perfekte Kombination?

Oracle In-Memory & Data Warehouse: Die perfekte Kombination? : Die perfekte Kombination? DOAG Konferenz, 16. November 2016 Dani Schnider, Trivadis AG @dani_schnider BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENF HAMBURG KOPENHAGEN LAUSANNE MÜNCHEN

Mehr

Welche Daten gehören ins Data Warehouse?

Welche Daten gehören ins Data Warehouse? Welche Daten gehören ins Warehouse? Dani Schnider Principal Consultant 9. Januar 2012 In vielen DWH-Projekten stellt sich die Frage, welche Daten im Warehouse gespeichert werden sollen und wie dieser Datenumfang

Mehr

Performance by Design Wie werden performante ETL-Prozesse erstellt?

Performance by Design Wie werden performante ETL-Prozesse erstellt? Performance by Design Wie werden performante ETL-Prozesse erstellt? Reinhard Mense ARETO Consulting Bergisch Gladbach Schlüsselworte: DWH, Data Warehouse, ETL-Prozesse, Performance, Laufzeiten, Partitionierung,

Mehr

Data Warehousing mit Oracle

Data Warehousing mit Oracle Data Warehousing mit Oracle Business Intelligence in der Praxis von Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker 1. Auflage Hanser München 2011 Verlag C.H. Beck im Internet: www.beck.de ISBN

Mehr

So beschleunigen Sie Ihre ETL-Prozesse

So beschleunigen Sie Ihre ETL-Prozesse So beschleunigen Sie Ihre ETL-Prozesse Dani Schnider Principal Consultant 15. September 2015 Erleben Sie auch hin und wieder die Situation, dass die Nacht zu kurz ist? Oder mit anderen Worten: Der nächtliche

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

Oracle-Statistiken im Data Warehouse effizient nutzen

Oracle-Statistiken im Data Warehouse effizient nutzen Oracle-Statistiken im Data Warehouse effizient nutzen Reinhard Mense ARETO Consulting Köln Schlüsselworte: DWH, Data Warehouse, Statistiken, Optimizer, Performance, Laufzeiten Einleitung Für die performante

Mehr

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis DOAG Konferenz 2010 Claus Jordan Senior Consultant, Trivadis GmbH 16.11.2010 Basel Bern Lausanne Zürich Düsseldorf

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Leseprobe. Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker. Data Warehousing mit Oracle. Business Intelligence in der Praxis

Leseprobe. Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker. Data Warehousing mit Oracle. Business Intelligence in der Praxis Leseprobe Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker Data Warehousing mit Oracle Business Intelligence in der Praxis ISBN: 978-3-446-42562-0 Weitere Informationen oder Bestellungen unter

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

Nach Data Warehousing kommt Business Intelligence

Nach Data Warehousing kommt Business Intelligence Nach Data Warehousing kommt Business Intelligence Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Business Intelligence, Data Warehouse Zusammenfassung Data Warehouse bedeutet, dass operative

Mehr

Das generierte Data Warehouse

Das generierte Data Warehouse Das generierte Data Warehouse DOAG BI Konferenz 2012 Gregor Zeiler BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Erwartungshaltungen und Hoffnungen

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Performanceaspekte in der SAP BI Modellierung

Performanceaspekte in der SAP BI Modellierung Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

Oracle Warehouse Builder 3i

Oracle Warehouse Builder 3i Betrifft Autoren Art der Info Oracle Warehouse Builder 3i Dani Schnider (daniel.schnider@trivadis.com) Thomas Kriemler (thomas.kriemler@trivadis.com) Technische Info Quelle Aus dem Trivadis Technologie

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2004 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

Die Oracle BI Trilogie von Trivadis

Die Oracle BI Trilogie von Trivadis Die Oracle BI Trilogie von Trivadis Teil 2 - Aufbau einer DWH- und BI-Landschaft Zürich, 25. November 2009 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg München Stuttgart

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015

Near Realtime ETL mit Oracle Golden Gate und ODI. Lutz Bauer 09.12.2015 Near Realtime ETL mit Oracle Golden Gate und ODI Lutz Bauer 09.12.2015 Facts & Figures Technologie-orientiert Branchen-unabhängig Hauptsitz Ratingen 240 Beschäftigte Inhabergeführt 24 Mio. Euro Umsatz

Mehr

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU BLUEFORTE GmbH Dirk Lerner 25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU 1 Elemente des Data Vault (Basic) HUB

Mehr

Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Aus unserer Projekterfahrung und Forschung

Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Aus unserer Projekterfahrung und Forschung Betrifft Optimizer Autor Urs Meier (urs.meier@trivadis.com) Art der Info Technical Info (Februar 2002) Quelle Aus unserer Projekterfahrung und Forschung Einführung Mit jedem Oracle Release nimmt die Anzahl

Mehr

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04.

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04. Data Vault Modellierungsmethode für agile Data Warehouse Systeme Dr. Bodo Hüsemann Informationsfabrik GmbH DOAG BI, München, 17.04.2013 Die Informationsfabrik Die Informationsfabrik macht erfolgreiche

Mehr

Data Warehousing. DWH Projekte. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. DWH Projekte. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing DWH Projekte Ulf Leser Wissensmanagement in der Bioinformatik Inhalt DWH Projekte Spezifika Die kritischen Punkte Warum scheitern DWH Projekte? Ulf Leser: Data Warehousing, Vorlesung,

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009

Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009 Modellbasierte Business Intelligence in der Praxis Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4.

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht

Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Kampagnenmanagement mit Siebel Marketing/Oracle BI ein Praxisbericht Thomas Kreuzer ec4u expert consulting ag Karlsruhe Schlüsselworte: Kampagnenmanagement Praxisbericht Siebel Marketing Oracle BI - ec4u

Mehr

Wie sicher sind Database Links?

Wie sicher sind Database Links? Wie sicher sind Database Links? Dani Schnider Principal Consultant 1. Mai 2013 In vielen Data Warehouses werden die Quelldaten über Database Links in die Staging Area geladen. Dabei wird häufig die Frage

Mehr

Das generierte Data Warehouse

Das generierte Data Warehouse Das generierte Data Warehouse Aspekte beim Einsatz von DWH-Generatoren Peter Welker (Trivadis GmbH) BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Oracle-Statistiken im Data Warehouse effizient nutzen

Oracle-Statistiken im Data Warehouse effizient nutzen Zur performanten Ausführung von Berichten und Ad-hoc-Abfragen eines BI-Systems sind beim Oracle Optimizer aussagekräftige und aktuelle Statistiken für die Tabellen und Indizes von essenzieller Bedeutung.

Mehr

Zeitlich abhängig von OWB?

Zeitlich abhängig von OWB? Zeitlich abhängig von OWB? 24. April 2007 Beat Flühmann Trivadis AG > IT Lösungsanbieter» Application Development, Application Performance Management, Business Communication, Business Intelligence, Managed

Mehr

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3 vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2

Mehr

Fehlertolerante Ladeprozesse gegen schlaflose Nächte

Fehlertolerante Ladeprozesse gegen schlaflose Nächte Fehlertolerante Ladeprozesse gegen schlaflose Nächte Dani Schnider Principal Consultant 19. September 2012 Mitten in der Nacht bricht die ETL-Verarbeitung ab, weil ein falscher oder unvollständiger Datensatz

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag

DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH. Referent: Ilona Tag DWH Best Practices das QUNIS Framework 80 Jahre Erfahrung bei der Modellierung & dem Betrieb von DWH Referent: Ilona Tag Agenda 10.00 10.30 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.30 11.00 11.00

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

BI around the world - Globale Reporting Lösungen bei Continental Automotive

BI around the world - Globale Reporting Lösungen bei Continental Automotive BI around the world - Globale Reporting Lösungen bei Continental Automotive Stefan Hess Trivadis GmbH Stuttgart Herbert Muckenfuss Continental Nürnberg Schlüsselworte: Oracle BI EE, Business Intelligence,

Mehr

Das Ende von OWB was nun? Migrationspfade für OWB-Projekte Dani Schnider Stanislav Lando

Das Ende von OWB was nun? Migrationspfade für OWB-Projekte Dani Schnider Stanislav Lando Migrationspfade für OWB-Projekte Dani Schnider Stanislav Lando BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENF HAMBURG KOPENHAGEN LAUSANNE MÜNCHEN STUTTGART WIEN ZÜRICH Agenda 1. Einleitung

Mehr

VOM PROZESS ÜBER IN-MEMORY DATENBANKEN ZUM COCKPIT

VOM PROZESS ÜBER IN-MEMORY DATENBANKEN ZUM COCKPIT TDWI 2015 OMNICHANNEL PERFORMANCE TRACKING VOM PROZESS ÜBER IN-MEMORY DATENBANKEN ZUM COCKPIT Dominik Imark / Reinhard Mense 28.05.2015 Agenda VORSTELLUNG MANOR / ARETO PROBLEMSTELLUNG VORGEHEN ARCHITEKTUR

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

SAP HANA ist schnell erklärt. TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag

SAP HANA ist schnell erklärt. TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag SAP HANA ist schnell erklärt TOBA Trainerwochenende vom 09. - 12. Mai 2013 in Prag Ihr Referent Steckbrief Name: Miroslav Antolovic Jahrgang: 1975 Stationen: SAP, Walldorf 1999-2004 Realtech, Walldorf

Mehr

Automatisierte Datenmigration mit dynamischen SQL

Automatisierte Datenmigration mit dynamischen SQL Automatisierte Datenmigration mit dynamischen SQL Rolf Wesp Consultant Rolf.Wesp@trivadis.com Düsseldorf, 27. Oktober 2009 Baden Basel Bern Brugg Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br.

Mehr

Oracle DWH Konferenz Neuss

Oracle DWH Konferenz Neuss Oracle DWH Konferenz Neuss Migration OWB to ODI Martin de Gooijer Prinzipal Consultant BI BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Migration

Mehr

Wenn die Fakten zu früh eintreffen

Wenn die Fakten zu früh eintreffen Wenn die Fakten zu früh eintreffen Dani Schnider Principal Consultant 21. Dezember 2011 Eine typische Problemstellung, die beim Laden von Daten in ein Data Warehouse berücksichtigt werden muss, sind Fakten,

Mehr

www.braunconsult.de SAP BW 7.3 & SAP HANA

www.braunconsult.de SAP BW 7.3 & SAP HANA Performanceaspekte in der SAP BI Modellierung SAP BW 7.3 & SAP HANA Performance Indizes Aggregate DSO & InfoCube BWA SAP HANA Empfehlung 2 Performance Performance bedeutet, unter gegebenen Anforderungen

Mehr

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009 Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar 24. September 2009 Unternehmensdarstellung Burda Digital Systems ist eine eigenständige und

Mehr

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05.

Vom Single Point of Truth zur Single Version of the Facts. Data Warehousing zu Beginn des BigData-Zeitalters. inspire IT - Frankfurt 11. 12.05. Vom Single Point of Truth zur Single Version of the Facts Data Warehousing zu Beginn des BigData-Zeitalters inspire IT - Frankfurt 11. 12.05.2015 Fahmi Ouled-Ali Kabel Deutschland Marian Strüby OPITZ CONSULTING

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

SQL-basierte SCD2-Versionierung hierarchischer Strukturen

SQL-basierte SCD2-Versionierung hierarchischer Strukturen SQL-basierte SCD2-Versionierung hierarchischer Strukturen Meik Truschkowski nobilia-werke J. Stickling GmbH & Co. KG Verl Projektleiter Business Intelligence und Data Warehousing 1 SQL-basierte SCD2-Versionierung

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Analytic mit Oracle BI relational oder besser multidimensional? 8. Oracle BI & DWH Konferenz, 20.03.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Optimale Performance durch Constraints im Data Warehouse

Optimale Performance durch Constraints im Data Warehouse Optimale Performance durch Constraints im Data Warehouse Dani Schnider Trivadis AG Zürich/Glattbrugg, Schweiz Einleitung Die Frage, ob und in welchem Umfang Datenbankconstraints in einem Data Warehouse

Mehr

Oracle 10g Einführung

Oracle 10g Einführung Kurs Oracle 10g Einführung Teil 5 Einführung Timo Meyer Administration von Oracle-Datenbanken Timo Meyer Sommersemester 2006 Seite 1 von 16 Seite 1 von 16 Agenda 1 Tabellen und Views erstellen 2 Indizes

Mehr

Vollständig generisches DWH für kleine und mittelständische Unternehmen

Vollständig generisches DWH für kleine und mittelständische Unternehmen Vollständig generisches DWH für kleine und mittelständische Unternehmen Marc Werner Freiberufler Berlin Schlüsselworte: Wirtschaftlichkeit, Kostenreduzierung, Metadaten, Core Data Warehouse, Slowly Changing

Mehr

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4 Contents Data Warehouse - ETL Prozess Version: July 10, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Bachelor of Eng. (Wirtschafts-Ing.-wesen)

Bachelor of Eng. (Wirtschafts-Ing.-wesen) Persönliche Daten Name Philipp Müller Geburtsdatum 21.11.1982 Berufsausbildung Studium Industriekaufmann Bachelor of Eng. (Wirtschafts-Ing.-wesen) Kompetenzen Methodisch Datenmodellierung Fachlich Allgemeines

Mehr

Analyse und Reporting in einem Zeitschriftenverlag

Analyse und Reporting in einem Zeitschriftenverlag Oracle BI im Einsatz Analyse und Reporting in einem Zeitschriftenverlag Claus Jordan Consultant Claus.Jordan@trivadis.com +49 (0) 162-295 96 43 Düsseldorf, 12. März 2009 Basel Baden Bern Brugg Lausanne

Mehr

ITGAIN Fach- und Technikspezialist

ITGAIN Fach- und Technikspezialist ITGAIN Fach- und Technikspezialist KOMPETENZ GEWINNBRINGEND EINSETZEN. Copyright 2012 ITGAIN GmbH 1 SPoT Wir bringen Ihre Informationen auf den Punkt. Hamburg, 07.05.2012 FACTORY-ANSATZ FÜR ETL-PROZESSE

Mehr

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198

Bibliografische Informationen digitalisiert durch http://d-nb.info/995021198 Auf einen Blick 1 Einleitung 15 2 Datenbankentwurf 23 3 Datenbankdefinition 43 4 Datensätze einfügen (INSERT INTO) 95 5 Daten abfragen (SELECT) 99 6 Daten aus mehreren Tabellen abfragen (JOIN) 143 7 Unterabfragen

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Best Practices: BI mit Open-Source-Tools

Best Practices: BI mit Open-Source-Tools Best Practices: BI mit Open-Source-Tools Alf Hellmund - GIUA 2009 Seite 1 Agenda Einleitung Best Practices Fazit Vorstellung & Motivation Vorteile Architektur & Entwurf Datenmodellierung ETL Reporting

Mehr

Raus aus der Bl-Falle

Raus aus der Bl-Falle Ronald Bachmann, Dr. Guido Kemper Raus aus der Bl-Falle Wie Business Intelligencezum Erfolg wird mitp Die Autoren 13 Vorwort 15 1 Einleitung 21 1.1 Was ist Business Intelligence (BI)? 21 1.2 Motive zur

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Architektur und Komponenten von Data Warehouses Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Architektur Komponenten ETL Ulf Leser: Data Warehousing

Mehr

Seminar C16 - Datenmodellierung für SAP BW

Seminar C16 - Datenmodellierung für SAP BW C16: Datenmodellierung für SAP BW Ein Seminar der DWH academy Seminar C16 - Datenmodellierung für SAP BW Dieses Seminar soll einen umfassenden Einblick in die Datenmodellierung beim Einsatz von SAP BW

Mehr

THEMA: SAS DATA INTEGRATION STUDIO FÜR MEHR TRANSPARENZ IM DATENMANAGEMENT EVA-MARIA KEGELMANN

THEMA: SAS DATA INTEGRATION STUDIO FÜR MEHR TRANSPARENZ IM DATENMANAGEMENT EVA-MARIA KEGELMANN WEBINAR@LUNCHTIME THEMA: SAS DATA INTEGRATION STUDIO FÜR MEHR TRANSPARENZ IM DATENMANAGEMENT EVA-MARIA KEGELMANN HERZLICH WILLKOMMEN BEI WEBINAR@LUNCHTIME Moderation Anne K. Bogner-Hamleh SAS Institute

Mehr

SQL (Structured Query Language) Schemata Datentypen

SQL (Structured Query Language) Schemata Datentypen 2 SQL Sprachelemente Grundlegende Sprachelemente von SQL. 2.1 Übersicht Themen des Kapitels SQL Sprachelemente Themen des Kapitels SQL (Structured Query Language) Schemata Datentypen Im Kapitel SQL Sprachelemente

Mehr

Änderungen erkennen Schneller handeln Stefan Panek. Senior Consultant Christoph Jansen. Consultant 23.10.2008

Änderungen erkennen Schneller handeln Stefan Panek. Senior Consultant Christoph Jansen. Consultant 23.10.2008 Änderungen erkennen Schneller handeln Stefan Panek. Senior Consultant Christoph Jansen. Consultant 23.10.2008 Seit der Datenbankversion 9i bietet Oracle das Feature Change Data Capture an. Aber was genau

Mehr

Präsentation der Bachelorarbeit

Präsentation der Bachelorarbeit Präsentation der Bachelorarbeit Einrichtung einer BI-Referenzumgebung mit Oracle 11gR1 Jörg Bellan Hochschule Ulm Fakultät Informatik Institut für Betriebliche Informationssysteme 15. Oktober 2009 Agenda

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr

Data Warehouse in der Telekommunikation

Data Warehouse in der Telekommunikation Data Warehouse in der Telekommunikation Hans-Friedrich Pfeiffer Talkline GmbH & Co.KG Elmshorn, 11.06.2007 Übersicht Historie Struktureller Aufbau des Dara Warehouse Anforderungen an das Data Warehouse

Mehr

Index. Symbole. Bitmap Index 219 Bridge Table 48, NF-Modell 37

Index. Symbole. Bitmap Index 219 Bridge Table 48, NF-Modell 37 Index Symbole 3NF-Modell 37 A Abfrageperformance 14, 18, 107, 215 f. ADAPT-Notation 56, 61 Ad-hoc-Analyse 13 f., 17, 238 Aggregationen 41, 68, 229 Aggregationstabellen 230 Änderungsmarker 81 Anforderungsgetriebene

Mehr

ETL Monitoring & Tuning durch Auswertung der OWB Laufzeit-Metadaten. Referent: Lutz Bauer, Leiter CC Data Integration, MT AG

ETL Monitoring & Tuning durch Auswertung der OWB Laufzeit-Metadaten. Referent: Lutz Bauer, Leiter CC Data Integration, MT AG ETL Monitoring & Tuning durch Auswertung der OWB Laufzeit-Metadaten Referent: Lutz Bauer, Leiter CC Data Integration, MT AG MT AG managing technology Key-facts: 1994: Gründung als MT Software GmbH 2000:

Mehr

adcubum ACADEMY. Die Vertiefung von Hochstehendem. SQL-Datenbankkurse

adcubum ACADEMY. Die Vertiefung von Hochstehendem. SQL-Datenbankkurse adcubum ACADEMY. Die Vertiefung von Hochstehendem. SQL-Datenbankkurse Rubrik: Datenbanken Einleitung adcubum SYRIUS legt alle Bewegungsdaten in der Datenbank ab. Als Consultant, Parametrierer, Kundendienstmitarbeitender,

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format.

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format. Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH Gerd Schandert, Neuss den 18.03.2014 Agenda 1. Vorstellung Auftraggeber 2. Förderung allgemein 3. Schichten im Data Warehouse 4.

Mehr

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT Meik Truschkowski Architekt für Business Intelligence und Data Warehousing nobilia-werke J. Stickling GmbH & Co. KG Verl, den 31. Oktober 2011 UNTERNEHMENSPROFIL

Mehr

Praxishandbuch SAP BW 3-1

Praxishandbuch SAP BW 3-1 Norbert Egger Praxishandbuch SAP BW 3-1 Technische Universität DarmsUdt FACHBEREICH INFORMATIK BIBLIOTHEK Inventar-Nr.: Ä/A< Sachgebiete: Standort- Co Galileo Press Inhalt Vorwort 13 Zu diesem Buch 17

Mehr

IBM Informix Tuning und Monitoring

IBM Informix Tuning und Monitoring Seminarunterlage Version: 11.01 Copyright Version 11.01 vom 25. Juli 2012 Dieses Dokument wird durch die veröffentlicht. Copyright. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

MySQL in großen Umgebungen

MySQL in großen Umgebungen MySQL in großen Umgebungen 03.03.2011 CeBIT Referent: Bernd Erk Agenda DESTINATION TIME REMARK KURZVORSTELLUNG MYSQL STATUS QUO STORAGE ENGINES MONITORING UND MANAGEMENT ENTERPRISE FEATURES FRAGEN UND

Mehr

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009

Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 Hochschule Darmstadt DATENBANKEN Fachbereich Informatik Praktikum 3 Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.09.2009 PL/SQL Programmierung Anwendung des Cursor Konzepts und Stored Procedures Und Trigger

Mehr

Vergessene (?) SQL- und PL/SQL- Funktionen

Vergessene (?) SQL- und PL/SQL- Funktionen Vergessene (?) SQL- und PL/SQL- Funktionen Folge 1 Vortrag DOAG-Regiogruppe Freiburg/Südbaden 29.01.13 bulk collect (1) Aufgabenstellung: ca. 50.000 eingelesene Werte an Hand einer ID auf eine vorhandene

Mehr

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt.

Hochschule Karlsruhe Technik und Wirtschaft- 10.7.2013. Anhänge: Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Prof. Schmidt. Fakultät für Informatik und Wirtschaftsinformatik SS 2013 Datenbanken und Informationssysteme II Szenario: Projektverwaltung. Es gibt Projekte, Projektleiter, Mitarbeiter und ihre Zuordnung zu Projekten.

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr