Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik"

Transkript

1 Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf. Aus den Eiern schlüpfen wenig später Larven. Der Larvenbestand nimmt von Jahr zu Jahr durch Witterungseinflüsse, aber auch durch den Verzehr durch andere Tiere, ab. Im dritten Jahr verpuppen sich die Larven, und aus einem Teil der Puppen entwickeln sich im darauf folgenden Jahr Weibchen, die wieder 9 Eier legen. Die jährliche Entwicklung dieser Insektenpopulation wird durch die nachstehende Populationsmatrix A beschrieben: 9 A =. a) Stellen Sie das beschriebene Modell mit einem Übergangsgraphen dar und beschreiben Sie die biologischen Bedeutungen der von Null abweichenden Koeffizienten der Matrix A. b) In der folgenden Tabelle ist eine Anfangspopulation p der oben genannten Insekten gegeben, die jeweils ihrem Alter entsprechend gegliedert sind: Alter Name Anzahl Jahr Larven 9 Jahre Larven Jahre Puppen 9 Jahre Weibchen 7 Bestimmen Sie den Populationsvektor nach einem Jahr ( p ). Geben Sie an, wie Sie die Population nach Jahren unter ausschließlicher Verwendung des Anfangspopulationsvektors p und der Matrix A berechnen könnten. P Betrachten Sie folgende Übersicht. Dabei ist die Zeit in Jahren angegeben, der Populationsvektor besteht aus den Individuen der in b) genannten Teilgruppen, und die Gesamtpopulation ist die Summe der Individuen in den Teilgruppen, also ohne die männlichen Insekten. Zeit Populationsvektor Gesamtpopulation (Summe) p = (9 9 7) 6 p = (6 9) 67 9 p = (8 ) p = (9 7 7 ) 8 8 p = p = (9 9 7) 6 5 P Ma-LKLM-AWT Seite von 5

2 Abitur 8 c) Skizzieren Sie die jeweiligen Werte der Gesamtpopulation in anliegendes Koordinatensystem. Beschreiben Sie, wie sich die Populationsvektoren und damit die Gesamtpopulation in den kommenden Jahren nach dem Modell entwickeln werden, und skizzieren Sie entsprechend den weiteren Verlauf der Gesamtpopulation bis zum Jahr. Bestimmen Sie den Populationsvektor nach 5 Jahren ( p 5 ) und den Populationsvektor im Jahr vor Beginn der Beobachtung ( p ) (bei Verwendung des bisherigen Modells). P d) Die in c) betrachtete Eigenart des verwendeten Modells kann von der Matrix abhängen, aber auch von der Startpopulation. Geben Sie begründet die Eigenschaft der Matrix A an, die unabhängig von der Startpopulation zu Ergebnissen wie in c) beschrieben führt. Untersuchen Sie, ob es Populationsvektoren ( p x ) gibt, die sich jährlich wiederholen, und bestimmen Sie gegebenenfalls einen dieser Populationsvektoren. 5 P Zu den eben angesprochenen Ursachen für bestimmte Eigenschaften der Population folgt jetzt ein rein mathematisches Beispiel: a b Gegeben ist eine allgemeine Populationsmatrix P: P = ; a * und < b,c,d <. c d e) Eine quadratische Matrix M heißt zyklische Matrix, wenn es eine natürliche Zahl n gibt, so dass n gilt: M = E. Zeigen Sie, dass die obige Populationsmatrix P für n = und für n = nicht zyklisch sein kann. Ermitteln Sie die Bedingungen für a, b, c und d, damit gilt: P = E. 5 P Die folgenden beiden Aufgaben beziehen sich wieder auf das durch die Matrix A beschriebene Modell, das jetzt neuen Situationen angepasst werden soll: f) Durch eine spürbare Veränderung der Trocken- und Regenzeiten, die von Wissenschaftlern auf den allseits diskutierten Klimawandel zurück geführt wird, halbiert sich seit einigen Jahren bei sonst gleich bleibenden Überlebensraten die Anzahl der von den Weibchen gelegten Eier. Bestimmen Sie die neue Populationsmatrix A neu. Es gilt: A neu =. Interpretieren Sie, wie sich diese Veränderung auf die langfristige Entwicklung der Insektenpopulation auswirkt. P g) Inzwischen lässt sich sogar feststellen, dass die schon erwähnten Veränderungen der Trocken- und Regenzeiten nicht nur die Anzahl der von den Weibchen gelegten Eier halbiert hat, sondern auch dazu geführt hat, dass ein Zwölftel der Larven sich bereits verpuppt, also eine Generation überspringt. Damit entwickelt sich nur noch ein Viertel der Larven zu Larven, also wie bisher. Bestimmen Sie die neue Populationsmatrix A neu. Begründen Sie, warum bei dieser Populationsentwicklung die Bestimmung von Vorjahresbeständen nicht zu jedem beliebigen Populationsvektor möglich ist, und interpretieren Sie diese Fälle im Sachkontext der Aufgabe. 5 P Ma-LKLM-AWT Seite von 5

3 Abitur 8 Anlage zur Aufgabe Insektenpopulation Bitte beachten Sie: In x-richtung wird die Zeit der Beobachtung in Jahren aufgetragen, steht für den Beginn der Beobachtung der Insektenpopulation. In y-richtung wird jeweils die Anzahl der Gesamtpopulation (als Summe der Teilgruppen) in aufgetragen Gesamtpopulation in Zeit seit Beginn der Untersuchung in Jahren Ma-LKLM-AWT Seite von 5

4 Abitur 8 Erwartungshorizont a) 9 Larven Larven Puppen Weibchen Biologische Bedeutung der Koeffizienten: a = 9 ist die Vermehrungsrate a = ist die Überlebensrate der Larven im. Jahr (Larven ) a = ist die Überlebensrate der Larven im. Jahr (Larven ) a = ist die Überlebensrate der verpuppten Larven im. Jahr (Puppen) 5 b) Bestimmung von p : p = A p = = Darstellung des Populationsvektors p (Population nach Jahren): r r p = A p. 5 5 c) Skizze zur Gesamtpopulation (Verbindung der Punkte nicht notwendig, sie erhöht aber den optischen Eindruck.) Nach vier Jahren ist der Populationsvektor identisch mit jenem zu Beginn der Untersuchung und ebenso die Gesamtpopulation. Da die Berechnung der Populationsvektoren nach dem Schema pn+ r r = A pn ( n ) abläuft, wiederholt sich alle Jahre der Populationsverlauf. Die Gesamtpopulation P nach Jahren ist also gleich der Gesamtpopulation nach Jahren P. Ma-LKLM-AWT Seite von 5

5 Abitur 8 Insektenpopulation Zei t sei t Begi nn der Unter suchung i n Jahr en Folgerung für p 5 : p = p, da ein Teiler von ist. p = p. 5 Bestimmen von p : Nimmt man an, dass das verwendete Populationsmodell schon vor dem Untersuchungsbeginn gültig war, kann von dem zyklischen Vorgang auch in der Vergangenheit (ausgedrückt durch negative Indizes) ausgegangen werden. Damit ist p der Populationsvektor vor p = p, d. h. p = p. Natürlich kann p auch durch Lösung eines LGS bestimmt werden. 5 5 d) Eigenschaft der Matrix A: Die Matrix A ist identisch mit der Einheitsmatrix E, denn es muss gelten A p = p = p ( = E p ). Eigenschaft der Startpopulation: Die Aufgabenstellung führt zum folgenden LGS: A p x = p. x 9 9x x x x x x x x = =. x x x x x x x x Ma-LKLM-AWT Seite von 5

6 Abitur 8 Hieraus ergibt sich die mehrdeutige Lösung: x = 9x,x = x,x = x,x *. Die Bedingung ist immer dann erfüllt, wenn die Komponenten des Populationsvektors im Verhältnis 9::: stehen. Also lautet eine mögliche Lösung: p x 9 =. 5 e) Berechnung von P, P und P : a a a d b b a b P = P P= = c c b c d d c d a d a a b b P = P P= b c c c d d a c d a b d = a b c b c d Da die Diagonalelemente sowohl bei P als bei P jeweils Null sind, ist eine Einheitsmatrix in beiden Fällen nicht erreichbar. a d a d a b a b P = P P = b c b c c d c d a b c d a b c d P = a b c d a b c d Also: P = E, wenn gilt: a b c d =. 5 Ma-LKLM-AWT Seite 5 von 5

7 Abitur 8 f) Neue Populationsmatrix: A Neu 5 = Interpretation: Die Veränderung der Trocken- und Regenzeiten führt dazu, dass sich die Insektenpopulation in einem Zyklus von jeweils vier Jahren halbieren wird. Bleibt das Modell gültig, wird die Population langfristig aussterben. 5 5 g) A Neu 5 =, denn der Larven geht in die Gruppe Puppen über, der Larven wie bisher in die Gruppe Larven. Ermittlung von p(a ) aus einer beliebigen Anfangspopulation p a führt zu dem Ansatz pa = ANeu p(a ) : 5 5x a x a x a x a = =. a x a x + x a x a x Als Lösung ergibt sich: x = a,x = a a,x = a,x = a 5 mit a,a,a,a > x,x,x,x >. Ma-LKLM-AWT Seite 6 von 5

8 Abitur 8 Aus x a a = ist unmittelbar zu erkennen, dass für die Fälle a > a die Nichtnegativitätsbedingung für die Anzahl der zweijährigen Larven nicht mehr gegeben ist. Also lässt sich für alle Populationsvektoren, in denen die Anzahl der zweijährigen Larven mehr als dreimal so hoch ist wie die der Puppen, keine Vorjahrespopulation ermitteln. Außerdem muss x ganzzahlig, a (die Anzahl der Larven des Populationsvektors) also ein Vielfaches von 5 sein. Die hier vorliegende Frage der Lösbarkeit des zugehörigen Gleichungssystems kann auch mit anderen Verfahren geklärt werden. 5 Insgesamt BWE 6 Ma-LKLM-AWT Seite 7 von 5

Schriftliche Abiturprüfung Schuljahr 2007/2008. Leistungskurs Mathematik. Diese Unterlagen sind nicht für die Prüflinge bestimmt.

Schriftliche Abiturprüfung Schuljahr 2007/2008. Leistungskurs Mathematik. Diese Unterlagen sind nicht für die Prüflinge bestimmt. Schriftliche Abiturprüfung Schuljahr 007/008. Februar 008, 9.00 Uhr Leistungskurs Mathematik Gymnasien, Gesamtschulen, Berufliche Schulen Unterlagen für die Lehrerinnen und Lehrer Diese Unterlagen sind

Mehr

Populationsentwicklung

Populationsentwicklung Populationsentwicklung Lewis (942) und Leslie (945) entwickelten ein Modell, mit dem die Entwicklung einer Population unter Einbeziehung der Altersstruktur untersucht werden kann. Die Population wird z.b.

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eines der am häufigsten auftretenden Standardprobleme der angewandten Mathematik ist das Lösen linearer Gleichungssysteme, etwa zur Netzwerkberechnung in der Elektrotechnik oder

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Mathematik Matrizenrechnung

Mathematik Matrizenrechnung Mathematik Matrizenrechnung Einstufige Prozesse Rechenregeln für Matrizen Mehrstufige Prozesse Inverse Matrix Stochastische Prozesse 6 Zyklisches Verhalten Einstufige Prozesse Einstufige Prozesse Zur Beschreibung

Mehr

Behörde für Schule und Berufsbildung Abitur 2009 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Schule und Berufsbildung Abitur 2009 Lehrermaterialien zum Leistungskurs Mathematik II Seeschildkröten LA/AG Grüne Seeschildkröten sind weltweit vom Aussterben bedroht Die Gelege wurden von der ansässigen Bevölkerung oft ausgenommen, gejagt wurden sie wegen ihres Fleisches und der Panzer

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

Aufgabe 1: Malerarbeiten

Aufgabe 1: Malerarbeiten Aufgabe 1: Malerarbeiten Fritz braucht zwei Stunden, um ein Zimmer zu streichen. Susi braucht für das gleiche Zimmer drei Stunden. Wie lange brauchen beide zusammen, um das Zimmer zu streichen? Lösung:

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik II2 Einkommensgruppen LA/AG 2 Die Familien eines fiktiven Landes werden einer der drei angegebenen Einkommensgruppen zugeordnet In statistischen Erhebungen hat man festgestellt, dass Kinder der Eltern

Mehr

Staatlich geprüfte Techniker

Staatlich geprüfte Techniker Auszug aus dem Lernmaterial ortbildungslehrgang Staatlich geprüfte Techniker Auszug aus dem Lernmaterial Maschinenbautechnische Grundlagen DAA-Technikum Essen / www.daa-technikum.de, Infoline: 001 83 16

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr.

Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Lösungsvorschlag für die Probeklausuren und Klausuren zu Algebra für Informations- und Kommunikationstechniker bei Prof. Dr. Kurzweil Florian Franzmann André Diehl Kompiliert am 10. April 2006 um 18:33

Mehr

www.mathe-aufgaben.com

www.mathe-aufgaben.com Abiturprüfung Mathematik 008 Baden-Württemberg (ohne CAS) Pflichtteil Aufgaben Aufgabe 1: ( VP) x Gegeben ist die Funktion f mit f(x). x Bilden Sie die Ableitung von f und fassen Sie diese so weit wie

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Bestimmung einer ersten

Bestimmung einer ersten Kapitel 6 Bestimmung einer ersten zulässigen Basislösung Ein Problem, was man für die Durchführung der Simplexmethode lösen muss, ist die Bestimmung einer ersten zulässigen Basislösung. Wie gut das geht,

Mehr

Anwendungsaufgaben zu den gebrochenrationalen Funktionen

Anwendungsaufgaben zu den gebrochenrationalen Funktionen Anwendungsaufgaben zu den gebrochenrationalen Funktionen 1.0 Zur Unterstützung der Stromversorgung einer Gemeinde wird in der Zeit von 12.00 Uhr bis 18.00 Uhr ein kleines Wasserkraftwerk zugeschaltet.

Mehr

1. Mathematik-Schularbeit 6. Klasse AHS

1. Mathematik-Schularbeit 6. Klasse AHS . Mathematik-Schularbeit 6. Klasse AHS Arbeitszeit: 50 Minuten Lernstoff: Mathematische Grundkompetenzen: (Un-)Gleichungen und Gleichungssysteme: AG. Einfache Terme und Formeln aufstellen, umformen und

Mehr

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1

Dr. Jürgen Roth. Fachbereich 6: Abteilung Didaktik der Mathematik. Elemente der Algebra. Dr. Jürgen Roth 3.1 .1 Dr. Jürgen Roth Fachbereich 6: Abteilung Didaktik der Mathematik Elemente der Algebra . Inhaltsverzeichnis Elemente der Algebra & Argumentationsgrundlagen, Gleichungen und Gleichungssysteme Quadratische

Mehr

Tag der Mathematik 2012

Tag der Mathematik 2012 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben mit en und Bepunktung Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr

Kapitel 15. Lösung linearer Gleichungssysteme

Kapitel 15. Lösung linearer Gleichungssysteme Kapitel 15. Lösung linearer Gleichungssysteme Lineare Gleichungssysteme Wir befassen uns nun mit der Lösung im allgemeinen nichthomogener linearer Gleichungssysteme in zweifacher Hinsicht. Wir studieren

Mehr

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1

Didaktik der Algebra Jürgen Roth Didaktik der Algebra 4.1 Didaktik der Algebra 4.1 Didaktik der Algebra Didaktik der Algebra 4.2 Inhalte Didaktik der Algebra 1 Ziele und Inhalte 2 Terme 3 Funktionen 4 Gleichungen Didaktik der Algebra 4.3 Didaktik der Algebra

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben /3 Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Musteraufgaben für das Fach Mathematik

Musteraufgaben für das Fach Mathematik Musteraufgaben für das Fach Mathematik zur Vorbereitung der Einführung länderübergreifender gemeinsamer Aufgabenteile in den Abiturprüfungen ab dem Schuljahr 013/14 Impressum Das vorliegende Material wurde

Mehr

Vergleichsklausur 12.1 Mathematik vom 20.12.2005

Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Vergleichsklausur 12.1 Mathematik vom 20.12.2005 Mit CAS S./5 Aufgabe Alternative: Ganzrationale Funktionen Berliner Bogen Das Gebäude in den Abbildungen heißt Berliner Bogen und steht in Hamburg. Ein

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Gleichungen Inhalt: 1. Grundlegendes 2. Lineare Gleichungen 3. Gleichungen mit Brüchen

Mehr

Definition, Rechenoperationen, Lineares Gleichungssystem

Definition, Rechenoperationen, Lineares Gleichungssystem Bau und Gestaltung, Mathematik, T. Borer Aufgaben / Aufgaben Matrizen Definition, Rechenoperationen, Lineares Gleichungssystem Lernziele - die Bezeichnung der Matrixelemente kennen und verstehen. - den

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen.

LU-Zerlegung. Zusätze zum Gelben Rechenbuch. Peter Furlan. Verlag Martina Furlan. Inhaltsverzeichnis. 1 Definitionen. Zusätze zum Gelben Rechenbuch LU-Zerlegung Peter Furlan Verlag Martina Furlan Inhaltsverzeichnis Definitionen 2 (Allgemeine) LU-Zerlegung 2 3 Vereinfachte LU-Zerlegung 3 4 Lösung eines linearen Gleichungssystems

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

Lineare Gleichungssysteme I (Matrixgleichungen)

Lineare Gleichungssysteme I (Matrixgleichungen) Lineare Gleichungssysteme I (Matrigleichungen) Eine lineare Gleichung mit einer Variable hat bei Zahlen a, b, die Form a b. Falls hierbei der Kehrwert von a gebildet werden darf (a 0), kann eindeutig aufgelöst

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen.

MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 2016/2017. Teil 1: Keine Hilfsmittel zugelassen. MINISTERIUM FÜR KULTUS, JUGEND UND SPORT BADEN-WÜRTTEMBERG MUSTER 2 FÜR DIE ABITURPRÜFUNG AM BERUFLICHEN GYMNASIUM AB DEM SCHULJAHR 21/217 Hauptprüfung LÖSUNGSVORSCHLAG FÜR DAS FACH Arbeitszeit Hilfsmittel

Mehr

OPERATIONS-RESEARCH (OR)

OPERATIONS-RESEARCH (OR) OPERATIONS-RESEARCH (OR) Man versteht darunter die Anwendung mathematischer Methoden und Modelle zur Vorbereitung optimaler Entscheidungen bei einem Unternehmen. Andere deutsche und englische Bezeichnungen:

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer.

Mathematik 1. Inhaltsverzeichnis. Prof. Dr. K. Melzer. karin.melzer@hs-esslingen.de http://www.hs-esslingen.de/de/mitarbeiter/karin-melzer. Mathematik 1 Prof Dr K Melzer karinmelzer@hs-esslingende http://wwwhs-esslingende/de/mitarbeiter/karin-melzerhtml Inhaltsverzeichnis 1 Matrizenrechnung 2 11 Matrixbegri 2 12 Spezielle Matrizen 3 13 Rechnen

Mehr

Einführung in die Vektor- und Matrizenrechnung. Matrizen

Einführung in die Vektor- und Matrizenrechnung. Matrizen Einführung in die Vektor- und Matrizenrechnung Matrizen Definition einer Matrix Unter einer (reellen) m x n Matrix A versteht man ein rechteckiges Schema aus reellen Zahlen, die wie folgt angeordnet sind:

Mehr

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11.

Analysis. mit dem Computer-Algebra-System des TI-92. Anhang 2: Gedanken zum Lehrplan. Beat Eicke und Edmund Holzherr 11. ETH EIDGENÖSSISCHE TECHNISCHE HOCHSCHULE ZÜRICH Analysis mit dem Computer-Algebra-System des TI-92 Anhang 2: Gedanken zum Lehrplan Beat Eicke und Edmund Holzherr 11. November 1997 Eidgenössische Technische

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Betragsgleichungen und die Methode der Fallunterscheidungen

Betragsgleichungen und die Methode der Fallunterscheidungen mathe online Skripten http://www.mathe-online.at/skripten/ Betragsgleichungen und die Methode der Fallunterscheidungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at

Mehr

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME)

LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) LANGFRISTIGE HAUSAUFGABE (LINEARE GLEICHUNGSSYSTEME) Aufgabe 1: Tanzkurs ( * ) Zu einem Tanzkurs erscheinen dreimal so viele Mädchen wie Jungen. Nachdem 15 Mädchen gegangen sind, sind noch doppelt so viele

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken

Bildverarbeitung Herbstsemester 2012. Kanten und Ecken Bildverarbeitung Herbstsemester 01 Kanten und Ecken 1 Inhalt Einführung Kantendetektierung Gradientenbasierende Verfahren Verfahren basierend auf der zweiten Ableitung Eckpunkterkennung Harris Corner Detector

Mehr

Gitterherstellung und Polarisation

Gitterherstellung und Polarisation Versuch 1: Gitterherstellung und Polarisation Bei diesem Versuch wollen wir untersuchen wie man durch Überlagerung von zwei ebenen Wellen Gttterstrukturen erzeugen kann. Im zweiten Teil wird die Sichtbarkeit

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung (Grundwissen)

Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung (Grundwissen) Bericht zur Prüfung im Oktober 2003 über Mathematik der Lebensversicherung Grundwissen) Jürgen Strobel Köln) und Hans-Jochen Bartels Mannheim) Am 04.10.2003 wurde in Köln die zehnte Prüfung über Mathematik

Mehr

Abitur HH 2014. -Aufgaben und Hinweise- Alle Aufgaben sind komplett gelöst und in verschiedene Schwierigkeitsstufen unterteilt.

Abitur HH 2014. -Aufgaben und Hinweise- Alle Aufgaben sind komplett gelöst und in verschiedene Schwierigkeitsstufen unterteilt. Abitur HH 2014 -Aufgaben und Hinweise- Alle Aufgaben sind komplett gelöst und in verschiedene Schwierigkeitsstufen unterteilt. Für die Schülerhilfen in Quickborn und Barmstedt Daniel Mueller 2014 Inhaltsverzeichnis:

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie1

Lineare Algebra und Numerische Mathematik für D-BAUG. Serie1 R. Hiptmair S. Pintarelli E. Spindler Herbstsemester 2014 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Serie1 Aufgabe 1.1 Summen Schon bei der Behandlung linearer Gleichungen

Mehr

Abitur 2011 Mathematik GK Stochastik Aufgabe C1

Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2011 Mathematik GK Stochastik Aufgabe C1 Bei der TOTO-13er-Wette (vgl. abgebildeten Ausschnitt aus einem Spielschein) wird auf den Spielausgang von 13 Fußballspielen

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (B) Prüfungstag 5. April Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/04 Fach (A) Prüfungstag 9. Mai 04 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abitur 2013 Mathematik GK Stochastik Aufgabe C1

Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Wissenschaftler der israelischen Ben-Gurion-Universität sind der Frage nachgegangen, ob die Attraktivität eines

Mehr

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen

http://www.olympiade-mathematik.de 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 7. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 12 Saison 1967/1968 Aufgaben und Lösungen 1 OJM 7. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 12 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Grundkurs Mathematik Abitur 008 LA / AG II. Abenteuerspielplatz Der Gemeinderat beschlie t, einen eher langweiligen Spielplatz zu einem Abenteuerspielplatz umzugestalten. Das Motto lautet Auf hoher See. Daher soll ein Piratenschiff

Mehr

1 Kurvenuntersuchung /40

1 Kurvenuntersuchung /40 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8

Mehr

Nullserie zur Prüfungsvorbereitung

Nullserie zur Prüfungsvorbereitung Nullserie zur Prüfungsvorbereitung Die folgenden Hilfsmittel und Bedingungen sind an der Prüfung zu beachten. Erlaubte Hilfsmittel Beliebiger Taschenrechner (Der Einsatz von Lösungs- und Hilfsprogrammen

Mehr

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS

Übungsaufgaben LAAG I. für Lehramtsstudenten GS, MS, BS Doz.Dr. Norbert Koksch TU DRESDEN Fachrichtung Mathematik, Institut für Analysis Übungsaufgaben LAAG I für Lehramtsstudenten GS, MS, BS Logik: Übungsaufgabe 1. Begründen Sie, ob es sich um eine Aussage

Mehr

Lineare Gleichungssysteme und Gauß'scher Algorithmus

Lineare Gleichungssysteme und Gauß'scher Algorithmus Zurück Letzter Update 7... Lineare Gleichungssysteme und Gauß'scher Algorithmus In der Mathematik bezeichnet man mit Matrix ein rechteckiges Schema, in dem Zahlen oder Funktionen angeordnet werden. Hier

Mehr

6 Lösungsverfahren für lineare Gleichungssysteme

6 Lösungsverfahren für lineare Gleichungssysteme 6 Lösungsverfahren für lineare Gleichungssysteme Jörn Loviscach Versionsstand:. März 04, :07 Die nummerierten Felder sind absichtlich leer, zum Ausfüllen beim Ansehen der Videos: http://www.jl7h.de/videos.html

Mehr

1 Lineare Gleichungssysteme

1 Lineare Gleichungssysteme MLAN1 1 LINEARE GLEICHUNGSSYSTEME 1 Literatur: K Nipp/D Stoffer, Lineare Algebra, Eine Einführung für Ingenieure, VDF der ETHZ, 4 Auflage, 1998, oder neuer 1 Lineare Gleichungssysteme Zu den grundlegenden

Mehr

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte

K2 MATHEMATIK KLAUSUR. Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max) 28 15 15 2 60 Punkte Notenpunkte K2 MATHEMATIK KLAUSUR 26.2.24 Aufgabe PT WTA WTGS Darst. Gesamtpunktzahl Punkte (max 28 5 5 2 6 Punkte Notenpunkte PT 2 3 4 5 6 7 8 9 P. (max 2 2 2 4 5 3 3 4 3 Punkte WT Ana A.a b A.c Summe P. (max 7 5

Mehr

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206

Dynamische Optimierung. Kapitel 4. Dynamische Optimierung. Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Kapitel 4 Dynamische Optimierung Peter Becker (H-BRS) Operations Research II Wintersemester 2014/15 160 / 206 Inhalt Inhalt 4 Dynamische Optimierung Allgemeiner Ansatz und Beispiele Stochastische dynamische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Sei K ein Körper, a ij K für 1 i m, 1 j n. Weiters seien b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2... a m1

Mehr

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche.

Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673. Flachglasbranche. Bundesverband Flachglas Großhandel Isolierglasherstellung Veredlung e.v. U g -Werte-Tabellen nach DIN EN 673 Ug-Werte für die Flachglasbranche Einleitung Die vorliegende Broschüre enthält die Werte für

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Einführung in die Tensorrechnung

Einführung in die Tensorrechnung 1. Definition eines Tensors Tensoren sind Grössen, mit deren Hilfe man Skalare, Vektoren und weitere Grössen analoger Struktur in ein einheitliches Schema zur Beschreibung mathematischer und physikalischer

Mehr

3 Matrizenrechnung. 3. November

3 Matrizenrechnung. 3. November 3. November 008 4 3 Matrizenrechnung 3.1 Transponierter Vektor: Die Notation x R n bezieht sich per Definition 1 immer auf einen stehenden Vektor, x 1 x x =.. x n Der transponierte Vektor x T ist das zugehörige

Mehr

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen

Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Optimierung für Wirtschaftsinformatiker: Analytische Optimierung ohne Nebenbedingungen Dr. Nico Düvelmeyer Freitag, 1. Juli 2011 1: 1 [1,1] Inhaltsübersicht für heute 1 Einführung und Wiederholung Beispiel

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Schritt 1 - Ein Spielfeld

Schritt 1 - Ein Spielfeld Schritt 1 - Ein Spielfeld Wir beginnen mit zwei einfachen Java-Klassen, dem eigentlichen Spielfeld und dem Applet zum Anzeigen des Spielfeldes (und später der Buttons und der anderen Bedienelemente). Hier

Mehr

Kernfach Mathematik Thema: Analysis

Kernfach Mathematik Thema: Analysis Kernfach Mathemati Bahnlinie Bei A-Stadt endet eine Bahnlinie. In nebenstehender Zeichnung ist ein Koordinatenreuz so gelegt worden, dass A mit dem Ursprung zusammenfällt. Die Bahnlinie verläuft entlang

Mehr

MIN oder MAX Bildung per B*Tree Index Hint

MIN oder MAX Bildung per B*Tree Index Hint E-Mail: rainer@lambertz-c.de Internet: http://www.lambertz-c.de MIN oder MAX Bildung per B*Tree Index Hint Zugegeben, der Trick Min- oder Maximalwerte per Index Hint zu ermitteln ist nicht neu. Gewöhnlich

Mehr

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016

Aussagenlogik. Lehrstuhl für BWL, insb. Mathematik und Statistik Prof. Dr. Michael Merz Mathematik für Betriebswirte I Wintersemester 2015/2016 Aussagenlogik 1. Gegeben seien folgende Aussagen: A: 7 ist eine ungerade Zahl B: a + b < a + b, a, b R C: 2 ist eine Primzahl D: 7 7 E: a + 1 b, a, b R F: 3 ist Teiler von 9 Bestimmen Sie den Wahrheitswert

Mehr

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14.

Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination. Lehrstuhl für Angewandte Mathematik Wintersemester 2009/10. 14. Gleitkommaarithmetik und Pivotsuche bei Gauß-Elimination Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Wintersemester 2009/0 4. Januar 200 Instabilitäten

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011

Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Mathematik-Klausur vom 05.10.2011 Finanzmathematik-Klausur vom 26.09.2011 Studiengang BWL DPO 2003: Aufgaben 2,3,4 Dauer der Klausur: 60 Min Studiengang B&FI DPO 2003: Aufgaben 2,3,4 Dauer der Klausur:

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Korrelation (II) Korrelation und Kausalität

Korrelation (II) Korrelation und Kausalität Korrelation (II) Korrelation und Kausalität Situation: Seien X, Y zwei metrisch skalierte Merkmale mit Ausprägungen (x 1, x 2,..., x n ) bzw. (y 1, y 2,..., y n ). D.h. für jede i = 1, 2,..., n bezeichnen

Mehr

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel

Vorlesung 12 22. bzw. 23. Januar 2014. Determinanten 1. Cramersche Regel Vorlesung 2 22 bzw 23 Januar 204 Lineares Gleichungssystem a a 2 b b 2 = F a a 2 a 3 b b 2 b 3 c c 2 c 3 = V V =< a, b c > c b a b a F V Seite 70 a x + a 2 x 2 + a 3 x 3 b = 0 < a x + a 2 x 2 + a 3 x 3

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach (A) Name, Vorname Klasse Prüfungstag 9. April 009 Prüfungszeit Zugelassene Hilfsmittel

Mehr

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok

Kurs über Lineare Gleichungssysteme. PD Dr. Karin Halupczok Kurs über Lineare Gleichungssysteme PD Dr. Karin Halupczok Mathematisches Institut Albert-Ludwigs-Universität Freiburg http://home.mathematik.unifreiburg.de/halupczok/diverses.html karin.halupczok@math.uni-freiburg.de

Mehr

Aufgabe 1: Entladevorgang eines Kondensators

Aufgabe 1: Entladevorgang eines Kondensators Fachgebiet eistungselektronik und Elektrische Antriebstechnik Aufgabe : Entladevorgang eines Kondensators t = 0 i(t) u (t) u (t) Zum Zeitpunkt t = 0 werde der chalter geschlossen. Vor diesem Zeitpunkt

Mehr

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b

Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. z(t) = at + b Aufgabe 1: Im Jahr t = 0 hat eine Stadt 10.000 Einwohner. Nach 15 Jahren hat sich die Einwohnerzahl verdoppelt. (a) Nehmen Sie lineares Wachstum gemäß z(t) = at + b an, wobei z die Einwohnerzahl ist und

Mehr

Repetitionsaufgaben: Lineare Funktionen

Repetitionsaufgaben: Lineare Funktionen Kantonale Fachschaft Mathematik Repetitionsaufgaben: Lineare Funktionen Zusammengestellt von Irina Bayer-Krakvina, KSR Lernziele: - Wissen, was ein Steigungsdreieck einer Geraden ist und wie die Steigungszahl

Mehr

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2014 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 04 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 04 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I

Bayern FOS BOS 12 Fachabiturprüfung 2015 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I Bayern FOS BOS Fachabiturprüfung 05 Mathematik (Nichttechnische Ausbildungsrichtungen) Analysis A I.0 Nebenstehende Abbildung zeigt den Graphen G f ' der ersten Ableitungsfunktion einer in ganz 0 definierten

Mehr

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler

Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Kommentierte Musterlösung zur Klausur HM I für Naturwissenschaftler Wintersemester 3/4 (.3.4). (a) Für z = + i und z = 3 4i berechne man z z und z z. Die Ergebnisse sind in kartesischer Form anzugeben.

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Mathematik für Biologie

Mathematik für Biologie Mathematik für Biologie Prof. Dr. Thomas P. Wihler Mathematisches Institut Universität Bern Herbst 2009 Inhaltsverzeichnis Vorwort 6 1 Diskrete Wachstumsmodelle 7 1.1 Lineares Wachstum.................................

Mehr

$ % + 0 sonst. " p für X =1 $

$ % + 0 sonst.  p für X =1 $ 31 617 Spezielle Verteilungen 6171 Bernoulli Verteilung Wir beschreiben zunächst drei diskrete Verteilungen und beginnen mit einem Zufallsexperiment, indem wir uns für das Eintreffen eines bestimmten Ereignisses

Mehr

Werkstatt Euler und die Lösung der quadratischen Gleichung

Werkstatt Euler und die Lösung der quadratischen Gleichung Werkstatt Leonhard Euler und die Lösung der quadratischen Gleichungen Im Jahr 1767 hat der Mathematiker Leonhard Euler (1707 1783) das Buch Vollständige Anleitung zu Algebra im russischen Original veröffentlicht,

Mehr

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11

Mathematik für Wirtschaftswissenschaftler, WS 10/11 Musterlösungen zu Aufgabenblatt 11 Mathematik für Wirtschaftswissenschaftler, WS / Musterlösungen zu Aufgabenblatt Aufgabe 76: Bestimmen Sie mittels Gauß-Elimination die allgemeine Lösung der folgenden linearen Gleichungssysteme Ax b: a)

Mehr

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen

Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II. Aufgaben und Lösungen Institut für Statistik und Mathematische Wirtschaftstheorie Universität Augsburg OPTIMIERUNG II Aufgaben und Lösungen SS 2005 Aufgaben Aufgabe 41 Ein Betrieb stellt zwei Produkte P 1 und P 2 her, die die

Mehr

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt:

Aufgabe 1. Zunächst wird die allgemeine Tangentengleichung in Abhängigkeit von a aufgestellt: Aufgabe 1 1.1. Bestimmung von D max : 1. Bedingung: x >0 ; da ln(x) nur für x > 0 definiert ist. 2. Bedingung: Somit ist die Funktion f a nur für x > 0 definiert und sie besitzt eine Definitionslücke an

Mehr

Wie funktioniert das in m.objects? TIPP 442 > Das Bildfeldobjekt und seine Prozente <

Wie funktioniert das in m.objects? TIPP 442 > Das Bildfeldobjekt und seine Prozente < Wie funktioniert das in m.objects? TIPP 442 > Das Bildfeldobjekt und seine Prozente < Bei der Bildpräsentation mit m.objects wird zur Steuerung der Bild gestaltenden Effekte die Eingabe von Prozent-Werten

Mehr