Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology"

Transkript

1 Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens per an Verwenden Sie MatrikelNummer1 MatrikelNummer2 als Betreff. Eine vollständige Abgabe besteht aus den von Ihnen erstellten Octave Dateien (*.m) und einem Simulationsprotokoll (PDF). Komprimieren Sie alle Dateien in eine zip-datei mit Dateinamen YourMatrNo YourColleaguesMatrNo.zip und hängen Sie diese an die an. Zusätzlich zur müssen Sie die ausgedruckten Simulationsprotokolle und die Lösungen für die analytischen Aufgaben in unseren Briefkasten in der Inffeldgasse 16c, Erdgeschoß, einwerfen (am Wochenende ist der Zugang zum Briefkasten nicht möglich). Drucken Sie dazu für jede Teilaufgabe den Angabezettel separat aus und klammern Sie ihn mit der jeweiligen Lösung/dem jeweiligen Simulationsprotokoll zusammen. Fügen Sie Ihre(n) Namen und Ihre Matrikelnummer(n) auf jedem Angabezettel ein. Wenn Sie Ihre analytischen Lösungen mittels L A TEX erstellen, können Sie bis zu zwei Bonuspunkte erhalten (einen pro analytisches Beispiel). Bei handschriftlichen Lösungen analytischer Beispiele bitten wir Sie, diese ordentlich, gut strukturiert und leserlich zu verfassen. Ansonsten werden fünf Punkte abgezogen.

2 Analytische Aufgabe 3.1 (8 Punkte) Die Impulsantwort eines linearen zeitinvarianten (LTI) Systems mit Eingangssignal x[n] und Ausgangssignal y[n] ist gegeben als ( π ) h r [n] = r n sin 2 n u[n], (1) wobei u[n] die Einheitssprungfunktion ist. (a) [1 Punkt(e)] Ist das durch h r [n] beschriebene System kausal? Finden Sie eine Bedingung für die Stabilität des Systems h r [n], für r C. (b) [2 Punkt(e)] Berechnen Sie H r (z), d.h. transformieren Sie h r [n] in die z-domäne. Die dürfen dabei die z-transformationspaare in unserer Formelsammlung benutzen. Geben Sie die Pole und alle (!) Nullstellen von H r (z) an. Zeichnen Sie das Pol-Nullstellendiagramm für r = 0.5. Bestätigt das Pol-Nullstellendiagramm Ihre Resultate bezüglich Stabilität und Kausalität aus Punkt a)? Welche Informationen brauchen Sie im Allgemeinen zusätzlich zu den Positionen der Pole und Nullstellen, um Stabilität und Kausalität festzustellen? (c) [1 Punkt(e)] Ist h r [n] die Impulsantwort eines minimalphasigen Systems? Begründen Sie Ihre Antwort. (d) [2 Punkt(e)] Berechnen Sie den Frequenzgang H r (e jθ ) und werten Sie ihn an den Frequenzen θ = 0 und θ = π/2 aus. Skizzieren Sie den Betragsfrequenzgang für r = 0.5, d.h. H 0.5 (e jθ ). Berechnen Sie den Phasengang H r (e jθ ). Ist das System für r = 0.5 linearphasig? Versuchen Sie den allgemeinen Ausdruck H r (e jθ ) für r = 1 zu vereinfachen, d.h. berechnen Sie H 1 (e jθ ). Was beobachten Sie? (e) [1 Punkt(e)] Finden Sie eine Differenzengleichung um das System h r [n] zu beschreiben. (f) [1 Punkt(e)] Nehmen Sie an, Sie wollen mit Hilfe des Systems h 1 [n] einen Sinuston erzeugen, der zum Zeitpunkt t = 0 eingeschalten wird. Definieren Sie ein Eingangssignal x[n] und eine Abtastfrequenz f s in Hz um ein Ausgangssignal y[n] mit einer Frequenz von f 1 in Hz zu erzeugen.

3 Analytische Aufgabe 3.2 (7 Punkte) (a) [2 Punkt(e)] Betrachten Sie ein kausales lineares zeitinvariantes (LTI) System mit einer reellwertigen Impulsantwort h α [n], ein Eingangssignal x[n], ein Ausgangssignal y α [n]. Betrachten Sie zudem ein zweites LTI System mit der Impulsantwort h β [n], ein Eingangssignal x β [n] und ein Ausgangssignal y β [n]. Das Eingangssignal des zweiten Systems ist das zeitinvertierte Ausgangssignal des ersten Systems, also x β [n] = y α [ n]. Nehmen Sie auch an, dass h α [n] = h β [n]. Bestimmen Sie ein Gesamt-LTI System mit Eingang x[n], Ausgang y[n] = y β [ n] und der Impulsantwort h[n]. Berechnen Sie die Impulsantwort h[n] und deren DTFT H(e jθ ). Auf welche Art und Weise steht das Betragsspektrum H(e jθ ) in Zusammenhang mit dem System H α (e jθ )? Was können Sie über das Phasenspektrum H(e jθ ) des Gesamtsystems sagen? Ist das Gesamtsystem kausal? (b) [3 Punkt(e)] Betrachten Sie ein LTI System mit Eingang x[n] und Ausgang y[n]; gegeben ist die Differenzengleichung 1 2 y[n 1] 9 y[n] + y[n + 1] = x[n]. 4 Erstellen Sie das Pol-Nullstellen Diagramm! Nennen Sie drei mögliche Konvergenzbereiche (Regions of Convergence [ROC]) und bestimmen Sie drei mögliche Impulsantworten. Geben Sie für jede Impulsantwort an, ob es sich um ein stabiles und/oder kausales System handelt. (c) [2 Punkt(e)] Gegeben ist ein zeitdiskretes kausales LTI System mit der Übertragungsfunktion ( z 1 )(1 6z 2 ). ( z 2 ) Ist das System stabil? Ermitteln Sie ein minimalphasige System H 1 (z) und ein Allpass-System H ap (z), sodass gilt H(z) = H ap (z)h 1 (z).

4 Matlab/Octave Aufgabe 3.3 (10 Punkte) (a) [2 Punkt(e)] Gegeben seien zwei kausale, lineare und zeitinvariante (LTI) Systeme durch folgende Differenzengleichungen: y[n] + p 2 y[n 2] = px[n 1], (2) y[n] + p 2 y[n 2] = px[n]. (3) mit p R und x[n], y[n] als Ein- und Ausgangsfolge. Sie wollen nun (2) und (3) mithilfe der Matlab/Octave Funktion y=filter(b,a,x) implementieren. Bestimmen Sie hierfür die Vektoren a und b in Abhängigkeit der Variable p für System (2) und (3). Setzen Sie im Folgenden p = 0.95 und berechnen Sie die Impulsantwort y[n] beider LTI-Systeme für x[n] = δ[n] mit 0 n < N 1 mit N = 32 mithilfe der filter Funktion. Plotten Sie die Ergebnisse mit Hilfe von stem und vergleichen Sie Ihre Ergebnisse mit jenen von impz 1. Der Befehl hold on erlaubt ein überlappendes Zeichnen mehrerer Kurven. Welches LTI-System verzögert die Energie des Eingangspulses x[n] = δ[n] weniger? (b) [2 Punkt(e)] Berechnen Sie die Pole der Systeme (2) und (3) über die Funktion roots. Vergleichen Sie Ihr Ergebnis mit dem Pol-Nullstellen Diagramm, welches Sie anhand der Funktion zplane erhalten. Erkennen Sie alle Nullstellen von System (2)? Wenn nicht, wo befindet (befinden) sich die fehlende(n) Nullstelle(n)? Sind die Systeme minimalphasig? Begründen Sie Ihre Antwort. (c) [2 Punkt(e)] Berechnen Sie für beide Systeme H(e jθ ) auf N f /2 + 1 gleich verteilten Frequenz Abtastpunkten zwischen 0 θ π mit N f = 1024 unter Verwendung der Funktion freqz. Verwenden Sie subplot um Amplitude und Phase innerhalb eines Figures zu zeichnen. Überlagern Sie beide Systeme auf einer Achse und Beschriften Sie Ihre Kurven mittels legend. Kann das selbe Ergebnis (von freqz) auch über die Anwendung der FFT auf die Impulsantwort erreicht werden? Begründen Sie Ihre Antwort. Warum besteht keine Notwendigkeit des Plottens des Bereiches von π < θ < 2π? Beide Systeme besitzen die selbe Amplituden-Antwort. Angenommen, Sie hätten nur das Wissen über die Amplituden-Antworten und der Impulsantworten (Sie kennen nicht die Pol/Nullstellen der Systeme), treffen Sie eine Aussage über die Minimalphasigkeit von System (2). Tipp: Verwenden Sie Ihr Ergebnis der Verzögerung der Energie von Problem 3.3 a). (d) [1 Punkt(e)] Plotten Sie die Gruppenlaufzeit (group delays) von beiden Systemen (mit p = 0.95) in einem Figure mit getrennten Subplots. Verwenden Sie hierfür die Funktion grpdelay. Besitzen die Systeme eine lineare Phase? Erzeugen Sie ein neues Figure und plotten Sie abermals die Gruppenlaufzeit mit p = 1. Besitzen die Systeme eine lineare 2 Phase mit p = 1? 1 impz, zplane, grpdelay, butter, filtfilt sind hilfreiche Funktionen, enthalten in der Matlab Signal Processing Toolbox, bzw. Octave Signal Package (Installation über pkg install -forge signal) 2 Sollten Sie Octaves grpdelay benutzen, dann können Sie mögliche Unstetigkeitsstellen innerhalb des Plots ignorieren

5 (e) [1 Punkt(e)] Schreiben Sie eine Funktion y=myfiltfilt(b,a,x) welche das System des analytischen Problems 3.2 a) implementiert. Das System h α [n] ist spezifiziert für die Koeffizienten b und a und implementiert das System h α [n] mittels ya=filter(b,a,x). (f) [2 Punkt(e)] Entwerfen Sie einen Butterworth Tiefpass Filter der Ordnung N = 3 mittels [b,a]=butter(n,wc). Setzen Sie die Grenzfrequenz auf f c = 5Hz bei einer Abtastrate von f s = 100Hz. Berechnen Sie wc. Generieren Sie ein Sinus-Signal s mit einer Länge von einer Sekunde, der Frequenz f = 2.3Hz (bei einer Abtastfrequenz von f s = 100Hz) und einer Amplitude von eins. Erzeugen Sie anschließend ein verrauschtes Signal x=s+v durch Addition des Vektors v, welchen Sie über die Funktion randn erzeugen sollen. Skalieren Sie die Amplitude auf einen Signal-Rausch-Abstand von (ca.) 18dB. Wie wählen Sie den Skalierungsfaktor? Generieren Sie die Sequenzen yfilter, yfiltfilt und ymyfiltfilt durch Filtern von x über filter(b,a,x), filtfilt(b,a,x), beziehungsweise myfiltfilt(b,a,x) (von Aufgabe e)). Vergleichen Sie diese drei Signale zusammen mit s und x in einem gemeinsamen Plot. Verwenden Sie legend für die Beschriftung der fünf Signale. Beschriften Sie die Abszisse in Sekunden-Einheiten. Erklären Sie Ihren Plot, vergleichen Sie mit den Ergebnissen aus 3.2 a).

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Klausur zur Vorlesung Signale und Systeme

Klausur zur Vorlesung Signale und Systeme Name: 10. Juli 2008, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Mitschrift Übungen, Skript, handgeschriebene 2-seitige

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Aufgabe 1: Diskrete und kontin. Signale

Aufgabe 1: Diskrete und kontin. Signale AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2009 Aufgabe : Diskrete und kontin. Signale 25 Pkt. Aufgabe : Diskrete und kontin. Signale 25 Pkt.. Gegeben sei das als Summierer

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

Praktikum: Digitale Signalverarbeitung (ET215) Test 1

Praktikum: Digitale Signalverarbeitung (ET215) Test 1 PROFESSOR DR.-ING. MARTIN WERNER M.W. Fachbereich Elektrotechnik und Informationstechnik Hochschule Fulda Praktikum: Digitale Signalverarbeitung (ET215) Test 1 Erklärung Mit meiner Unterschrift erkläre

Mehr

Signale und Systeme 2

Signale und Systeme 2 Signale und Systeme Beispielsammlung c G. Doblinger, C. Novak, J. Gonter, May 03 gerhard.doblinger@tuwien.ac.at johannes.gonter@tuwien.ac.at www.nt.tuwien.ac.at/teaching/courses/summer-term/389055/ Vorwort

Mehr

Kybernetik LTI-Systeme

Kybernetik LTI-Systeme Kybernetik LTI-Systeme Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 26. 04. 2012 Was ist Kybernetik? environment agent Kybernetik ermöglicht, die Rückkopplung

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion

Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion Bisher: Analyse von Systemen 1. und 2. Ordnung Heute: Synthese, Bau von passenden Prädiktoren. Angenommen, wir wollen einen Sinus-Generator

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme.

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme. Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz DSS Diskrete Signale und Systeme Teampartner: Praktikum Versuch 1 Laborplatz: Name: Vorname: Studiengang /-richtung

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Laborprotokoll SSY. Anwendung von Systemen: Filter

Laborprotokoll SSY. Anwendung von Systemen: Filter Laborprotokoll SSY Anwendung von Systemen: Filter Daniel Schrenk, Andreas Unterweger, ITS 2004 SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Seite 1 von 15 1. Einleitung Ziel der Übung Bei dieser Übung

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen CMT-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung Wechselstromwiderstände (Lit.: GERTHSEN) Schwingkreise (Lit.: GERTHSEN) Erzwungene Schwingungen (Lit.: HAMMER) Hochpass, Tiefpass,

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

Elektrische Messtechnik, Labor Sommersemester 2014

Elektrische Messtechnik, Labor Sommersemester 2014 Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Sommersemester 2014 Rechnerunterstützte Erfassung und Analyse von Messdaten Übungsleiter: Dipl.-Ing. GALLIEN

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

Methodenseminar. Messtechnik und Biosignalerfassung / Übungen. Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak

Methodenseminar. Messtechnik und Biosignalerfassung / Übungen. Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak Methodenseminar Messtechnik und Biosignalerfassung / Übungen Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak Dieses Skriptum ist ausschließlich als Lernbehelf im Rahmen der Lehrveranstaltung LV 809.045 Messtechnik

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

SS 2003. Klausur zum Praktikum ETiT III Mess- und Sensortechnik. 16.07.2003 90 min. Vorname, Name: Matrikelnummer: Studiengang:

SS 2003. Klausur zum Praktikum ETiT III Mess- und Sensortechnik. 16.07.2003 90 min. Vorname, Name: Matrikelnummer: Studiengang: SS 2003 Klausur zum Praktikum ETiT III Mess- und Sensortechnik 16.07.2003 90 min Vorname, Name:, Matrikelnummer: Studiengang: ETiT / Fb. 18 WiET / Fb. 1 Aufgaben: #1 #2 #3 #4 Kurzfragen Summe Punkte: /

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele:

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele: Multimediale Werkzeuge, Audio: Formate, Tools -Sound/Audio Objekte Formate, Beispiele: - Mp3 (Kurz für MPEG1/2 Layer 3) - PCM (z.b. Wave Datei), übliche Formate: CD: 44100 HZ Abtastrate, 16 Bits/Abtastwert.

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Übung 3: Einfache Graphiken und Näherungen durch Regression

Übung 3: Einfache Graphiken und Näherungen durch Regression Übung 3: Einfache Graphiken und Näherungen durch Regression M. Schlup, 9. August 010 Aufgabe 1 Einfache Graphik Für die abgegebene Leistung P = UI eines linearen, aktiven Zweipols mit Leerlaufspannung

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Versuch: Digitale Filter

Versuch: Digitale Filter Versuch: Digitale Filter Diese Unterlagen dienen zum einen als Versuchsunterlagen für den Versuch: Digitale Filter". Sie enthalten aber auch in komprimierter Form alles Wissenswerte zu diesem Thema und

Mehr

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt Praktikum Elektronische Messtechnik WS 27/28 Versuch OSZI Tobias Doerffel Andreas Friedrich Heiner Reinhardt Chemnitz, 9. November 27 Versuchsvorbereitung.. harmonisches Signal: Abbildung 4, f(x) { = a

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Die in Versuch 7 benutzte Messschaltung wird entsprechend der Anleitung am Arbeitsplatz erweitert.

Die in Versuch 7 benutzte Messschaltung wird entsprechend der Anleitung am Arbeitsplatz erweitert. Testat Mo Di Mi Do Fr Spannungsverstärker Datum: Versuch: 8 Abgabe: Fachrichtung Sem. 1. Einleitung Nachdem Sie in Versuch 7 einen Spannungsverstärker konzipiert haben, erfolgen jetzt der Schaltungsaufbau

Mehr

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m Kapitel Systeme Ein System ist eine Anordnung von miteinander verbundenen Komponenten zur Realisierung einer technischen Aufgabenstellung. Ein System kann als Operator aufgefasst werden, der Eingangsgrößen

Mehr

Technische Informatik Basispraktikum Sommersemester 2001

Technische Informatik Basispraktikum Sommersemester 2001 Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

1 Allgemeine Angaben. 2 Vorbereitungen. Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation

1 Allgemeine Angaben. 2 Vorbereitungen. Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation 1 Allgemeine Angaben Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation Dokumentieren Sie den jeweiligen Messaufbau, den Ablauf der Messungen, die Einstellungen des Generators und des Oscilloscopes,

Mehr

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen

Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Versuch 5.1 B Operationsverstärkerschaltungen und Computersimulation elektronischer Schaltungen Bei diesem Versuch sollen Sie mit den grundlegenden Eigenschaften und Anwendungen von Operationsverstärkern

Mehr

Regelungstechnik 1 Praktikum Versuch 2.1

Regelungstechnik 1 Praktikum Versuch 2.1 Regelungstechnik 1 Praktikum Versuch 2.1 1 Prozeßidentifikation Besteht die Aufgabe, einen Prozeß (Regelstrecke, Übertragungssystem,... zu regeln oder zu steuern, wird man versuchen, so viele Informationen

Mehr

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch R. Brigola, TH Nürnberg Georg Simon Ohm, 2014 Mathematica - Notebooks als Bonusmaterial zum Lehrbuch [1] Rolf Brigola Fourier-Analysis und Distributionen, Eine Einführung mit Anwendungen, edition swk,

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Projektdokumentation

Projektdokumentation Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es

Mehr

MATLAB Signal Processing Toolbox Inhaltsverzeichnis

MATLAB Signal Processing Toolbox Inhaltsverzeichnis Inhaltsverzeichnis Signal Processing Toolbox 1 Was ist Digitale Signalverarbeitung? 2 Inhalt 3 Aufbereitung der Messdaten 4 Interpolation 6 Approximation 7 Interpolation und Approximation 8 Anpassung der

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

A1.1: Einfache Filterfunktionen

A1.1: Einfache Filterfunktionen A1.1: Einfache Filterfunktionen Man bezeichnet ein Filter mit dem Frequenzgang als Tiefpass erster Ordnung. Daraus lässt sich ein Hochpass erster Ordnung nach folgender Vorschrift gestalten: In beiden

Mehr

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf Prüfung SS 28 Mechatronik Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit lesbarem Namen werden korrigiert. Keine rote Farbe verwenden. Zu jeder Lösung

Mehr

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs Prof. Dr. R. Kessler, FH-Karlsruhe, C:\ro\Si5\homepage\welcome\ZusstellAufstell\Fourier_falsch_1.doc, S. 1/1 Prof. Dr. R. Kessler, FH Karlsruhe homepage: http://www.home.hs-karlsruhe.de/~kero1 Demo falsche

Mehr

Laborübung: Oszilloskop

Laborübung: Oszilloskop Laborübung: Oszilloskop Die folgenden Laborübungen sind für Studenten gedacht, welche wenig Erfahrung im Umgang mit dem Oszilloskop haben. Für diese Laborübung wurde eine Schaltung entwickelt, die verschiedene

Mehr

Elektrische Mess- und Prüftechnik Laborpraktikum. Abgabe der Auswertung dieses Versuchs ist Voraussetzung für die Zulassung zum folgenden Termin

Elektrische Mess- und Prüftechnik Laborpraktikum. Abgabe der Auswertung dieses Versuchs ist Voraussetzung für die Zulassung zum folgenden Termin Fachbereich Elektrotechnik / Informationstechnik Elektrische Mess- und Prüftechnik Laborpraktikum Abgabe der Auswertung dieses Versuchs ist Voraussetzung für die Zulassung zum folgenden Termin Versuch

Mehr

Visual Computing Filtering, Fourier Transform, Aliasing

Visual Computing Filtering, Fourier Transform, Aliasing Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Zu loesen bis: 16. Mai 2006 Prof. M. Gross Remo Ziegler / Christian Voegeli / Daniel Cotting Ziele Visual Computing

Mehr

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1

Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 Vor- und Nachteile FIR- und IIR-Filter DSV 1, 2005/01, Rur, Filterentwurf, 1 FIR-Filter sind nichtrekursive LTD-Systeme werden meistens in Transversalstruktur (Direktform 1) realisiert + linearer Phasengang

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

Lab3 - Fourieranalyse von Signalen

Lab3 - Fourieranalyse von Signalen 1 Einleitung Lab3 - Fourieranalyse von Signalen M. Brandner, C. Wallinger Die spektrale Analyse deterministischer und zufälliger Signale ist von zentraler Bedeutung in der Messtechnik, da sehr viele interessante

Mehr

In diesem Skript werden einige Plot-Typen und Funktionen beschrieben, die für die allgemeine Datenanalyse nützlich sind.

In diesem Skript werden einige Plot-Typen und Funktionen beschrieben, die für die allgemeine Datenanalyse nützlich sind. Datenanalyse In diesem Skript werden einige Plot-Typen und Funktionen beschrieben, die für die allgemeine Datenanalyse nützlich sind. Contents Die Messwerte Graphische Darstellung Plot mit Fehlerbalken

Mehr

Dipl.-Ing. Gerd Frerichs

Dipl.-Ing. Gerd Frerichs Dipl.-Ing. Gerd Frerichs Elektronik u. Breitbandkommunikationstechnik Wissenschaftlicher Mitarbeiter Darstellen von Frequenzgängen mit MS-Excel 20.0 1 R1 180k R3 4.7k Uein volts 0 5 Ck 10u 6 2.81 9.94

Mehr

Die Betriebsdämpfungsfunktion H(s) in Abhängigkeit der komplexen Frequenz s (s = j! für reelle Frequenzen!) ergibt sich als U 2 : (1)

Die Betriebsdämpfungsfunktion H(s) in Abhängigkeit der komplexen Frequenz s (s = j! für reelle Frequenzen!) ergibt sich als U 2 : (1) Hochfrequenztechnik II Hochfrequenzlter FI/ Einleitung Bei Filtern handelt es sich um lineare (und zeitinvariante) Netzwerke, mit denen bestimmte Frequenzbereiche eines Eingangssignals herausgeltert werden.

Mehr

Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015

Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015 Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015 1 OSI Schichtenmodell Systeme der Nachrichtentechnik werden häufig mittels des OSI-Referenzmodells charakterisiert. a) Benennen Sie die Schichten des OSI-Referenzmodells!

Mehr

Martin Werner. Übungsteil zum Buch. Signale und Systeme. Lehr- und Arbeitsbuch mit MATLAB- Übungen und Lösungen. 3. Auflage M.W.

Martin Werner. Übungsteil zum Buch. Signale und Systeme. Lehr- und Arbeitsbuch mit MATLAB- Übungen und Lösungen. 3. Auflage M.W. Martin Werner Übungsteil zum Buch Signale und Systeme Lehr- und Arbeitsbuch mit MATLAB- Übungen und Lösungen 3. Auflage M.W. Martin Werner, Fulda 8 V Vorwort Die zahlreichen, sehr positiven Reaktionen

Mehr

P2-61: Operationsverstärker

P2-61: Operationsverstärker Physikalisches Anfängerpraktikum (P2) P2-61: Operationsverstärker Auswertung Matthias Ernst Matthias Faulhaber Karlsruhe, den 16.12.2009 Durchführung: 09.12.2009 1 Transistor in Emitterschaltung 1.1 Transistorverstärker

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

Umwelt-Campus Birkenfeld Numerik. der Fachhochschule Trier. Prof. Dr.-Ing. T. Preußler. MATLAB-Simulink

Umwelt-Campus Birkenfeld Numerik. der Fachhochschule Trier. Prof. Dr.-Ing. T. Preußler. MATLAB-Simulink MATLAB- 1. Einführung in ist eine MATLAB-Toolbox zur Simulation Dynamischer Systeme mit Hilfe einer grafischen Benutzeroberfläche. Insbesondere eignet sich zur Behandlung linearer und nichtlinerarer zeitabhängiger

Mehr

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13

EAH Jena Prüfungsaufgaben Prof. Giesecke FB ET/IT Filterentwurf WS 12/13 FB ET/IT Filterentwurf WS 2/3 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner eine selbsterstellte Formelsammlung ein mathematisches Formelwerk Wichtige Hinweise: Ausführungen,

Mehr

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken

Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1. 1. Methoden zur Untersuchung von Regelstrecken FELJC P_I_D_Tt.odt 1 Die regelungstechnischen Grundfunktionen P, I, D, Totzeit und PT1 (Zum Teil Wiederholung, siehe Kurs T2EE) 1. Methoden zur Untersuchung von Regelstrecken Bei der Untersuchung einer

Mehr

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen

NANO III. Operationen-Verstärker. Eigenschaften Schaltungen verstehen Anwendungen NANO III Operationen-Verstärker Eigenschaften Schaltungen verstehen Anwendungen Verwendete Gesetze Gesetz von Ohm = R I Knotenregel Σ ( I ) = Maschenregel Σ ( ) = Ersatzquellen Überlagerungsprinzip Voraussetzung:

Mehr

1. Differentialgleichung der Filter zweiter Ordnung

1. Differentialgleichung der Filter zweiter Ordnung Prof. Dr.-Ing. F. Keller abor Elektronik 3 Filter zweiter Ordnung Info v.doc Hochschule Karlsruhe Info-Blatt: Filter zweiter Ordnung Seite /6. Differentialgleichung der Filter zweiter Ordnung Ein- und

Mehr

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004

Aufgabe 1 (Excel) Anwendungssoftware 1 / 11 Semesterschlussprüfung 21.06.2004 Anwendungssoftware 1 / 11 Dauer der Prüfung: 90 Minuten. Es sind alle fünf Aufgaben mit allen Teilaufgaben zu lösen. Versuchen Sie, Ihre Lösungen soweit wie möglich direkt auf diese Aufgabenblätter zu

Mehr

Laborpraktikum Grundlagen der Kommunikationstechnik

Laborpraktikum Grundlagen der Kommunikationstechnik Institut für Elektronik, Signalverarbeitung und Kommunikationstechnik Laborpraktikum Grundlagen der Kommunikationstechnik Versuch Analoge Modulationsverfahren Amplitudenmodulation KT 01 Winkelmodulation

Mehr

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik

Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter. Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Nachrichtentechnik [NAT] Kapitel 6: Analoge Filter Dipl.-Ing. Udo Ahlvers HAW Hamburg, FB Medientechnik Sommersemester 25 Inhaltsverzeichnis Inhalt Inhaltsverzeichnis 6 Analoge Filter 3 6. Motivation..................................

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

Anleitung für einen Frequenzsweep zur Audio-Analyse

Anleitung für einen Frequenzsweep zur Audio-Analyse Anleitung für einen Frequenzsweep zur Audio-Analyse Diese Anleitung bezieht sich auf HP 8903B Audio Analyzer und den Servogor 750 X-Y Schreiber. Mithilfe dieser Anleitung sollen Studenten in der Lage sein

Mehr

Lageregelung eines Magnetschwebekörpers

Lageregelung eines Magnetschwebekörpers Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Digitale Signalverabeitung Praktikum Regelungstechnik 1

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Realisierung digitaler Filter in C

Realisierung digitaler Filter in C Realisierung digitaler Filter in C Begleitmaterial zum Buch Grundlagen der digitalen Kommunikationstechnik Übertragungstechnik Signalverarbeitung Netze Carsten Roppel E-Mail: c.roppel@fh-sm.de Fachbuchverlag

Mehr

Tag 9: Datenstrukturen

Tag 9: Datenstrukturen Tag 9: Datenstrukturen A) Datenstrukturen B) Cell Arrays C) Anwendungsbeispiel: Stimulation in einem psychophysikalischen Experiment A) Datenstrukturen Wenn man komplizierte Datenmengen verwalten möchte,

Mehr

Prof. Dr. Stefan Weinzierl 10.02.2015

Prof. Dr. Stefan Weinzierl 10.02.2015 Einführung in die digitale Signalverarbeitung: 15. Tutorium Prof. Dr. Stefan Weinzierl 10.02.2015 Zusammenfassung Im Folgenden findet sich eine kleine Zusammenfassung der Konzepte, die wir in diesem Semester

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Praktikum Elektronik

Praktikum Elektronik Fakultät Elektrotechnik Hochschule für Technik und Wirtschaft Dresden University of Applied Sciences Friedrich-List-Platz 1, 01069 Dresden ~ PF 120701 ~ 01008 Dresden ~ Tel.(0351) 462 2437 ~ Fax (0351)

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM1

Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM1 Hinweis: Dies ist eine gekürzte Version des C-Projektes für unser ATMEL-Board ATM Einführung in die Digitale Verarbeitung von Analogen Signalen ( DSP- Grundlage mit dem Microcontroller. Das vollständige

Mehr

Deterministisches Chaos

Deterministisches Chaos . Institut für Mathematik und Physik Albert-Ludwigs-Universität Freiburg im Breisgau 26. Juni 2012 I Inhaltsverzeichnis 1 Vorwort zum Versuch 1 2 Ziel des Versuchs 1 3 Aufgabenstellung 2 4 Aufgaben zur

Mehr

Einführung in LTSpice

Einführung in LTSpice Einführung in LTSpice Wolfgang Puffitsch 26. März 2010 LTSpice (auch als SwitcherCAD III bezeichnet) ist ein Program der Firma Linear Technology um das Verhalten elektronischer Schaltungen zu simulieren.

Mehr

Signale und ihre Spektren

Signale und ihre Spektren Einleitung Signale und ihre Spektren Fourier zeigte, dass man jedes in der Praxis vorkommende periodische Signal in eine Reihe von Sinus- und Cosinusfunktionen unterschiedlicher Frequenz zerlegt werden

Mehr

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik

Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Aufgabenstellung für den 1. Laborbeleg im Fach Messtechnik: Oszilloskopmesstechnik Untersuchen Sie das Übertragungsverhalten eines RC-Tiefpasses mit Hilfe der Oszilloskopmesstechnik 1.Es ist das Wechselstromverhalten

Mehr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr

Digitale Regelung. Vorlesung: Seminarübungen: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Vorlesung: Dozent: Professor Ferdinand Svaricek Ort: 33/2211 Zeit:Di 15.00 16.30 Uhr Seminarübungen: Dozent: Alexander Weber Ort: 33/1101 Zeit: Mo 9.45 11.15 Uhr (Beginn: 20.04.2015) Vorlesungsskript:

Mehr

a) Wie viele ROM-Bausteine benötigen Sie für den Aufbau des 64x16 ROMs? c) Wie viele Bytes Daten können im 64x16 ROM insgesamt gespeichert werden?

a) Wie viele ROM-Bausteine benötigen Sie für den Aufbau des 64x16 ROMs? c) Wie viele Bytes Daten können im 64x16 ROM insgesamt gespeichert werden? VU Technische Grundlagen der Informatik Übung 4: Schaltwerke 83.579, 24W Übungsgruppen: Mo., 24.. Mi., 26..24 Aufgabe : ROM-Erweiterung Ein 64x6 ROM soll aus mehreren 32x4 ROMs (vgl. Abbildung rechts:

Mehr

Allgemeine Beschreibung von Blockcodes

Allgemeine Beschreibung von Blockcodes Allgemeine Beschreibung von Blockcodes Bei Blockcodierung wird jeweils eine Sequenz von m q binären Quellensymbolen (M q = 2) durch einen Block von m c Codesymbolen mit dem Symbolumfang M c dargestellt.

Mehr

Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider

Übung zur Vorlesung. Digitale Medien. Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider Übung zur Vorlesung Digitale Medien Vorlesung: Heinrich Hußmann Übung: Renate Häuslschmid, Hanna Schneider Wintersemester 2015/16 Frequenzraum 0 5 10 15 20 Zeit (ms) f = 1/T T = 10ms = 0,01s f = 1/ 0,01s

Mehr

Protokoll zum Versuch 146

Protokoll zum Versuch 146 Elektronik-Praktikum am Dritten Physikalischen Institut der Universität Göttingen Wintersemester 2005/2006 Protokoll zum Versuch 146 Messgerätesteuerung über IEC-Bus Name: Georg Herink, Hendrik Söhnholz

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Filter zur frequenzselektiven Messung

Filter zur frequenzselektiven Messung Messtechnik-Praktikum 29. April 2008 Filter zur frequenzselektiven Messung Silvio Fuchs & Simon Stützer Augabenstellung. a) Bauen Sie die Schaltung eines RC-Hochpass (Abbildung 3.2, Seite 3) und eines

Mehr

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen zusätzliche Informationen, Registrierung, Upload, Übungsblätter Aufgaben aus dem Bereich Data-, Text- und Web-Mining Crawling, Textanalyse, Textklassifizierung,

Mehr