Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology

Größe: px
Ab Seite anzeigen:

Download "Aufgabe 3. Signal Processing and Speech Communication Lab. Graz University of Technology"

Transkript

1 Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 3 Senden Sie die Hausübung bis spätestens per an Verwenden Sie MatrikelNummer1 MatrikelNummer2 als Betreff. Eine vollständige Abgabe besteht aus den von Ihnen erstellten Octave Dateien (*.m) und einem Simulationsprotokoll (PDF). Komprimieren Sie alle Dateien in eine zip-datei mit Dateinamen YourMatrNo YourColleaguesMatrNo.zip und hängen Sie diese an die an. Zusätzlich zur müssen Sie die ausgedruckten Simulationsprotokolle und die Lösungen für die analytischen Aufgaben in unseren Briefkasten in der Inffeldgasse 16c, Erdgeschoß, einwerfen (am Wochenende ist der Zugang zum Briefkasten nicht möglich). Drucken Sie dazu für jede Teilaufgabe den Angabezettel separat aus und klammern Sie ihn mit der jeweiligen Lösung/dem jeweiligen Simulationsprotokoll zusammen. Fügen Sie Ihre(n) Namen und Ihre Matrikelnummer(n) auf jedem Angabezettel ein. Wenn Sie Ihre analytischen Lösungen mittels L A TEX erstellen, können Sie bis zu zwei Bonuspunkte erhalten (einen pro analytisches Beispiel). Bei handschriftlichen Lösungen analytischer Beispiele bitten wir Sie, diese ordentlich, gut strukturiert und leserlich zu verfassen. Ansonsten werden fünf Punkte abgezogen.

2 Analytische Aufgabe 3.1 (8 Punkte) Die Impulsantwort eines linearen zeitinvarianten (LTI) Systems mit Eingangssignal x[n] und Ausgangssignal y[n] ist gegeben als ( π ) h r [n] = r n sin 2 n u[n], (1) wobei u[n] die Einheitssprungfunktion ist. (a) [1 Punkt(e)] Ist das durch h r [n] beschriebene System kausal? Finden Sie eine Bedingung für die Stabilität des Systems h r [n], für r C. (b) [2 Punkt(e)] Berechnen Sie H r (z), d.h. transformieren Sie h r [n] in die z-domäne. Die dürfen dabei die z-transformationspaare in unserer Formelsammlung benutzen. Geben Sie die Pole und alle (!) Nullstellen von H r (z) an. Zeichnen Sie das Pol-Nullstellendiagramm für r = 0.5. Bestätigt das Pol-Nullstellendiagramm Ihre Resultate bezüglich Stabilität und Kausalität aus Punkt a)? Welche Informationen brauchen Sie im Allgemeinen zusätzlich zu den Positionen der Pole und Nullstellen, um Stabilität und Kausalität festzustellen? (c) [1 Punkt(e)] Ist h r [n] die Impulsantwort eines minimalphasigen Systems? Begründen Sie Ihre Antwort. (d) [2 Punkt(e)] Berechnen Sie den Frequenzgang H r (e jθ ) und werten Sie ihn an den Frequenzen θ = 0 und θ = π/2 aus. Skizzieren Sie den Betragsfrequenzgang für r = 0.5, d.h. H 0.5 (e jθ ). Berechnen Sie den Phasengang H r (e jθ ). Ist das System für r = 0.5 linearphasig? Versuchen Sie den allgemeinen Ausdruck H r (e jθ ) für r = 1 zu vereinfachen, d.h. berechnen Sie H 1 (e jθ ). Was beobachten Sie? (e) [1 Punkt(e)] Finden Sie eine Differenzengleichung um das System h r [n] zu beschreiben. (f) [1 Punkt(e)] Nehmen Sie an, Sie wollen mit Hilfe des Systems h 1 [n] einen Sinuston erzeugen, der zum Zeitpunkt t = 0 eingeschalten wird. Definieren Sie ein Eingangssignal x[n] und eine Abtastfrequenz f s in Hz um ein Ausgangssignal y[n] mit einer Frequenz von f 1 in Hz zu erzeugen.

3 Analytische Aufgabe 3.2 (7 Punkte) (a) [2 Punkt(e)] Betrachten Sie ein kausales lineares zeitinvariantes (LTI) System mit einer reellwertigen Impulsantwort h α [n], ein Eingangssignal x[n], ein Ausgangssignal y α [n]. Betrachten Sie zudem ein zweites LTI System mit der Impulsantwort h β [n], ein Eingangssignal x β [n] und ein Ausgangssignal y β [n]. Das Eingangssignal des zweiten Systems ist das zeitinvertierte Ausgangssignal des ersten Systems, also x β [n] = y α [ n]. Nehmen Sie auch an, dass h α [n] = h β [n]. Bestimmen Sie ein Gesamt-LTI System mit Eingang x[n], Ausgang y[n] = y β [ n] und der Impulsantwort h[n]. Berechnen Sie die Impulsantwort h[n] und deren DTFT H(e jθ ). Auf welche Art und Weise steht das Betragsspektrum H(e jθ ) in Zusammenhang mit dem System H α (e jθ )? Was können Sie über das Phasenspektrum H(e jθ ) des Gesamtsystems sagen? Ist das Gesamtsystem kausal? (b) [3 Punkt(e)] Betrachten Sie ein LTI System mit Eingang x[n] und Ausgang y[n]; gegeben ist die Differenzengleichung 1 2 y[n 1] 9 y[n] + y[n + 1] = x[n]. 4 Erstellen Sie das Pol-Nullstellen Diagramm! Nennen Sie drei mögliche Konvergenzbereiche (Regions of Convergence [ROC]) und bestimmen Sie drei mögliche Impulsantworten. Geben Sie für jede Impulsantwort an, ob es sich um ein stabiles und/oder kausales System handelt. (c) [2 Punkt(e)] Gegeben ist ein zeitdiskretes kausales LTI System mit der Übertragungsfunktion ( z 1 )(1 6z 2 ). ( z 2 ) Ist das System stabil? Ermitteln Sie ein minimalphasige System H 1 (z) und ein Allpass-System H ap (z), sodass gilt H(z) = H ap (z)h 1 (z).

4 Matlab/Octave Aufgabe 3.3 (10 Punkte) (a) [2 Punkt(e)] Gegeben seien zwei kausale, lineare und zeitinvariante (LTI) Systeme durch folgende Differenzengleichungen: y[n] + p 2 y[n 2] = px[n 1], (2) y[n] + p 2 y[n 2] = px[n]. (3) mit p R und x[n], y[n] als Ein- und Ausgangsfolge. Sie wollen nun (2) und (3) mithilfe der Matlab/Octave Funktion y=filter(b,a,x) implementieren. Bestimmen Sie hierfür die Vektoren a und b in Abhängigkeit der Variable p für System (2) und (3). Setzen Sie im Folgenden p = 0.95 und berechnen Sie die Impulsantwort y[n] beider LTI-Systeme für x[n] = δ[n] mit 0 n < N 1 mit N = 32 mithilfe der filter Funktion. Plotten Sie die Ergebnisse mit Hilfe von stem und vergleichen Sie Ihre Ergebnisse mit jenen von impz 1. Der Befehl hold on erlaubt ein überlappendes Zeichnen mehrerer Kurven. Welches LTI-System verzögert die Energie des Eingangspulses x[n] = δ[n] weniger? (b) [2 Punkt(e)] Berechnen Sie die Pole der Systeme (2) und (3) über die Funktion roots. Vergleichen Sie Ihr Ergebnis mit dem Pol-Nullstellen Diagramm, welches Sie anhand der Funktion zplane erhalten. Erkennen Sie alle Nullstellen von System (2)? Wenn nicht, wo befindet (befinden) sich die fehlende(n) Nullstelle(n)? Sind die Systeme minimalphasig? Begründen Sie Ihre Antwort. (c) [2 Punkt(e)] Berechnen Sie für beide Systeme H(e jθ ) auf N f /2 + 1 gleich verteilten Frequenz Abtastpunkten zwischen 0 θ π mit N f = 1024 unter Verwendung der Funktion freqz. Verwenden Sie subplot um Amplitude und Phase innerhalb eines Figures zu zeichnen. Überlagern Sie beide Systeme auf einer Achse und Beschriften Sie Ihre Kurven mittels legend. Kann das selbe Ergebnis (von freqz) auch über die Anwendung der FFT auf die Impulsantwort erreicht werden? Begründen Sie Ihre Antwort. Warum besteht keine Notwendigkeit des Plottens des Bereiches von π < θ < 2π? Beide Systeme besitzen die selbe Amplituden-Antwort. Angenommen, Sie hätten nur das Wissen über die Amplituden-Antworten und der Impulsantworten (Sie kennen nicht die Pol/Nullstellen der Systeme), treffen Sie eine Aussage über die Minimalphasigkeit von System (2). Tipp: Verwenden Sie Ihr Ergebnis der Verzögerung der Energie von Problem 3.3 a). (d) [1 Punkt(e)] Plotten Sie die Gruppenlaufzeit (group delays) von beiden Systemen (mit p = 0.95) in einem Figure mit getrennten Subplots. Verwenden Sie hierfür die Funktion grpdelay. Besitzen die Systeme eine lineare Phase? Erzeugen Sie ein neues Figure und plotten Sie abermals die Gruppenlaufzeit mit p = 1. Besitzen die Systeme eine lineare 2 Phase mit p = 1? 1 impz, zplane, grpdelay, butter, filtfilt sind hilfreiche Funktionen, enthalten in der Matlab Signal Processing Toolbox, bzw. Octave Signal Package (Installation über pkg install -forge signal) 2 Sollten Sie Octaves grpdelay benutzen, dann können Sie mögliche Unstetigkeitsstellen innerhalb des Plots ignorieren

5 (e) [1 Punkt(e)] Schreiben Sie eine Funktion y=myfiltfilt(b,a,x) welche das System des analytischen Problems 3.2 a) implementiert. Das System h α [n] ist spezifiziert für die Koeffizienten b und a und implementiert das System h α [n] mittels ya=filter(b,a,x). (f) [2 Punkt(e)] Entwerfen Sie einen Butterworth Tiefpass Filter der Ordnung N = 3 mittels [b,a]=butter(n,wc). Setzen Sie die Grenzfrequenz auf f c = 5Hz bei einer Abtastrate von f s = 100Hz. Berechnen Sie wc. Generieren Sie ein Sinus-Signal s mit einer Länge von einer Sekunde, der Frequenz f = 2.3Hz (bei einer Abtastfrequenz von f s = 100Hz) und einer Amplitude von eins. Erzeugen Sie anschließend ein verrauschtes Signal x=s+v durch Addition des Vektors v, welchen Sie über die Funktion randn erzeugen sollen. Skalieren Sie die Amplitude auf einen Signal-Rausch-Abstand von (ca.) 18dB. Wie wählen Sie den Skalierungsfaktor? Generieren Sie die Sequenzen yfilter, yfiltfilt und ymyfiltfilt durch Filtern von x über filter(b,a,x), filtfilt(b,a,x), beziehungsweise myfiltfilt(b,a,x) (von Aufgabe e)). Vergleichen Sie diese drei Signale zusammen mit s und x in einem gemeinsamen Plot. Verwenden Sie legend für die Beschriftung der fünf Signale. Beschriften Sie die Abszisse in Sekunden-Einheiten. Erklären Sie Ihren Plot, vergleichen Sie mit den Ergebnissen aus 3.2 a).

Aufgabe 4. Signal Processing and Speech Communication Lab. Graz University of Technology

Aufgabe 4. Signal Processing and Speech Communication Lab. Graz University of Technology Signal Processing and Speech Communication Lab. Graz University of Technology Aufgabe 4 Senden Sie die Hausübung bis spätestens 29.6.2015 mittels Email an hw1.spsc@tugraz.at. Verwenden Sie MatrikelNummer1

Mehr

Signale und Systeme. A1 A2 A3 Summe

Signale und Systeme. A1 A2 A3 Summe Signale und Systeme - Prof. Dr.-Ing. Thomas Sikora - Name:............................... Vorname:.......................... Matr.Nr:.............................. Ergebnis im Web mit verkürzter Matr.Nr?

Mehr

Seminar Digitale Signalverarbeitung Thema: Digitale Filter

Seminar Digitale Signalverarbeitung Thema: Digitale Filter Seminar Digitale Signalverarbeitung Thema: Digitale Filter Autor: Daniel Arnold Universität Koblenz-Landau, August 2005 Inhaltsverzeichnis i 1 Einführung 1.1 Allgemeine Informationen Digitale Filter sind

Mehr

Klausur zur Vorlesung Signale und Systeme

Klausur zur Vorlesung Signale und Systeme Name: 10. Juli 2008, 11.00-13.00 Uhr Allgemeine Hinweise: Dauer der Klausur: Zugelassene Hilfsmittel: 120 min, 2 Zeitstunden Vorlesungsmitschrift, Mitschrift Übungen, Skript, handgeschriebene 2-seitige

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl Musterlösung 11. Aufgabenblatt 1. IIR-Filter 1.1 Laden Sie in Matlab eine Audiodatei mit Sampling-Frequenz von fs = 44100

Mehr

Experiment 4.1: Übertragungsfunktion eines Bandpasses

Experiment 4.1: Übertragungsfunktion eines Bandpasses Experiment 4.1: Übertragungsfunktion eines Bandpasses Schaltung: Bandpass auf Steckbrett realisieren Signalgenerator an den Eingang des Filters anschließen (50 Ω-Ausgang verwenden!) Eingangs- und Ausgangssignal

Mehr

Grundlagen der Videotechnik. Redundanz

Grundlagen der Videotechnik. Redundanz Grundlagen der Videotechnik Redundanz Redundanz beruht auf: - statistischen Abhängigkeiten im Signal, - Information, die vorher schon gesendet wurde - generell eine Art Gedächtnis im Signal Beispiel: Ein

Mehr

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort

SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Übung 8. Laborprotokoll SSY. Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort SSYLB SS6 Daniel Schrenk, Andreas Unterweger Übung 8 Laborprotokoll SSY Diskrete Systeme II: Stabilitätsbetrachtungen und Systemantwort Daniel Schrenk, Andreas Unterweger, ITS 4 SSYLB SS6 Daniel Schrenk,

Mehr

Einführung in die digitale Signalverarbeitung WS11/12

Einführung in die digitale Signalverarbeitung WS11/12 Einführung in die digitale Signalverarbeitung WS11/12 Prof. Dr. Stefan Weinzierl usterlösung 1. Aufgabenblatt 1. Digitale Filter 1.1 Was ist ein digitales Filter und zu welchen Zwecken wird die Filterung

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 203 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Vorteile digitaler Filter

Vorteile digitaler Filter Digitale Filter Vorteile digitaler Filter DF haben Eigenschaften, die mit analogen Filtern nicht realisiert werden können (z.b. lineare Phase). DF sind unabhängig von der Betriebsumgebung (z.b. Temperatur)

Mehr

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT)

Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Versuch 3: Anwendungen der schnellen Fourier-Transformation (FFT) Ziele In diesem Versuch lernen Sie zwei Anwendungen der Diskreten Fourier-Transformation in der Realisierung als recheneffiziente schnelle

Mehr

Verzerrungsfreies System

Verzerrungsfreies System Verzerrungsfreies System x(n) y(n) n n x(n) h(n) y(n) y(n) A 0 x(n a) A 0 x(n) (n a) h(n) A 0 (n a) H(z) A 0 z a Digitale Signalverarbeitung Liedtke 8.1.1 Erzeugung einer linearen Phase bei beliebigem

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d + d z + c d z + c uk d + + yk z d + c d z + c Systemtheorie Teil B - Zeitdiskrete Signale und Systeme Übungsaufgaben Manfred Strohrmann Urban Brunner Inhalt Übungsaufgaben - Signalabtastung und Rekonstruktion...

Mehr

Aufgabe 1: Diskrete und kontin. Signale

Aufgabe 1: Diskrete und kontin. Signale AG Digitale Signalverarbeitung - Klausur in Signale und Systeme Frühjahr 2009 Aufgabe : Diskrete und kontin. Signale 25 Pkt. Aufgabe : Diskrete und kontin. Signale 25 Pkt.. Gegeben sei das als Summierer

Mehr

5. Beispiele - Filter Seite 15

5. Beispiele - Filter Seite 15 5. Beispiele - Filter Seite 15 5.2 Entwurf digitaler Filter Zur Demonstration eines rekursiv implementierten Tiefpasses (FIR Finite Impulse Response bzw. IIR Infinite Impulse Response) soll dieses Beispiel

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Aufgabe 1: Kontinuierliche und diskrete Signale

Aufgabe 1: Kontinuierliche und diskrete Signale Klausur zur Vorlesung: Signale und Systeme Aufgabe : Kontinuierliche und diskrete Signale. Zwei Systeme sollen auf ihre Eigenschaften untersucht werden: v(t) S { } y (t) v(t) S { } y (t) Abbildung : zeitkontinuierliche

Mehr

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412

Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 TECHNISCHE UNIVERSITÄT MÜNCHEN Der Bipolar-Transistor und die Emitterschaltung Gruppe B412 Patrick Christ und Daniel Biedermann 16.10.2009 1. INHALTSVERZEICHNIS 1. INHALTSVERZEICHNIS... 2 2. AUFGABE 1...

Mehr

Kybernetik LTI-Systeme

Kybernetik LTI-Systeme Kybernetik LTI-Systeme Mohamed Oubbati Institut für Neuroinformatik Tel.: (+49) 731 / 50 24153 mohamed.oubbati@uni-ulm.de 26. 04. 2012 Was ist Kybernetik? environment agent Kybernetik ermöglicht, die Rückkopplung

Mehr

Praktikum: Digitale Signalverarbeitung (ET215) Test 1

Praktikum: Digitale Signalverarbeitung (ET215) Test 1 PROFESSOR DR.-ING. MARTIN WERNER M.W. Fachbereich Elektrotechnik und Informationstechnik Hochschule Fulda Praktikum: Digitale Signalverarbeitung (ET215) Test 1 Erklärung Mit meiner Unterschrift erkläre

Mehr

Übungseinheit 3. FIR und IIR Filter

Übungseinheit 3. FIR und IIR Filter Übungseinheit 3 FIR und IIR Filter In dieser Übungseinheit sollen verschiedene Effekte mittels FIR (finite impulse response) und IIR (infinite impulse response) Filter implementiert werden. FIR Filter

Mehr

Simulink: Einführende Beispiele

Simulink: Einführende Beispiele Simulink: Einführende Beispiele Simulink ist eine grafische Oberfläche zur Ergänzung von Matlab, mit der Modelle mathematischer, physikalischer bzw. technischer Systeme aus Blöcken mittels plug-and-play

Mehr

Elektrische Messtechnik, Labor

Elektrische Messtechnik, Labor Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Messverstärker Studienassistentin/Studienassistent Gruppe Datum Note Nachname, Vorname Matrikelnummer Email

Mehr

Signale und Systeme 2

Signale und Systeme 2 Signale und Systeme Beispielsammlung c G. Doblinger, C. Novak, J. Gonter, May 03 gerhard.doblinger@tuwien.ac.at johannes.gonter@tuwien.ac.at www.nt.tuwien.ac.at/teaching/courses/summer-term/389055/ Vorwort

Mehr

= {} +{} = {} Widerstand Kondensator Induktivität

= {} +{} = {} Widerstand Kondensator Induktivität Bode-Diagramme Selten misst man ein vorhandenes Zweipolnetzwerk aus, um mit den Daten Amplituden- und Phasengang zu zeichnen. Das kommt meistens nur vor wenn Filter abgeglichen werden müssen oder man die

Mehr

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale

Tontechnik 2. Digitale Filter. Digitale Filter. Zuordnung diskrete digitale Signale neue diskrete digitale Signale Tontechnik 2 Digitale Filter Audiovisuelle Medien HdM Stuttgart Digitale Filter Zuordnung diskrete digitale Signale neue diskrete digitale Signale lineares, zeitinvariantes, diskretes System (LTD-System)

Mehr

Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion

Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion Grundlagen der Videotechnik Bau von Systemen Zweiter Ordnung, Prädiktion Bisher: Analyse von Systemen 1. und 2. Ordnung Heute: Synthese, Bau von passenden Prädiktoren. Angenommen, wir wollen einen Sinus-Generator

Mehr

Signale und Systeme I

Signale und Systeme I FACULTY OF ENGNEERING CHRISTIAN-ALBRECHTS-UNIVERSITÄT ZU KIEL DIGITAL SIGNAL PROCESSING AND SYSTEM THEORY DSS Signale und Systeme I Musterlösung zur Modulklausur WS 010/011 Prüfer: Prof. Dr.-Ing. Gerhard

Mehr

PSpice 1. Versuch 9 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik

PSpice 1. Versuch 9 im Informationselektronischen Praktikum. Studiengang Elektrotechnik und Informationstechnik Fakultät für Elektrotechnik und Informationstechnik Institut für Mikro- und Nanoelektronik Fachgebiet Elektronische Schaltungen und Systeme PSpice 1 Versuch 9 im Informationselektronischen Praktikum Studiengang

Mehr

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches:

3) Es soll ein aktives Butterworth-Tiefpassfilter mit folgenden Betriebsparametern entworfen werden: Grunddämpfung: Grenze des Durchlassbereiches: Übungsblatt 4 1) Beim Praktikumsversuch 4 sollten Sie an das aufgebaute iefpassfilter eine Rechteckspannung mit einer Frequenz von 6 Hz anlegen: a) Skizzieren Sie grob den Verlauf der Ausgangsspannung

Mehr

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer:

Gruppe: 2/19 Versuch: 5 PRAKTIKUM MESSTECHNIK VERSUCH 5. Operationsverstärker. Versuchsdatum: 22.11.2005. Teilnehmer: Gruppe: 2/9 Versuch: 5 PAKTIKM MESSTECHNIK VESCH 5 Operationsverstärker Versuchsdatum: 22..2005 Teilnehmer: . Versuchsvorbereitung Invertierender Verstärker Nichtinvertierender Verstärker Nichtinvertierender

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen:

Messtechnik. Gedächnisprotokoll Klausur 2012 24. März 2012. Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Messtechnik Gedächnisprotokoll Klausur 2012 24. März 2012 Dokument erstellt von: mailto:snooozer@gmx.de Aufgaben Es wurde die Kapazität von 10 Kondensatoren gleicher Bauart gemessen: Index k 1 2 3 4 5

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele:

Multimediale Werkzeuge, Audio: Formate, Tools. -Sound/Audio Objekte. Formate, Beispiele: Multimediale Werkzeuge, Audio: Formate, Tools -Sound/Audio Objekte Formate, Beispiele: - Mp3 (Kurz für MPEG1/2 Layer 3) - PCM (z.b. Wave Datei), übliche Formate: CD: 44100 HZ Abtastrate, 16 Bits/Abtastwert.

Mehr

Elektrische Messtechnik, Labor Sommersemester 2014

Elektrische Messtechnik, Labor Sommersemester 2014 Institut für Elektrische Messtechnik und Messsignalverarbeitung Elektrische Messtechnik, Labor Sommersemester 2014 Rechnerunterstützte Erfassung und Analyse von Messdaten Übungsleiter: Dipl.-Ing. GALLIEN

Mehr

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert.

Reell. u(t) Komplex u(t), Zeitabhängig Zeitunabhängig. u(t)e jωt. Reell Û. Elektrische Größe. Spitzenwert. Komplex Û. Reell U. Effektivwert. Aufgaben Reell u(t) Elektrische Größe Zeitabhängig Zeitunabhängig Spitzenwert Effektivwert Komplex u(t), Reell Û Komplex Û Reell U Komplex U u(t)e jωt Institut für Technische Elektronik, RWTH - Aachen

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.6.13 Arbeitszeit: 1 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω)

Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 4 Systeme im Frequenzbereich (jω) 4.1 Allgemeines Im Frequenzbereich beschreiben wir das Verhalten von Systemen mit dem Komplexen Frequenzgang: G (jω) 1 4.2 Berechnung des Frequenzgangs Beispiel: RL-Filter

Mehr

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme.

Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz. DSS Diskrete Signale und Systeme. Fachhochschule Köln Fakultät IME - NT Bereich Regelungstechnik Prof. Dr.-Ing. R. Bartz DSS Diskrete Signale und Systeme Teampartner: Praktikum Versuch 1 Laborplatz: Name: Vorname: Studiengang /-richtung

Mehr

Elektrische Filter Erzwungene elektrische Schwingungen

Elektrische Filter Erzwungene elektrische Schwingungen CMT-38-1 Elektrische Filter Erzwungene elektrische Schwingungen 1 Vorbereitung Wechselstromwiderstände (Lit.: GERTHSEN) Schwingkreise (Lit.: GERTHSEN) Erzwungene Schwingungen (Lit.: HAMMER) Hochpass, Tiefpass,

Mehr

Modulationsanalyse. Amplitudenmodulation

Modulationsanalyse. Amplitudenmodulation 10/13 Die liefert Spektren der Einhüllenden von Teilbändern des analysierten Signals. Der Anwender kann damit Amplitudenmodulationen mit ihrer Frequenz, ihrer Stärke und ihrem zeitlichen Verlauf erkennen.

Mehr

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen

Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen Digitale Signalverarbeitung Vorlesung 5 - Filterstrukturen 21. November 2016 Siehe Skript, Kapitel 8 Kammeyer & Kroschel, Abschnitt 4.1 1 Einführung Filterstrukturen: FIR vs. IIR 2 Motivation: Grundlage

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

A2.3: Sinusförmige Kennlinie

A2.3: Sinusförmige Kennlinie A2.3: Sinusförmige Kennlinie Wie betrachten ein System mit Eingang x(t) und Ausgang y(t). Zur einfacheren Darstellung werden die Signale als dimensionslos betrachtet. Der Zusammenhang zwischen dem Eingangssignal

Mehr

Übung 7: Methode der kleinsten Quadrate

Übung 7: Methode der kleinsten Quadrate ZHAW, DSV2, 2007, Rumc, 1/8 Übung 7: Methode der kleinsten Quadrate Aufgabe 1: Lineare Annäherung im Skalarprodukt-Raum. Finden Sie für den Vektor y = [2 2 2] T eine Linearkombination y e der Vektoren

Mehr

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012

FH Jena Prüfungsaufgaben - Master Prof. Giesecke FB ET/IT Digitale Signalverarbeitung SS 2012 FB ET/IT Digitale Signalverarbeitung SS 0 Name, Vorname: Matr.-Nr.: Zugelassene Hilfsmittel: beliebiger Taschenrechner ein mathematisches Formelwerk eine selbsterstellte Formelsammlung Wichtige Hinweise:

Mehr

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT)

Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Zeitdiskrete, digitale Filter und schnelle Fourier-Transformation (FFT) Inhaltsverzeichnis 1 Allgemeines Filter... 2 2 Filter auf dem Signalprozessor... 2 3 Zusammenhang Zeitsignal und Frequenzspektrum...

Mehr

Betrachtetes Systemmodell

Betrachtetes Systemmodell Betrachtetes Systemmodell Wir betrachten ein lineares zeitinvariantes System mit der Impulsantwort h(t), an dessen Eingang das Signal x(t) anliegt. Das Ausgangssignal y(t) ergibt sich dann als das Faltungsprodukt

Mehr

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters?

Aufgabensammlung. eines Filters: c) Wie stark steigen bzw. fallen die beiden Flanken des Filters? Aufgabensammlung Analoge Grundschaltungen 1. Aufgabe AG: Gegeben sei der Amplitudengang H(p) = a e eines Filters: a) m welchen Filtertyp handelt es sich? b) Bestimmen Sie die Mittenkreisfrequenz des Filters

Mehr

Laborprotokoll SSY. Anwendung von Systemen: Filter

Laborprotokoll SSY. Anwendung von Systemen: Filter Laborprotokoll SSY Anwendung von Systemen: Filter Daniel Schrenk, Andreas Unterweger, ITS 2004 SSYLB2 SS06 Daniel Schrenk, Andreas Unterweger Seite 1 von 15 1. Einleitung Ziel der Übung Bei dieser Übung

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 202 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Systemtheorie Teil B

Systemtheorie Teil B d d z c d z c uk d yk z d c d z c Systemtheorie eil B - Zeitdiskrete Signale und Systeme - Musterlösungen Manfred Strohrmann Urban Brunner Musterlösungen - Entwurf zeitdiskreter Filter... 3. iefpass mit

Mehr

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 5 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN BEDEUTUNG DER GEWICHTSFUNKTION UND

Mehr

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014 Übung 1 - Vorbereitung zum Praktikum

Mehr

Digitale Filter. Martin Schlup. 8. Mai 2012

Digitale Filter. Martin Schlup. 8. Mai 2012 Digitale Filter Martin Schlup 8. Mai 2012 1. Filterstrukturen Dieser Beitrag ist eine kurz gehaltene Einführung in die Darstellung zeitdiskreter Systeme und soll einige elementare Hinweise geben, wie digitale

Mehr

19. Frequenzgangkorrektur am Operationsverstärker

19. Frequenzgangkorrektur am Operationsverstärker 9. Frequenzgangkorrektur am Operationsverstärker Aufgabe: Die Wirkung komplexer Koppelfaktoren auf den Frequenzgang eines Verstärkers ist zu untersuchen. Gegeben: Eine Schaltung für einen nichtinvertierenden

Mehr

Übung 3: Einfache Graphiken und Näherungen durch Regression

Übung 3: Einfache Graphiken und Näherungen durch Regression Übung 3: Einfache Graphiken und Näherungen durch Regression M. Schlup, 9. August 010 Aufgabe 1 Einfache Graphik Für die abgegebene Leistung P = UI eines linearen, aktiven Zweipols mit Leerlaufspannung

Mehr

Die in Versuch 7 benutzte Messschaltung wird entsprechend der Anleitung am Arbeitsplatz erweitert.

Die in Versuch 7 benutzte Messschaltung wird entsprechend der Anleitung am Arbeitsplatz erweitert. Testat Mo Di Mi Do Fr Spannungsverstärker Datum: Versuch: 8 Abgabe: Fachrichtung Sem. 1. Einleitung Nachdem Sie in Versuch 7 einen Spannungsverstärker konzipiert haben, erfolgen jetzt der Schaltungsaufbau

Mehr

Analog- und Digitalelektronik

Analog- und Digitalelektronik Willkommen zur Prüfung: Analog- und Digitalelektronik Name: Vorname: Matrikelnummer: Allgemeine Hinweise: Diese Klausur umfasst 7 n. Sie haben 90 Minuten Zeit, um die folgenden Aufgaben zu bearbeiten.

Mehr

Projektdokumentation

Projektdokumentation Thema: Bildschärfung durch inverse Filterung von: Thorsten Küster 11027641 Lutz Kirberg 11023468 Gruppe: Ibv-team-5 Problemstellung: Bei der Übertragung von Kamerabildern über ein Video-Kabel kommt es

Mehr

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern

Digital Signal Processing Audio Measurements Custom Designed Tools. Praktische MLS Messung mit typischen Fehlerbildern Praktische MLS Messung mit typischen Fehlerbildern In diesem praktischen Beispiel möchten wir Ihnen zeigen, wie Sie mit MLS den Frequenzgang einer Soundkarte messen können. MLS ist ein sehr leistungsfähiges

Mehr

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m

1 C A = A. y 1 y 2. x 1 x 2. x n B @ B @ C A. y m Kapitel Systeme Ein System ist eine Anordnung von miteinander verbundenen Komponenten zur Realisierung einer technischen Aufgabenstellung. Ein System kann als Operator aufgefasst werden, der Eingangsgrößen

Mehr

SS 2003. Klausur zum Praktikum ETiT III Mess- und Sensortechnik. 16.07.2003 90 min. Vorname, Name: Matrikelnummer: Studiengang:

SS 2003. Klausur zum Praktikum ETiT III Mess- und Sensortechnik. 16.07.2003 90 min. Vorname, Name: Matrikelnummer: Studiengang: SS 2003 Klausur zum Praktikum ETiT III Mess- und Sensortechnik 16.07.2003 90 min Vorname, Name:, Matrikelnummer: Studiengang: ETiT / Fb. 18 WiET / Fb. 1 Aufgaben: #1 #2 #3 #4 Kurzfragen Summe Punkte: /

Mehr

Methodenseminar. Messtechnik und Biosignalerfassung / Übungen. Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak

Methodenseminar. Messtechnik und Biosignalerfassung / Übungen. Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak Methodenseminar Messtechnik und Biosignalerfassung / Übungen Assist. Prof. Dipl.-Ing. Dr. Manfred Bijak Dieses Skriptum ist ausschließlich als Lernbehelf im Rahmen der Lehrveranstaltung LV 809.045 Messtechnik

Mehr

Übung 3: Oszilloskop

Übung 3: Oszilloskop Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1

Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe 1 Realisierung digitaler Filter FHTW-Berlin Prof. Dr. F. Hoppe System zur digitalen Signalverarbeitung: Signal- Quelle AAF ADC DAC RCF DSP Po rt Po rt Signal- Ziel Das Bild zeigt ein allgemeines System zur

Mehr

SV1: Aktive RC-Filter

SV1: Aktive RC-Filter Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung. September 6 Fachpraktikum Signalverarbeitung SV: Aktive RC-Filter Einführung In diesem Versuch wird ein aktives

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Technische Informatik Basispraktikum Sommersemester 2001

Technische Informatik Basispraktikum Sommersemester 2001 Technische Informatik Basispraktikum Sommersemester 2001 Protokoll zum Versuchstag 1 Datum: 17.5.2001 Gruppe: David Eißler/ Autor: Verwendete Messgeräte: - Oszilloskop HM604 (OS8) - Platine (SB2) - Funktionsgenerator

Mehr

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation

Bildverarbeitung Herbstsemester 2012. Fourier-Transformation Bildverarbeitung Herbstsemester 2012 Fourier-Transformation 1 Inhalt Fourierreihe Fouriertransformation (FT) Diskrete Fouriertransformation (DFT) DFT in 2D Fourierspektrum interpretieren 2 Lernziele Sie

Mehr

Kontrollfragen zum Skript Teil 1 beantwortet

Kontrollfragen zum Skript Teil 1 beantwortet Kontrollfragen zum Skript Teil 1 beantwortet Von J.S. Hussmann Fragen zu SW 1.1 Welche Vorteile hat die DSVB? Programmierbar Parametrierbar Reproduzierbar Wie heisst die Umwandlung eines Zeit-diskreten

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

PRAKTIKUMSVERSUCH M/S 2

PRAKTIKUMSVERSUCH M/S 2 Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme PRAKTIKUMSVERSUCH M/S 2 Betreuer: Dipl.-Ing. Burkhard Hensel Dr.-Ing. Alexander Dementjev ALLGEMEINE BEMERKUNGEN

Mehr

MATLAB Signal Processing Toolbox Inhaltsverzeichnis

MATLAB Signal Processing Toolbox Inhaltsverzeichnis Inhaltsverzeichnis Signal Processing Toolbox 1 Was ist Digitale Signalverarbeitung? 2 Inhalt 3 Aufbereitung der Messdaten 4 Interpolation 6 Approximation 7 Interpolation und Approximation 8 Anpassung der

Mehr

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an!

Kreuze nur die zutreffenden Eigenschaften für die folgenden Funktionen im richtigen Feld an! Teil : Grundkompetenzen ( Punkte) Beispiel : ( Punkt) Die nebenstehende Graphik stellt ein eponentielles Wachstum der Form f() = a b (a, b R + ) dar. Bestimme aus dem Graphen die Werte der Konstanten a

Mehr

Klausur. Grundlagen der Mechatronik und Systemtechnik

Klausur. Grundlagen der Mechatronik und Systemtechnik 23.08.2012 Klausur Grundlagen der Mechatronik und Systemtechnik Name: Matrikel-Nr.: Hinweise zur Bearbeitung: Die Klausur besteht aus 4 Aufgaben. Es sind alle Aufgaben zu bearbeiten. Die Bearbeitungszeit

Mehr

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt

Praktikum Elektronische Messtechnik WS 2007/2008. Versuch OSZI. Tobias Doerffel Andreas Friedrich Heiner Reinhardt Praktikum Elektronische Messtechnik WS 27/28 Versuch OSZI Tobias Doerffel Andreas Friedrich Heiner Reinhardt Chemnitz, 9. November 27 Versuchsvorbereitung.. harmonisches Signal: Abbildung 4, f(x) { = a

Mehr

PRAKTIKUM REGELUNGSTECHNIK 2

PRAKTIKUM REGELUNGSTECHNIK 2 FACHHOCHSCHULE LANDSHUT Fachbereich Elektrotechnik Prof. Dr. G. Dorn PRAKTIKUM REGELUNGSTECHNIK 2 1 Versuch 2: Übertragungsfunktion und Polvorgabe 1.1 Einleitung Die Laplace Transformation ist ein äußerst

Mehr

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs

Demo falsche Anwendung der Fourier-Reihen: Die System-Antwort ist NICHT die (mit Transferfunktion bewertete) Fourierreihe des Eingangs Prof. Dr. R. Kessler, FH-Karlsruhe, C:\ro\Si5\homepage\welcome\ZusstellAufstell\Fourier_falsch_1.doc, S. 1/1 Prof. Dr. R. Kessler, FH Karlsruhe homepage: http://www.home.hs-karlsruhe.de/~kero1 Demo falsche

Mehr

Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015

Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015 Ü bung GIT- Teil Nachrichtentechnik, 17.11.2015 1 OSI Schichtenmodell Systeme der Nachrichtentechnik werden häufig mittels des OSI-Referenzmodells charakterisiert. a) Benennen Sie die Schichten des OSI-Referenzmodells!

Mehr

Übertragungsglieder mit Sprung- oder Impulserregung

Übertragungsglieder mit Sprung- oder Impulserregung Ernst-Moritz-Arndt-Universität Greifswald Fachbereich Physik Elektronikpraktikum Protokoll-Nr.: 4 Übertragungsglieder mit Sprung- oder Impulserregung Protokollant: Jens Bernheiden Gruppe: Aufgabe durchgeführt:

Mehr

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass

Versuchsprotokoll zum Versuch Nr. 9 Hoch- und Tiefpass In diesem Versuch geht es darum, die Kennlinien von Hoch- und Tiefpässen aufzunehmen. Die Übertragungsfunktion aller Blindwiderstände in Vierpolen hängt von der Frequenz ab, so daß bestimmte Frequenzen

Mehr

Analoge und digitale Filter

Analoge und digitale Filter Technische Universität Ilmenau Fakultät Elektrotechnik und Informationstechnik FG Nachrichtentechnik Übungsaufgaben zur Lehrveranstaltung Analoge und digitale Filter Filter. Ordnung. Betrachtet wird ein

Mehr

Vordiplomprüfung Grundlagen der Elektrotechnik III

Vordiplomprüfung Grundlagen der Elektrotechnik III Vordiplomprüfung Grundlagen der Elektrotechnik III 16. Februar 2007 Name:... Vorname:... Mat.Nr.:... Studienfach:... Abgegebene Arbeitsblätter:... Bitte unterschreiben Sie, wenn Sie mit der Veröffentlichung

Mehr

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang

Web Mining Übung. www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen. Aufgaben. Umfang www.ke.tu-darmstadt.de/lehre/ss13/web-mining/uebungen zusätzliche Informationen, Registrierung, Upload, Übungsblätter Aufgaben aus dem Bereich Data-, Text- und Web-Mining Crawling, Textanalyse, Textklassifizierung,

Mehr

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme

Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Arbeit zum Seminar Digitale Signalverarbeitung Kenngrößen und Eigenschaften zeitdiskreter LTI-Systeme Thomas Wilbert thowil@uni-koblenz.de 29.06.2005 Zusammenfassung Dieses Dokument befasst sich mit der

Mehr

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich

Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich Elektrische Messtechnik Protokoll - Bestimmung des Frequenzgangs durch eine Messung im Zeitbereich André Grüneberg Janko Lötzsch Mario Apitz Friedemar Blohm Versuch: 19. Dezember 2001 Protokoll: 6. Januar

Mehr

Versuch: Digitale Filter

Versuch: Digitale Filter Versuch: Digitale Filter Diese Unterlagen dienen zum einen als Versuchsunterlagen für den Versuch: Digitale Filter". Sie enthalten aber auch in komprimierter Form alles Wissenswerte zu diesem Thema und

Mehr

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch

Mathematica - Notebooks als Bonusmaterial zum Lehrbuch R. Brigola, TH Nürnberg Georg Simon Ohm, 2014 Mathematica - Notebooks als Bonusmaterial zum Lehrbuch [1] Rolf Brigola Fourier-Analysis und Distributionen, Eine Einführung mit Anwendungen, edition swk,

Mehr

IEMS Regelungstechnik Abschlussklausur

IEMS Regelungstechnik Abschlussklausur IEMS Regelungstechnik Abschlussklausur Prof. Dr. Moritz Diehl, IMTEK, Universität Freiburg, und ESAT-STADIUS, KU Leuven 30. August, 0:5-3:5, Freiburg, Georges-Koehler-Allee 06, Raum 00-007 page 0 2 3 4

Mehr

Datenverarbeitung und Tabellenkalkulation. Braunschweig, den Dipl.- Ing. Katrin Leicht

Datenverarbeitung und Tabellenkalkulation. Braunschweig, den Dipl.- Ing. Katrin Leicht Datenverarbeitung und Tabellenkalkulation Braunschweig, den 20.11.2014 Dipl.- Ing. Katrin Leicht Gliederung Was ist Matlab? Messignal Filtern Kurze Einführung in Excel Schnittstelle Excel-Matlab Beispiele

Mehr

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf

Prüfung SS 2008. Mechatronik. Prof. Dr.-Ing. K. Wöllhaf Prüfung SS 28 Mechatronik Prof. Dr.-Ing. K. Wöllhaf Anmerkungen: Aufgabenblätter auf Vollständigkeit überprüfen Nur Blätter mit lesbarem Namen werden korrigiert. Keine rote Farbe verwenden. Zu jeder Lösung

Mehr

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:...

Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2. Kapazität. Wechselspannung. Name:... Universität Hamburg, Fachbereich Informatik Arbeitsbereich Technische Aspekte Multimodaler Systeme (TAMS) Praktikum der Technischen Informatik T2 2 Kapazität Wechselspannung Name:... Bogen erfolgreich

Mehr