90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert.

Größe: px
Ab Seite anzeigen:

Download "90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert."

Transkript

1 QualysoftGruppe

2

3 Jeden Tag werden 2,5 Trillionen Byte an Daten erstellt. 90 Prozent der heute weltweit vorhandenen Daten wurden dabei erst in den letzten zwei Jahren generiert. Diese Daten stammen aus den unterschiedlichsten Quellen: Sensoren, die Klimadaten sammeln, Beiträgen auf Social-Media-Sites, digitalen Bildern und Videos, Datensätzen zu Kauftransaktionen und GPS-Signalen von Mobiltelefonen, um nur einige zu nennen. Diese großen Datenmengen sind Big Data.

4

5 5 Quelle: Spiegel.de

6 IBM Watson 6

7

8 BigData Warehouse - DWH und BigData im Einklang. Dominik Jaeth Country Manager Germany

9 BigData? Die Vier V Menge Schnelle (Bewegung) Vielfalt Qualität

10 Was ist -BigData McKinsey Big Data refers to datasets whose size is beyond the ability of typical database software tools to capture, store, manage, and analyze. Gartner Big Data are high-volume, high-velocity, and/or high-variety information assets that require new forms of processing to enable enhanced decision making, insight discovery, and process optimization. BARC Big Data designates methods and technologies for the highly scalable acquisition, storage, and analysis of polystructured data

11 Kimball zu BigData Building a Hadoop Data Warehouse It s a rennaisancethat is happening here A Data Warehouse needs to encompass Big Data and I hope that all folks working with those (Big Data) topics realize that they are part of the larger Data Warehouse team We want to use SQL and SQL like languages but we don t want the RDBMS storage constraints.the disruptive solution: Hadoop

12 RDBMS vs. Hadoop& Co. Schema Datentransofmation vor Verwendung ETL. ca. 70%der gesamten DWH Kosten RDBMS Data Tables System Tables RAW oder Strukturiert Storage Meta Data Hadoop& Co HDFS Filesystem HCatalog Scheme less Transformation/Inter pretation bei Verwendung Nur optionale SchemaViews (HCatalog) SQL Query Engine Alle drei Layer sind voneinander abhängig Proprietäre Systeme Query Multiple Schemata SQL und nosql Multiple Engines Alle drei Layer sind voneinander unabhängig multiaccess

13 Warum ETL? S implicity ETL transformiert die Daten in gut lesbare Strukturen H istorization ETL ist Revisionssicher I ntegration ETL integriert und bereinigt Daten aus verschiedenen Quellen P erformance ETL bereitet Daten zum effizienten lesen vor (pre-processes) How to SHIP data for analytics without ETL?

14 SHIPon the fly -Schema-less Clean, transform, integrate and aggregate on read time Your business case drives the query and defines the requirements History is maintained nevertheless (you never delete) Performance by using the suitable tool the data to analyze and simple scale-out

15 Schema vs. Schema less It s trivial to decide if You know your data and your requirements You know how often your data is used Just calculate What does it cost (effort, execution time) to transform the data? How often do you need to read it? What is the expected response time? For common BI requirements, ETL is the most efficient and effective way regardless if you use a DWH or a Big Data platform

16 BigData Technologies anddwh aremadetoworktogether

17 Explorative Analysis with Big Data Technologies Use- and Business Case Prototype on Big Data platform ( Self Service ) Access any data source Virtually supports any adhoc business case based on Big Data Example: Product Trend Analysis requires product data and more Analyze own data, social media, blogs, tracking etc.. Reduces risks, improves revenue, delivers marketing suggestions and feedback for R&D etc. Data Scientist supports Invents and creates Use result Analytical Prototypes & One-time Solutions Plus evaluation of - New data, methods & algorithms - Data quality - Tools Capture & adopts for common use Management BI Specialist Admin / Expert

18 DWH Enhancements Scenario 1 Architecture BI Tools Advanced Analytical Tools Developer s Environments Tools Connectors Loaders Processing Metadata Programming Languages NoSQL DBs Other FS Scripting Languages Analytical Tools Map Reduce (S)QL Engines HDFS (incl. various file formats) Direct HDFS access Big Data Platform Images Video Web, Feeds OLTP DWH Sensordata Logs Audio Messages Services Data Sources

19 DWH Enhancements Scenario 1 Technology Oracle BI, Microsoft BI, SAP BO, IBM Cognos R, SAS, SPSS, RapidMiner, Knime, Weka, Eclipse, MS Studio, JDeveloper, Tableau, QlikView, SpotFire, Tools JDBC, ODBC, SQL*Net, Oozie, Flume, HCatalog, Java, Python, C++, Cassandra, HBase, CFS (?), Pig, Mahout, R, Map Reduce Hive, Impala, HDFS (incl. various file formats) Direct HDFS access Big Data Cluster. Hadoop& Co. Images Video Web, Feeds OLTP DWH Sensordata Logs Audio Messages Services Data Sources

20 DWH Enhancements Scenario 1 Technology Example Product Trend Analysis Process runs on Infrastructure BI tool connects to DWH, Hive & Impala via ODBC and SQL*Net CSV structures defined with HCatalogand used by HIVE Impala table definitions bound to Hive CSV structures Oracle BI, Microsoft BI, SAP BO, IBM Cognos R, SAS, SPSS, RapidMiner Knime, Weka, Hive query runs M/R against CSV Logs loaded via scoop as csv files on a daily base Impala s InMemorySQL Engine caches CSV file content Talendjob reads SM data from stream and loads into HDFS DWH data accessed directly via SQL*Net Java M/R job aggregates and matches SM data & region/classificat ion BI tool joins hadoopbased rating with DWH based classification and revenue data to identify and compare external and internal trends JDBC, ODBC, SQL*Net, Oozie, Flume, OLTP DWH HCatalog, Java, Python, C++, Cassandra, HBase CFS (?), Sensordata Logs

21 Big Data Archive for Data Warehouses Using Hadoop & Co as a DWH archive Cost efficient storage / archiving / unloading of (old) mass data Example: Account transaction inquiry for commercial banks allow millions of customers to check their transactions of the last 20 years including correspondence, documents etc. as well as internal analysis of historical, finest grained data DWH SQL Access Analytics Data Warehouse Old data unloading SQL Data link Web App Big Data System Archive Data & Documents OLTP Documents

22 Big Data Archive for Data Warehouses Process runs on Infrastructure Most current OLTP Txdata loaded to DWH via ETL tool Related documents transferedto HDFS for web access Old TxData exported to HBaseand/or HDFS files Oracle BI, Microsoft BI, SAP BO, IBM Cognos R, SAS, SPSS, RapidMiner Knime, Weka, Old Txdata tied to DWH via Hive/Impala via ODBC based DB Link Additionally added Big Data JDBC connect to BI Tool and Web Application HDFS API Access to documents for Web Applicatio JDBC, ODBC, SQL*Net, Oozie, Flume, HCatalog, Java, Python, C++, Cassandra, HBase CFS (?), JDBC access for BI Tool to Big Data system and DWH HDFS & DWH Access for Web Application OLTP DWH Sensordata Logs

23 Next Steps Controller fit für BigData machen Mit Big Data wird das Controlling vor neue Herausforderungen gestellt. Hierfür ist Weiterbildung, in zum Teil ungewohnten Bereichen, nötig: 1. Datenmanagement 2. Technologie Neue Aufgabenbereiche qualifiziert besetzen Mit Big Data entwickeln sich zwei neue Berufsfelder die dem Controller sehr ähnlich sind. 1. Data Scientist 2. Business Analyst Auf pilothafte Use Cases setzen Start auf Basis eines konkreten UseCase Big-Data-Innovationsprozess aufbauen Ideenwettbewerb, UseCases Kosten-Nutzen Analyse

24 Time for

25 ThankYou Dominik Jaeth Country Manager Qualysoft Germany

Data Warehouse Automatisierung und Industrialisierung Neue Wege der Agilität.

Data Warehouse Automatisierung und Industrialisierung Neue Wege der Agilität. Data Warehouse Automatisierung und Industrialisierung Neue Wege der Agilität. Gregor Zeiler Solution Manager Business Intelligence BASEL BERN BRUGG LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR.

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part II) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part II) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Lizenzmanagement auf Basis DBA Feature Usage Statistics?

Lizenzmanagement auf Basis DBA Feature Usage Statistics? Lizenzmanagement auf Basis DBA Feature Usage Statistics? Kersten Penni, Oracle Deutschland B.V. & Co. KG Düsseldorf Schlüsselworte Oracle License Management Services (LMS), Lizenzen, Lizenzierung, Nutzungserfassung,

Mehr

Customer-specific software for autonomous driving and driver assistance (ADAS)

Customer-specific software for autonomous driving and driver assistance (ADAS) This press release is approved for publication. Press Release Chemnitz, February 6 th, 2014 Customer-specific software for autonomous driving and driver assistance (ADAS) With the new product line Baselabs

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014

Industrie 4.0 Predictive Maintenance. Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Industrie 4.0 Predictive Maintenance Kay Jeschke SAP Deutschland AG & Co. KG., Februar, 2014 Anwendungsfälle Industrie 4.0 Digitales Objektgedächtnis Adaptive Logistik Responsive Manufacturing Intelligenter

Mehr

HIR Method & Tools for Fit Gap analysis

HIR Method & Tools for Fit Gap analysis HIR Method & Tools for Fit Gap analysis Based on a Powermax APML example 1 Base for all: The Processes HIR-Method for Template Checks, Fit Gap-Analysis, Change-, Quality- & Risk- Management etc. Main processes

Mehr

Eine neue Hoffnung - Watson Analytics verschmilzt mit Cognos BA. Erik Purwins

Eine neue Hoffnung - Watson Analytics verschmilzt mit Cognos BA. Erik Purwins Eine neue Hoffnung - Watson Analytics verschmilzt mit Cognos BA Erik Purwins Watson Kognitiv Cloud Security Open Data PPI AG 02.03.2016 > 2 Watson Analytics Cloud Security Open Data Social Media Wetterdaten

Mehr

Webbasierte Exploration von großen 3D-Stadtmodellen mit dem 3DCityDB Webclient

Webbasierte Exploration von großen 3D-Stadtmodellen mit dem 3DCityDB Webclient Webbasierte Exploration von großen 3D-Stadtmodellen mit dem 3DCityDB Webclient Zhihang Yao, Kanishk Chaturvedi, Thomas H. Kolbe Lehrstuhl für Geoinformatik www.gis.bgu.tum.de 11/14/2015 Webbasierte Exploration

Mehr

+++ Bitte nutzen Sie die integrierte Audio-Funktion von WebEx (Menü Audio -> Integrated Voice Conference -> Start auswählen), um uns zu hören!!!.

+++ Bitte nutzen Sie die integrierte Audio-Funktion von WebEx (Menü Audio -> Integrated Voice Conference -> Start auswählen), um uns zu hören!!!. +++ Bitte nutzen Sie die integrierte Audio-Funktion von WebEx (Menü Audio -> Integrated Voice Conference -> Start auswählen), um uns zu hören!!!. +++ Oracle Mobile Cloud Service (MCS) MCS SDK & MAF MCS

Mehr

Stratosphere. Next-Generation Big Data Analytics Made in Germany

Stratosphere. Next-Generation Big Data Analytics Made in Germany Stratosphere Next-Generation Big Data Analytics Made in Germany Robert Metzger Stratosphere Core Developer Technische Universität Berlin Ronald Fromm Head of Big Data Science Telekom Innovation Laboratories

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Challenges for the future between extern and intern evaluation

Challenges for the future between extern and intern evaluation Evaluation of schools in switzerland Challenges for the future between extern and intern evaluation Michael Frais Schulentwicklung in the Kanton Zürich between internal evaluation and external evaluation

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler

Mash-Up Personal Learning Environments. Dr. Hendrik Drachsler Decision Support for Learners in Mash-Up Personal Learning Environments Dr. Hendrik Drachsler Personal Nowadays Environments Blog Reader More Information Providers Social Bookmarking Various Communities

Mehr

p^db=`oj===pìééçêíáåñçêã~íáçå=

p^db=`oj===pìééçêíáåñçêã~íáçå= p^db=`oj===pìééçêíáåñçêã~íáçå= Error: "Could not connect to the SQL Server Instance" or "Failed to open a connection to the database." When you attempt to launch ACT! by Sage or ACT by Sage Premium for

Mehr

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics

Vorstellung IBM Cognos 10.2. Oliver Linder Client Technical Professional Business Analytics Vorstellung IBM Cognos 10.2 Oliver Linder Client Technical Professional Business Analytics Agenda IBM Cognos 10.2 Architektur User Interfaces IBM Cognos Workspace IBM Cognos Workspace Advanced IBM Cognos

Mehr

Conception of Collaborative Project Cockpits with Integrated Interpretation Aids

Conception of Collaborative Project Cockpits with Integrated Interpretation Aids Master Thesis Conception of Collaborative Project Cockpits with Integrated Interpretation Aids Konzeption von kolaborativen Projektleitstaenden mit integrierten Interpretationshilfen by Stefan Cholakov

Mehr

Big Data Hype und Wirklichkeit Bringtmehrauchmehr?

Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Big Data Hype und Wirklichkeit Bringtmehrauchmehr? Günther Stürner, Vice President Sales Consulting 1 Copyright 2011, Oracle and/or its affiliates. All rights Überschrift 2 Copyright 2011, Oracle and/or

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

Exercise (Part I) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part I) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part I) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

A central repository for gridded data in the MeteoSwiss Data Warehouse

A central repository for gridded data in the MeteoSwiss Data Warehouse A central repository for gridded data in the MeteoSwiss Data Warehouse, Zürich M2: Data Rescue management, quality and homogenization September 16th, 2010 Data Coordination, MeteoSwiss 1 Agenda Short introduction

Mehr

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH

Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH Markus BöhmB Account Technology Architect Microsoft Schweiz GmbH What is a GEVER??? Office Strategy OXBA How we used SharePoint Geschäft Verwaltung Case Management Manage Dossiers Create and Manage Activities

Mehr

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik

Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Intelligentes Datenmanagement und Architekturen für flexibles Reporting und Analytik Dr. Martin Hebach, Cebit 2015 Senior Solution Architect mhebach@informatica.com Abstract Für Business Intelligence Aufgaben

Mehr

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015

Symbiose hybrider Architekturen im Zeitalter digitaler Transformation. Hannover, 18.03.2015 Symbiose hybrider Architekturen im Zeitalter digitaler Transformation Hannover, 18.03.2015 Business Application Research Center (BARC) B (Analystengruppe Europas führendes IT-Analysten- und -Beratungshaus

Mehr

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1

Exercise (Part XI) Anastasia Mochalova, Lehrstuhl für ABWL und Wirtschaftsinformatik, Kath. Universität Eichstätt-Ingolstadt 1 Exercise (Part XI) Notes: The exercise is based on Microsoft Dynamics CRM Online. For all screenshots: Copyright Microsoft Corporation. The sign ## is you personal number to be used in all exercises. All

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Corporate Digital Learning, How to Get It Right. Learning Café

Corporate Digital Learning, How to Get It Right. Learning Café 0 Corporate Digital Learning, How to Get It Right Learning Café Online Educa Berlin, 3 December 2015 Key Questions 1 1. 1. What is the unique proposition of digital learning? 2. 2. What is the right digital

Mehr

Integration von EMC Documentum mit SharePoint 2007. Karsten Eberding Alliance Manager EMC

Integration von EMC Documentum mit SharePoint 2007. Karsten Eberding Alliance Manager EMC Integration von EMC Documentum mit SharePoint 2007 Karsten Eberding Alliance Manager EMC Haben Sie eine Information Management Strategie? Information ist der höchste Wert im Unternehmen Aber wird oft nicht

Mehr

Creating OpenSocial Gadgets. Bastian Hofmann

Creating OpenSocial Gadgets. Bastian Hofmann Creating OpenSocial Gadgets Bastian Hofmann Agenda Part 1: Theory What is a Gadget? What is OpenSocial? Privacy at VZ-Netzwerke OpenSocial Services OpenSocial without Gadgets - The Rest API Part 2: Practical

Mehr

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Beratung Business Analytics Software Entwicklung Datenmanagement AGENDA Der Kreislauf für die Betrugserkennung

Mehr

Browser- gestützte Visualisierung komplexer Datensätze: Das ROAD System

Browser- gestützte Visualisierung komplexer Datensätze: Das ROAD System AG Computeranwendungen und QuanLtaLve Methoden in der Archäologie 5. Workshop Tübingen 14. 15. Februar 2014 Browser- gestützte Visualisierung komplexer Datensätze: Das ROAD System Volker Hochschild, Michael

Mehr

CNC ZUR STEUERUNG VON WERKZEUGMASCHINEN (GERMAN EDITION) BY TIM ROHR

CNC ZUR STEUERUNG VON WERKZEUGMASCHINEN (GERMAN EDITION) BY TIM ROHR (GERMAN EDITION) BY TIM ROHR READ ONLINE AND DOWNLOAD EBOOK : CNC ZUR STEUERUNG VON WERKZEUGMASCHINEN (GERMAN EDITION) BY TIM ROHR PDF Click button to download this ebook READ ONLINE AND DOWNLOAD CNC ZUR

Mehr

ISO 15504 Reference Model

ISO 15504 Reference Model Process flow Remarks Role Documents, data, tools input, output Start Define purpose and scope Define process overview Define process details Define roles no Define metrics Pre-review Review yes Release

Mehr

Compliance erlaubt keine Wartezeit

Compliance erlaubt keine Wartezeit Compliance erlaubt keine Wartezeit Schnelle Analyse-Verfahren bei der HVB Unicredit AG Anwarul Haq Khan, 26. Mai 2015 Agenda (Stichpunkte) Wer ist Unicredit-HVB AG Compliance - Was ist das? Was waren die

Mehr

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10.

Education Day 2012. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! Education Day 2012 11.10. Wissensgold aus Datenminen: wie die Analyse vorhandener Daten Ihre Performance verbessern kann! 11.10.2012 1 BI PLUS was wir tun Firma: BI plus GmbH Giefinggasse 6/2/7 A-1210 Wien Mail: office@biplus.at

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

JONATHAN JONA WISLER WHD.global

JONATHAN JONA WISLER WHD.global JONATHAN WISLER JONATHAN WISLER WHD.global CLOUD IS THE FUTURE By 2014, the personal cloud will replace the personal computer at the center of users' digital lives Gartner CLOUD TYPES SaaS IaaS PaaS

Mehr

Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com. z/os Explorer. 2014 IBM Corporation

Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com. z/os Explorer. 2014 IBM Corporation Isabel Arnold CICS Technical Sales Germany Isabel.arnold@de.ibm.com z/os Explorer Agenda Introduction and Background Why do you want z/os Explorer? What does z/os Explorer do? z/os Resource Management

Mehr

Big Data & Big Business

Big Data & Big Business Big Data & Big Business Wolfgang Nimführ Big Data & DWH Community Leader, Information Agenda Executive Consultant IBM Software Group Europe Big Data ein Hype? Searches for "big data" on Gartner's website

Mehr

Titelmasterformat durch Klicken bearbeiten

Titelmasterformat durch Klicken bearbeiten Titelmasterformat durch Klicken Titelmasterformat durch Klicken Die neue HDS Panama Serie Enterprise Plattform für den gehobenen Mittelstand Andreas Kustura, Silvio Weber Kramer & Crew GmbH & Co. KG Titelmasterformat

Mehr

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA

Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL, CLIENT SERVICE MANAGER SAS AUSTRIA Copyright o p y r i g h t 2012, 2 0 1 2, SAS S A S Institute s t i t u tinc e In. c All. Arights l l r i g hreserved. t s r e s e r ve d. Hadoop und SAS Status und Ausblick WIEN, JUNI 2015 GERNOT ENGEL,

Mehr

Die Renaissance von Unified Communication in der Cloud. Daniel Jonathan Valik UC, Cloud and Collaboration

Die Renaissance von Unified Communication in der Cloud. Daniel Jonathan Valik UC, Cloud and Collaboration Die Renaissance von Unified Communication in der Cloud Daniel Jonathan Valik UC, Cloud and Collaboration AGENDA Das Program der nächsten Minuten... 1 2 3 4 Was sind die derzeitigen Megatrends? Unified

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Management Information System SuperX status quo and perspectives

Management Information System SuperX status quo and perspectives Management Information System SuperX status quo and perspectives 1 Agenda 1. Business Intelligence: Basics 2. SuperX: Data Warehouse for Universities 3. Joolap: OLAP for Universities 4. Cooperative reporting

Mehr

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken Support Technologies based on Bi-Modal Network Analysis H. Agenda 1. Network analysis short introduction 2. Supporting the development of virtual organizations 3. Supporting the development of compentences

Mehr

Employment and Salary Verification in the Internet (PA-PA-US)

Employment and Salary Verification in the Internet (PA-PA-US) Employment and Salary Verification in the Internet (PA-PA-US) HELP.PYUS Release 4.6C Employment and Salary Verification in the Internet (PA-PA-US SAP AG Copyright Copyright 2001 SAP AG. Alle Rechte vorbehalten.

Mehr

GridMate The Grid Matlab Extension

GridMate The Grid Matlab Extension GridMate The Grid Matlab Extension Forschungszentrum Karlsruhe, Institute for Data Processing and Electronics T. Jejkal, R. Stotzka, M. Sutter, H. Gemmeke 1 What is the Motivation? Graphical development

Mehr

TomTom WEBFLEET Tachograph

TomTom WEBFLEET Tachograph TomTom WEBFLEET Tachograph Installation TG, 17.06.2013 Terms & Conditions Customers can sign-up for WEBFLEET Tachograph Management using the additional services form. Remote download Price: NAT: 9,90.-/EU:

Mehr

entwine for the open minded

entwine for the open minded cdn dualstream html5 player processing youtube video portal lms metadata live on demand learning recording annotation 9employees 3 continents 80 000 hours of content 14 happy clients produced per 2011

Mehr

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation

Big Data: Solaranlagen reparieren Waschmaschinen? 2014 IBM Corporation Big Data: Solaranlagen reparieren Waschmaschinen? Agenda Kurze Vorstellung Der Kunde und der ursprüngliche Ansatz Bisherige Architektur Vorgeschlagene Architektur Neue Aspekte der vorgeschlagenen Architektur

Mehr

eurex rundschreiben 094/10

eurex rundschreiben 094/10 eurex rundschreiben 094/10 Datum: Frankfurt, 21. Mai 2010 Empfänger: Alle Handelsteilnehmer der Eurex Deutschland und Eurex Zürich sowie Vendoren Autorisiert von: Jürg Spillmann Weitere Informationen zur

Mehr

Aufbau eines IT-Servicekataloges am Fallbeispiel einer Schweizer Bank

Aufbau eines IT-Servicekataloges am Fallbeispiel einer Schweizer Bank SwissICT 2011 am Fallbeispiel einer Schweizer Bank Fritz Kleiner, fritz.kleiner@futureways.ch future ways Agenda Begriffsklärung Funktionen und Aspekte eines IT-Servicekataloges Fallbeispiel eines IT-Servicekataloges

Mehr

THE NEW ERA. nugg.ad ist ein Unternehmen von Deutsche Post DHL

THE NEW ERA. nugg.ad ist ein Unternehmen von Deutsche Post DHL nugg.ad EUROPE S AUDIENCE EXPERTS. THE NEW ERA THE NEW ERA BIG DATA DEFINITION WHAT ABOUT MARKETING WHAT ABOUT MARKETING 91% of senior corporate marketers believe that successful brands use customer data

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467

Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467 Designing Business Intelligence Solutions with Microsoft SQL Server MOC 20467 In diesem 5-tägigen Microsoft-Kurs lernen Sie die Implementierung einer Self-Service Business Intelligence (BI) und Big Data

Mehr

Softwareanforderungen für Microsoft Dynamics CRM Server 2015

Softwareanforderungen für Microsoft Dynamics CRM Server 2015 Softwareanforderungen für Microsoft Dynamics CRM Server 2015 https://technet.microsoft.com/de-de/library/hh699671.aspx Windows Server-Betriebssystem Microsoft Dynamics CRM Server 2015 kann nur auf Computern

Mehr

MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich. Herzlich Willkommen!

MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich. Herzlich Willkommen! MICROSOFT SHAREPOINT 2010 Microsoft s neue Wunderwaffe!? Eike Fiedrich Herzlich Willkommen! Sharepoint 2010 Voraussetzung: 2 SharePoint 2010 Gesellschaft für Informatik Eike Fiedrich Bechtle GmbH Solingen

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013

GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 OSC Smart Integration GmbH SAP Business One GOLD-Partner in Norddeutschland GESCHÄFTSSTELLENERÖFFNUNG HAMBURG, 25. APRIL 2013 SAP Business One v.9.0 Heiko Szendeleit AGENDA OSC-SI 2013 / SAP Business One

Mehr

Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014

Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014 Digital Customer Experience Notwendiges Übel oder überlebenswichtige Notwendigkeit? Datalympics, 2. Juli 2014 Digitale Realität Die Welt verändert sich in rasantem Tempo Rom, Petersplatz, März 2013 Franziskus

Mehr

Microsoft Azure Fundamentals MOC 10979

Microsoft Azure Fundamentals MOC 10979 Microsoft Azure Fundamentals MOC 10979 In dem Kurs Microsoft Azure Fundamentals (MOC 10979) erhalten Sie praktische Anleitungen und Praxiserfahrung in der Implementierung von Microsoft Azure. Ihnen werden

Mehr

ISO 15504 Reference Model

ISO 15504 Reference Model Prozess Dimension von SPICE/ISO 15504 Process flow Remarks Role Documents, data, tools input, output Start Define purpose and scope Define process overview Define process details Define roles no Define

Mehr

Introducing PAThWay. Structured and methodical performance engineering. Isaías A. Comprés Ureña Ventsislav Petkov Michael Firbach Michael Gerndt

Introducing PAThWay. Structured and methodical performance engineering. Isaías A. Comprés Ureña Ventsislav Petkov Michael Firbach Michael Gerndt Introducing PAThWay Structured and methodical performance engineering Isaías A. Comprés Ureña Ventsislav Petkov Michael Firbach Michael Gerndt Technical University of Munich Overview Tuning Challenges

Mehr

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt

Organisatorisches. Unit1: Intro and Basics. Bewertung. About Me.. Datenorientierte Systemanalyse. Gerhard Wohlgenannt Organisatorisches Datenorientierte Systemanalyse Unit1: Intro and Basics Gerhard Wohlgenannt Inhalt: Datenorientierte Systemanalyse Umfang: 5 units XX.10.2013 XX.11.2013 09:00-13:30 Uhr Room XXX Infos,

Mehr

"What's in the news? - or: why Angela Merkel is not significant

What's in the news? - or: why Angela Merkel is not significant "What's in the news? - or: why Angela Merkel is not significant Andrej Rosenheinrich, Dr. Bernd Eickmann Forschung und Entwicklung, Unister GmbH, Leipzig UNISTER Seite 1 Unister Holding UNISTER Seite 2

Mehr

Tuning des Weblogic /Oracle Fusion Middleware 11g. Jan-Peter Timmermann Principal Consultant PITSS

Tuning des Weblogic /Oracle Fusion Middleware 11g. Jan-Peter Timmermann Principal Consultant PITSS Tuning des Weblogic /Oracle Fusion Middleware 11g Jan-Peter Timmermann Principal Consultant PITSS 1 Agenda Bei jeder Installation wiederkehrende Fragen WievielForms Server braucheich Agenda WievielRAM

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller

Was ist Analyse? Hannover, CeBIT 2014 Patrick Keller Was ist? Hannover, CeBIT 2014 Patrick Keller Business Application Research Center Historie 1994: Beginn der Untersuchung von Business-Intelligence-Software am Lehrstuhl Wirtschaftsinformatik der Universität

Mehr

Big Data Eine Einführung ins Thema

Big Data Eine Einführung ins Thema Joachim Hennebach Marketing Manager IBM Analytics 11. Februar 2016 Big Data Eine Einführung ins Thema Nur kurz: Was ist Big Data? (Die 5 Vs.) Volumen Vielfalt Geschwindigkeit Datenwachstum Von Terabytes

Mehr

Hadoop Eine Erweiterung für die Oracle DB?

Hadoop Eine Erweiterung für die Oracle DB? Hadoop Eine Erweiterung für die Oracle DB? Nürnberg, 18.11.2015, Matthias Fuchs Sensitive Über mich 10+ Jahre Erfahrung mit Oracle Oracle Certified Professional Exadata Certified Oracle Engineered Systems

Mehr

Distributed testing. Demo Video

Distributed testing. Demo Video distributed testing Das intunify Team An der Entwicklung der Testsystem-Software arbeiten wir als Team von Software-Spezialisten und Designern der soft2tec GmbH in Kooperation mit der Universität Osnabrück.

Mehr

TMF projects on IT infrastructure for clinical research

TMF projects on IT infrastructure for clinical research Welcome! TMF projects on IT infrastructure for clinical research R. Speer Telematikplattform für Medizinische Forschungsnetze (TMF) e.v. Berlin Telematikplattform für Medizinische Forschungsnetze (TMF)

Mehr

Darstellung und Anwendung der Assessmentergebnisse

Darstellung und Anwendung der Assessmentergebnisse Process flow Remarks Role Documents, data, tool input, output Important: Involve as many PZU as possible PZO Start Use appropriate templates for the process documentation Define purpose and scope Define

Mehr

Cloud Computing in der öffentlichen Verwaltung

Cloud Computing in der öffentlichen Verwaltung Cloud Computing in der öffentlichen Verwaltung Willy Müller - Open Cloud Day 19.6.2012 2 Plug and Cloud? 3 The plug tower BPaaS Software SaaS Platform PaaS Storage/ Computing IaaS Internet Power grid 4

Mehr

ETHISCHES ARGUMENTIEREN IN DER SCHULE: GESELLSCHAFTLICHE, PSYCHOLOGISCHE UND PHILOSOPHISCHE GRUNDLAGEN UND DIDAKTISCHE ANSTZE (GERMAN

ETHISCHES ARGUMENTIEREN IN DER SCHULE: GESELLSCHAFTLICHE, PSYCHOLOGISCHE UND PHILOSOPHISCHE GRUNDLAGEN UND DIDAKTISCHE ANSTZE (GERMAN ETHISCHES ARGUMENTIEREN IN DER SCHULE: GESELLSCHAFTLICHE, PSYCHOLOGISCHE UND PHILOSOPHISCHE GRUNDLAGEN UND DIDAKTISCHE ANSTZE (GERMAN READ ONLINE AND DOWNLOAD EBOOK : ETHISCHES ARGUMENTIEREN IN DER SCHULE:

Mehr

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation

Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Einsatz einer Dokumentenverwaltungslösung zur Optimierung der unternehmensübergreifenden Kommunikation Eine Betrachtung im Kontext der Ausgliederung von Chrysler Daniel Rheinbay Abstract Betriebliche Informationssysteme

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Social Media als Bestandteil der Customer Journey

Social Media als Bestandteil der Customer Journey Social Media als Bestandteil der Customer Journey Gregor Wolf Geschäftsführer Experian Marketing Services Frankfurt, 19.6.2015 Experian and the marks used herein are service marks or registered trademarks

Mehr

Infrastructure as a Service (IaaS) Solutions for Online Game Service Provision

Infrastructure as a Service (IaaS) Solutions for Online Game Service Provision Infrastructure as a Service (IaaS) Solutions for Online Game Service Provision Zielsetzung: System Verwendung von Cloud-Systemen für das Hosting von online Spielen (IaaS) Reservieren/Buchen von Resources

Mehr

Product Lifecycle Manager

Product Lifecycle Manager Product Lifecycle Manager ATLAS9000 GmbH Landauer Str. - 1 D-68766 Hockenheim +49(0)6205 / 202730 Product Lifecycle Management ATLAS PLM is powerful, economical and based on standard technologies. Directory

Mehr

Return on Information. Integriertes multichannel Publishing im Informationszeitalter. Mag. Wilko Goriany NEWS Wien Stefan Ruthner Key Account Manager

Return on Information. Integriertes multichannel Publishing im Informationszeitalter. Mag. Wilko Goriany NEWS Wien Stefan Ruthner Key Account Manager Return on Information Integriertes multichannel Publishing im Informationszeitalter Mag. Wilko Goriany NEWS Wien Stefan Ruthner Key Account Manager Informationszeitalter - Big Data 3 Gartner Key Note 4

Mehr

Long-term archiving of medical data new certified cloud-based solution offers high security and legally approved data management

Long-term archiving of medical data new certified cloud-based solution offers high security and legally approved data management Long-term archiving of medical data new certified cloud-based solution offers high security and legally approved data management The European Centre of Expertise for the Health Care Industry Langzeitarchivierung

Mehr

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben!

Problemstellung. Keine Chance! Ich brauche eine genaue Spezifikation und dann vielleicht in 3-4 Wochen können Sie einen erstes Beispiel haben! Take aways Mit Power BI wird Excel zum zentralen Tool für Self- Service BI End-End Self-Service Lösungsszenarien werden erstmals möglich Der Information Worker erhält ein flexibles Toolset aus bekannten

Mehr

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN

EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE LANDESKIRCHE SACHSEN. BLAU (GERMAN EDITION) FROM EVANGELISCHE VERLAGSAN DOWNLOAD EBOOK : EVANGELISCHES GESANGBUCH: AUSGABE FUR DIE EVANGELISCH-LUTHERISCHE

Mehr

DevOps und Continuous Delivery. Von Release Automation bis zur Feedbackschleife. Matthias Zieger codecentric AG

DevOps und Continuous Delivery. Von Release Automation bis zur Feedbackschleife. Matthias Zieger codecentric AG DevOps und Continuous Delivery Von Release Automation bis zur Feedbackschleife Matthias Zieger codecentric AG Codecentric AG 2 Genutzte operative Modelle verhindern Geschwindigkeit BUSINESS DEV OPS DevOps

Mehr

Granite Gerhard Pirkl

Granite Gerhard Pirkl Granite Gerhard Pirkl 2013 Riverbed Technology. All rights reserved. Riverbed and any Riverbed product or service name or logo used herein are trademarks of Riverbed Technology. All other trademarks used

Mehr

TalkIT: Internet Communities Tiroler Zukunftsstiftung Donnerstag, 22. 4. 2010

TalkIT: Internet Communities Tiroler Zukunftsstiftung Donnerstag, 22. 4. 2010 TalkIT: Internet Communities Tiroler Zukunftsstiftung Donnerstag, 22. 4. 2010 Reinhard Bernsteiner MCiT Management, Communication & IT MCI MANAGEMENT CENTER INNSBRUCK Universitätsstraße 15 www.mci.edu

Mehr

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management

Universität Dortmund Integrating Knowledge Discovery into Knowledge Management Integrating Knowledge Discovery into Knowledge Management Katharina Morik, Christian Hüppe, Klaus Unterstein Univ. Dortmund LS8 www-ai.cs.uni-dortmund.de Overview Integrating given data into a knowledge

Mehr

Vertriebssteuerung & Kundenmanagement bei Finanzinstituten. 1. Dezember 2010, Frankfurt am Main

Vertriebssteuerung & Kundenmanagement bei Finanzinstituten. 1. Dezember 2010, Frankfurt am Main Vertriebssteuerung & Kundenmanagement bei Finanzinstituten 1. Dezember 2010, Frankfurt am Main Erweitern Sie Ihre Analyse auch um unstrukturierte Daten: mehr Einblicke, bessere Entscheidungen! Unsere Agenda

Mehr

Ermittlung und Berechnung von Schadendreiecken mit HANA Live und R-Integration

Ermittlung und Berechnung von Schadendreiecken mit HANA Live und R-Integration Ermittlung und Berechnung von Schadendreiecken mit HANA Live und R-Integration Matthias Beyer-Grandisch, Presales Senior Specialist, SAP Mai, 2015 Public DEMO Die Demo zeigt unter Verwendung von HANA Live

Mehr

Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung

Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung 1 Data Analytics neue Wertschöpfung in der öffentlichen Verwaltung Wiesbaden 06.11.2013 Ralph Giebel Business Development Mrg Public Sektor EMC Deutschland GmbH ralph.giebel@emc.com 2 Agenda 1) Herausforderungen

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr