Numerische Simulation in der Luft- und Raumfahrttechnik

Größe: px
Ab Seite anzeigen:

Download "Numerische Simulation in der Luft- und Raumfahrttechnik"

Transkript

1 Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, Stuttgart

2 Inalt der eutigen Vorlesung. Konvergenz. Validierung anand von Testproblemen 3. Diskretisierung des Recengebiets (Gitter)

3 Konvergenz Äquivalenzteorem von Lax: Konsistenz + Stabilität = Konvergenz Lokaler Diskretisierungsfeler in einer Iteration wird klein, wenn die Raumscrittweite klein wird. Dieser Feler wäcst im Laufe der Iterationen nict beliebig an. Wenn Raum- und Zeitscrittweite gegen Null geen, strebt die numerisce Lösung gegen die exakte Lösung.

4 Konvergenz Feler in jedem Zeitscritt wird beliebig klein wenn die Raumdiskretisierung fein genug ist: Konsistenz Approximationsfeler + Anfangslösung Approximierte PDGl. (im Raum) Lösung Endresultat t+ t Der kleine in jedem Zeitscritt gemacte Feler wird wärend der Zeititeration nict verstärkt: Stabilität Wenn beides erfüllt: Das Endergebnis wird beliebig genau, wenn Zeit- und Raumdiskretisierung fein genug sind: Konvergenz

5 Konvergenz e = v Lösung des Näerungsverfarens: n u n Beide zum Zeitpunkt n t diskretisierte exakte Lösung: z.b. punktweise Auswertung (Differenzenverfaren) ( u n ( u ) = u( x oder: Integraler Mittelwert der exakten Lösung über x n ) i i = x n i x i + u x i ) n ( x ) dx Das Verfaren ist konvergent, wenn e C p Dabei ist p die Konvergenzordnung. ist eine noc zu definierende Norm.

6 Konvergenz Häufig verwendete Normen: p-normen: e p N = x i= p ( e ) i p e e Maximumsnorm: x e e ) = max ( i [, N ] i e e

7 Konvergenz Praktisces Vorgeen zur Bestimmung der Konvergenzordnung:.) Wiederolen der Recnung mit untersciedlicen Gittern Exakte Lösung.) Bestimmung der Felernorm für jede Recnung, z.b.: Feineres Gitter x x e = x N ( u( xi ) vi ) i= = Exakte Lösung x (Setzt voraus, dass eine exakte Lösung bekannt ist!) L

8 Konvergenz 3.) Auftragen des Felers über der Gitterweite 4.) Ablesen der Ordnung in doppelt logaritmiscer Auftragung e Feineres Gitter e L x L x e C p ( ) = log( C) p log( ) log + e

9 Konvergenz Praktisce Metoden zur Bestimmung der Ordnung aben ire Grenzen: e 0 Für ser grobe Gitter gibt es noc kein klares Konvergenzveralten erst im sog. asymptotiscen Bereic! L x Teoretisce Konvergenzordnung wird nur für inreicend glatte Lösungen erreict. Probleme mit Unstetigkeiten werden immer zu einer niedrigeren Konvergenzordnung füren. e O( x O( x) ) e O( x ) O( x) L x L x

10 Konvergenz Die Ordnung ist nict Alles: e O( x ) Verfaren zweiter Ordnung wäre ier erst bei ser feinen Gittern überlegen! O( x) L x Für die praxis relevante Gitter

11 Konvergenz In der Praxis werden Simulationen zu Problemstellungen durcgefürt, deren Lösung noc nict bekannt ist! Trotzdem möcte man eine Aussage über die Qualität eralten. Globale Größe der Simulation z.b: Widerstandsbeiwert eines Profils, Maximaltemperatur einer Turbinenscaufel Ricardson Extrapolation: f exakt Scätzung der exakten Lösung durc den Vergleic zweier Lösungen auf untersciedlicen Gittern Anname: Asymptotisces Veralten e C p f f exakt C p f f exakt C p r = f f exakt f r f r p = p f f f Feineres Gitter f exakt Konvergenzordnung p des Verfarens muss bekannt sein!

12 Konvergenz Scätzung der Konvergenzordnung durc den Vergleic dreier Lösungen Anname: Asymptotisces Veralten f e C p f p f3 f exakt C3 p f f exakt C 3 r = = 0 f f p f f exakt C r p = f f 3 f f p = f3 log f log ( r) f f

13 Validierung anand von Testproblemen Validierung einer Simulationsmetode Auswal eines geeigneten Testfalls Aus der Literatur Mit Anderweitigem Zugang zu Resultaten Vergleic mit Ergebnissen aus einem Experiment (Möglicst genau bekannte Randbedingungen und wenig felerbeaftete Messmetoden) Ziel: Vergleic mit der Realität Quantitative Bestimmung von Felern Vergleic mit Ergebnissen aus einer Referenzsimulation (Basierend auf einem matematiscen Modell mit wenig Vereinfacenden Annamen) Ziel: Bewertung von Modellen/Vereinfacungen Identifikation von Felerquellen Quantitative Bestimmung von Felern Vergleic mit den Ergebnissen eines änlicen Simulationsprogramms (Gleice/änlice Modelle und numerisce Verfaren) Ziel: Ausscluss von Programmierfelern Vergleic mit dem etablierten Stand der Tecnik

14 Validierung anand von Testproblemen (fiktive) Problemstellung: Lärmerzeugung durc einen Farwerksscact im Landeanflug soll untersuct werden. Frage: Ist das in der Firma verwendete CFDtool geeignet dieses Problem zu untersucen?

15 Validierung anand von Testproblemen Druckspektren: Gescwindigkeitsprofile: Geeignete Vergleicsgrößen Im Text: Verweis auf einen veröffentlicten experimentellen Datensatz

16 Validierung anand von Testproblemen ) Auswal eines Testfalls, der dem Farwerksscact im Landeanflug am näcsten kommt ) Aufsetzen einer Simulation, die den im Experiment verwendeten Randbedingungen entsprict 3) Extraieren der Vergleicsgrößen (Gescwindigkeitsprofile, Druckspektren) Notwendiger Recenaufwand akzeptabel? Genauigkeit ausreicend in den relevanten Größen? Sind die Simulationsergebnisse aus der Veröffentlicung besser? Lont es sic, deren Metoden zu verwenden?

17 Diskretisierung des Recengebiets i,j+ Perfekt für solce Geometrien: i,j+ i,j i+,j i+,j Differenzenverfaren funktionieren nur auf kartesiscen Gittern: Jeder Knoten kann durc die Indizes i,j (in D) eindeutig identifiziert werden. Weniger perfekt für solce Geometrien:

18 Diskretisierung des Recengebietes Acsenparallel: Randangepasst Unstrukturiert

19 Randangepasste Gitter Pysikalisces Gebiet Logisces Gebiet y η Ω ( x, y) η( x, y) Ω' x y η Ω x(, η) y(, η) Ω' x

20 Randangepasste Gitter Randangepasste Gitter Randangepasste Gitter Randangepasste Gitter Wie ändern sic die Gleicungen, wenn sie in den pysikaliscen Koordinaten x,y formuliert sind, aber auf η, gelöst werden sollen? = η η η u u y y x x y u x u ), ( η x ), ( η y In der DGl (pys. Gebiet) Im code (logisces Gebiet) Meist nict bekannt! x u x u x u + = η η y u y u y u + = η η Kettenregel = y u x u y x y x u u η η η = η η η η y x y x y y x x Meist nict bekannt!

21 Randangepasste Gitter O-Gitter C-Gitter Natstellen spezielle Bedingungen für die Handabung benacbarter Knoten notwendig

22 Block-strukturierte Gitter Idee: Zerlegung in merere Blöcke, die jeweils besser an die Ränder angepasst werden können Zusatzbedingungen für die Natstelle Geometrien (z.b. mit Ecken) können nict mersinnvoll verformt werden Block Block

23 Block-strukturierte Gitter Beispiel: Verdicterstufe

24 Vergleic Strukturiert/unstrukturiert

25 Unstrukturierte Gitter Pointer Knoten Element Knoten Element Pointer Element Knoten Element Knoten Knoten Knoten 3 Knoten

26 4 3 7 Unstrukturierte Gitter Liste der Kanten und deren Definition (wictig z.b. zur Flussberecnung bei den finiten Volumen) Glob. Kante Knoten Knoten Element Kante Element Kante

27 Elementtypen Hexaeder Dreiecksprisma Tetraeder Pyramide

28 Hybride Gitter Kombination versciedener Elementtypen in einem Gitter. Wal der Typen bedingt durc Geometrie und Pysik

29 Anpassung des Gitters an die Pysik Beispiel: Kanalströmung turbulente Grenzscict Bilder: Melissa Green, Princeton

30 Anpassung des Gitters an die Pysik Beispiel: Einlassventil eines Verbrennungsmotors Bilder: B. Enaux, CERFACS

31 Anpassung des Gitters an die Pysik Beispiel: Verdictungsstoß in der transsoniscen Strömung um ein Flügelprofil

32 Anpassung des Gitters an die Pysik Adaptive Gitterverfeinerung Beispiel aus der Struktursimulation Grobes Ausgangsgitter Spannungsverteilung In Regionen mit oer Spannung werden Gitterzellen unterteilt Bessere Approximation an den entsceidenden Stellen Bilder: Autodesk

33 Anpassung des Verfarens an die Pysik In bestimmten Regionen (z.b. mit starken Gradienten) wird ein Verfaren öerer Ordnung verwendet

ANALYSIS Differenzialrechnung Kapitel 1 5

ANALYSIS Differenzialrechnung Kapitel 1 5 TELEKOLLEG MULTIMEDIAL ANALYSIS Differenzialrecnung Kapitel 5 Ferdinand Weber BRmedia Service GmbH Inaltsverzeicnis Jedes Kapitel beginnt mit der Seitenzal.. Das Tangentenproblem. Steigung einer Geraden

Mehr

6. Die Exponentialfunktionen (und Logarithmen).

6. Die Exponentialfunktionen (und Logarithmen). 6- Funktionen 6 Die Eponentialfunktionen (und Logaritmen) Eine ganz wictige Klasse von Funktionen f : R R bilden die Eponentialfunktionen f() = c ep( ) = c e, ier sind, c feste reelle Zalen (um Trivialfälle

Mehr

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales

Manfred Burghardt. Allgemeine Hochschulreife und Fachhochschulreife in den Bereichen Erziehung, Gesundheit und Soziales Manfred Burgardt Allgemeine Hocsculreife und Facocsculreife in den Bereicen Erzieung, Gesundeit und Soziales Version /4 Inaltsverzeicnis I Inaltsverzeicnis Inaltsverzeicnis... I Die Ableitungsfunktion

Mehr

Numerische und stochastische Grundlagen der Informatik

Numerische und stochastische Grundlagen der Informatik Numerisce und stocastisce Grundlagen der Informatik Peter Bastian Universität Stuttgart, Institut für Parallele und Verteilte Systeme Universitätsstraße 38, D-70569 Stuttgart email: Peter.Bastian@ipvs.uni-stuttgart.de

Mehr

Discontinuous Galerkin Verfahren in der CFD

Discontinuous Galerkin Verfahren in der CFD Discontinuous Galerkin Verfahren in der CFD Dr. Manuel Keßler Universität Stuttgart Status Quo - Aerodynamik Verfahren Finite Volumen Codes 2. Ordnung im Raum Zeitintegration 1.-4. Ordnung (Runge-Kutta

Mehr

Medienmitteilung Rothenburg, 26. April 2013

Medienmitteilung Rothenburg, 26. April 2013 Pistor AG Medienmitteilung Rotenburg, 26. April 2013 Gescäftsjar 2012 Ausblick 2013 Pistor mit gutem Ergebnis Die Pistor ist gut unterwegs. Im Jar 2012 wurde mit dem Bau des neuen Tiefkülcenters erneut

Mehr

Über die Diskretisierung und Regularisierung schlecht gestellter Probleme

Über die Diskretisierung und Regularisierung schlecht gestellter Probleme Über die Diskretisierung und Regularisierung sclect gestellter Probleme von Dipl. Mat. Robert Plato Vom Facbereic Matematik der Tecniscen Universität Berlin genemigte Dissertation zur Erlangung des akademiscen

Mehr

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11.

Teil 1. 2 Gleichungen mit 2 Unbekannten mit Textaufgaben. und 3 Gleichungen mit 2 Unbekannten. Datei Nr. 12180. Friedrich Buckel. Stand 11. Teil Gleicungen mit Unbekannten mit Textaufgaben und 3 Gleicungen mit Unbekannten Datei Nr. 80 Stand. April 0 Lineare Gleicungssysteme INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 80 Gleicungssysteme Vorwort

Mehr

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik

Schriftliche Prüfung Schuljahr: 2008/2009 Schulform: Gymnasium. Mathematik Ministerium für Bildung, Jugend und Sport Prüfungen am Ende der Jargangsstufe 10 Scriftlice Prüfung Sculjar: 2008/2009 Sculform: Matematik Allgemeine Arbeitsinweise Die Prüfungszeit beträgt 160 Minuten.

Mehr

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10

Steuerliche Spendenanreize: Ein Reformvorschlag. Ludwig von Auer Andreas Kalusche. Research Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer Andreas Kalusce Researc Papers in Economics No. 7/10 Steuerlice Spendenanreize: Ein Reformvorsclag Ludwig von Auer 1 Universität Trier Andreas

Mehr

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun?

Was haben Beschleunigungs-Apps mit der Quadratur des Kreises zu tun? Was aben Bescleunigungs-Apps mit der Quadratur des Kreises zu tun? Teilnemer: Jonatan Geuter Leonard Hackel Paul Hagemann Maximilian Kuc Amber Lucas Tobias Tieme Tobias Tiesse Niko Wolf Gruppenleiter:

Mehr

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker

FB IV Mathematik Universität Trier. Präsentation von Nadja Wecker FB IV Mathematik Universität Trier Präsentation von Nadja Wecker 1) Einführung Beispiele 2) Mathematische Darstellung 3) Numerischer Fluss für Diffusionsgleichung 4) Konvergenz 5) CFL-Bedingung 6) Zusammenfassung

Mehr

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51

RWTH Aachen, Lehrstuhl für Informatik IX Kapitel 3: Suchen in Mengen - Datenstrukturen und Algorithmen - 51 RWTH Aacen, Lerstul für Informatik IX Kapitel 3: Sucen in Mengen - Datenstrukturen und Algoritmen - 51 Sucbäume Biser betractete Algoritmen für Suce in Mengen Sortierte Arrays A B C D - Nur sinnvoll für

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

Hilfe zum neuen Online-Shop

Hilfe zum neuen Online-Shop Hilfe zum neuen Online-Sop Hier finden Sie umfassend bescrieben, wie Sie sic in unserem neuen Sop zurectfinden. Wenn Sie Fragen zur Kunden-Nr., Kunden-ID oder zum Passwort aben, rufen Sie uns bitte an:

Mehr

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5).

Zeitplan Abitur. März/Mai des 13. Schuljahres: Mündliche Prüfungen zur besonderen Lernleistung und zur Präsentationsprüfung (jeweils P5). Zeitplan Abitur Nac jedem Halbjareszeugnis: Überprüfung der erbracten Halbjaresleistungen und der recneriscen Möglickeit das Abitur zu besteen durc Sculleitung bzw. APK (Abiturprüfungskommission). Ab April

Mehr

! Was ist Bildverbesserung? ! Abgrenzung zu. ! Kalibrierung! Korrektur! Registrierung! Optimierung. ! Welche Methoden werden benutzt?

! Was ist Bildverbesserung? ! Abgrenzung zu. ! Kalibrierung! Korrektur! Registrierung! Optimierung. ! Welche Methoden werden benutzt? Grundlegende Verfaren der automatiscen Bildbearbeitung und Bildverbesserung Tomas M. Deserno Institut für Medizinisce Informatik Medizinisce Fakultät, RWTH Aacen Bildverbesserung! Was ist Bildverbesserung?!

Mehr

Studienordnung für den Integrativen Bachelorstudiengang Linguistik an der Heinrich-Heine-Universität Düsseldorf vom TT.MM.JJJJ

Studienordnung für den Integrativen Bachelorstudiengang Linguistik an der Heinrich-Heine-Universität Düsseldorf vom TT.MM.JJJJ Studienordnung Integrativer Bacelorstudiengang "Linguistik", Modulbescreibungen 1 Studienordnung für den Integrativen Bacelorstudiengang Linguistik an der Heinric-Heine-Universität Düsseldorf vom TT.MM.JJJJ

Mehr

mit der Anfangsbedingung y(a) = y0

mit der Anfangsbedingung y(a) = y0 Numersce Lösung von Dfferentalglecungen De n den naturwssenscaftlc-tecnscen Anwendungen auftretenden Dfferentalglecungen snd n den wengsten Fällen eplzt lösbar. Man st desalb auf Näerungsverfaren angewesen.

Mehr

( ) Strömungsmechanische Grundlagen. Erhaltungsgleichungen. τ ρ. Kontinuitätsbedingung: Impulserhaltung: Energieerhaltung: Stofferhaltung:

( ) Strömungsmechanische Grundlagen. Erhaltungsgleichungen. τ ρ. Kontinuitätsbedingung: Impulserhaltung: Energieerhaltung: Stofferhaltung: Technische Universität Kaiserslautern Strömungssimulation mit FLUENT Daniel Conrad TU Kaiserslautern Lehrstuhl für Strömungsmechanik und Strömungsmaschinen Kontinuitätsbedingung: Impulserhaltung: ( ) =

Mehr

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2

CLUB APOLLO 13, 13. Wettbewerb Aufgabe 2 Der Auftrieb Diese Aufgabe wird vom Facbereic Pysik der eibniz Universität annover gestellt. Weitere Informationen zum Studiengang der Pysik findet ir unter ttp://www.pysik.uniannover.de/ CUB APOO 13,

Mehr

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung

Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung Wenn der Druck aus der reibungsfreien Außenströmung aufgeprägt wird, dann gilt wegen der Bernoulli-Gleichung ρ p ( x) + Uδ ( x) = const Damit kann die Druckänderung in Strömungsrichtung auch durch die

Mehr

Zahlen, Technik und Produktion. Wirtschaftsingenieurwesen Elektrotechnik und Informationstechnik Bachelor

Zahlen, Technik und Produktion. Wirtschaftsingenieurwesen Elektrotechnik und Informationstechnik Bachelor Zalen, Tecnik und Produktion Wirtscaftsingenieurwesen Elektrotecnik und Informationstecnik Bacelor Inaltsverzeicnis Bescreibung des Faces... 3 Studienvoraussetzungen... 4 Empfolene Fäigkeiten... 4 Tätigkeitsfelder

Mehr

Sterbetafeln für die Schweiz 1998/2003

Sterbetafeln für die Schweiz 1998/2003 Sterbetafeln für die Scweiz 1998/2003 Neucâtel, 2005 Die vom Bundesamt für Statistik (BFS) erausgegebene Reie «Statistik der Scweiz» gliedert sic in folgende Facbereice: 0 Statistisce Grundlagen und Übersicten

Mehr

Mathematische Grundlagen der Ökonomie Übungsblatt 13

Mathematische Grundlagen der Ökonomie Übungsblatt 13 Matematisce Grundlagen der Ökonomie Übungsblatt 13 Abgabe Donnerstag 4. Februar, 10:15 in H3 6+4+5+++1 = 0 Punkte Mit Lösungsinweisen zu einigen Aufgaben 51. Ire Bekannte Dido möcte, dass aus einem günstig

Mehr

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3

ZUKUNFT BILDEN. Die Bildungsinitiative der Region. Februar 2015. Journalistische Darstellungsformen. Teil 3 ZUKUNFT Februar 2015 Journalistisce Darstellungsformen Teil 3 Das Projekt zur Bildungsförderung für Auszubildende getragen von starken Partnern Initiatoren: Förderer und Stiftungspartner: INHALT Journalistisce

Mehr

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen ERCOFTAC-Technologietag, Stuttgart 2005 p. 1 Ein für aeroakustische Simulationen bei kleinen Machzahlen Achim Gordner und Prof. Gabriel Wittum Technische Simulation Universiät Heidelberg ERCOFTAC-Technologietag,

Mehr

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen

Binäre Suchbäume. 6. Binäre Suchbäume. Einfügen in binären Suchbäumen 6. Binäre Sucbäume Natürlice binäre Sucbäume - Begriffe und Definitionen - Grundoperationen: Einfügen, sequentielle Suce, direkte Suce, öscen - Bestimmung der mittleren Zugriffskosten Balancierte Binärbäume

Mehr

IDENTIFIKATION DER AEROELASTISCHEN EIGENSCHAFTEN DES MOTORSEGLERS STEMME S15 AN HAND VON FLUGVERSUCHDATEN

IDENTIFIKATION DER AEROELASTISCHEN EIGENSCHAFTEN DES MOTORSEGLERS STEMME S15 AN HAND VON FLUGVERSUCHDATEN Deutscer Luft- und Raumfartkongress 013 DocumentID: 30147 IDENTIFIKATION DER AEROELASTISCHEN EIGENSCHAFTEN DES MOTORSEGLERS STEMME S15 AN HAND VON FLUGVERSUCHDATEN Alexander Köte Tecnisce Universität Berlin,

Mehr

20 REAKTIONSKINETIK 2: ARRHENIUS-GLEICHUNG UND THEORIE DES ÜBERGANGSZUSTANDS

20 REAKTIONSKINETIK 2: ARRHENIUS-GLEICHUNG UND THEORIE DES ÜBERGANGSZUSTANDS -- 0 REKIONSKINEIK : RRHENIUS-GLEICHUNG UND HEORIE DES ÜERGNGSZUSNDS 0. Die rrenius-gleicung Die rrenius-gleicung bescreibt, wie Gescwindigeitsonstanten von der eperatur abängen. rrenius selbst atte 889

Mehr

Einstieg in die Differenzialrechnung

Einstieg in die Differenzialrechnung Lern-Online.net Matematikportal Dierenzialrecnung (Einstieg) Einstieg in die Dierenzialrecnung Einstiegsbeispiel: Der ideale Kasten Augabenstellung: Ein DIN-A4-Blatt soll zu einem (deckellosen) Kasten

Mehr

Computational Fluid Dynamics - CFD Overview

Computational Fluid Dynamics - CFD Overview Computational Fluid Dynamics - CFD Overview Claus-Dieter Munz Universität Stuttgart, Institut für Aerodynamik und Gasdynamik Pfaffenwaldring 21, 70550 Stuttgart Tel. +49-711/685-63401 (Sekr.) Fax +49-711/685-63438

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 5. Praktikum Auswertung 6. Einführung in das Gruppenprojekt Stefan Hickel Vergleich y+=1 zu y+=10 Ergebnisse y+=1 y+=10 Ergebnisse y+=1 y+=10 Ergebnisse Ergebnisse y+=1 y+=10

Mehr

Spezialgewebe für: Industrie Feuerwehr Rettungsdienste Polizei Sicherheitsdienste Militär Motorsport Sachschutz

Spezialgewebe für: Industrie Feuerwehr Rettungsdienste Polizei Sicherheitsdienste Militär Motorsport Sachschutz Spezialgewebe für: Industrie Feuerwer Rettungsdienste Polizei Sicereitsdienste Militär Motorsport Sacscutz IBENA Soft & Dry das Besondere in Sacen Tragekomfort Oberfläce one Vakuum-Plasmabeandlung Zum

Mehr

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre

Übung zur Vorlesung Einführung in die Betriebswirtschaftliche Steuerlehre Mercator Scool of Management Prof. Dr. Volker Breitecker, StB Dr. Marco Tönnes, StB SS 2007 Übung zur Vorlesung Einfürung in die Betriebswirtscaftlice Steuerlere Grundlagen: 1. Zur Erzielung von Einnamen

Mehr

1. Methode der Finiten Elemente

1. Methode der Finiten Elemente 1. Methode der Finiten Elemente 1.1 Innenraumprobleme 1.2 Außenraumprobleme 1.3 Analysen 1.4 Bewertung Prof. Dr. Wandinger 5. Numerische Methoden Akustik 5.1-1 1.1 Innenraumprobleme 1.1.1 Schwache Formulierung

Mehr

DUALE HOCHSCHULE BADEN-WÜRTTEMBERG. Fakultät Wirtschaft. Studiengangsbeschreibung (Bachelor)

DUALE HOCHSCHULE BADEN-WÜRTTEMBERG. Fakultät Wirtschaft. Studiengangsbeschreibung (Bachelor) DUALE HOCHSCHULE BADEN-WÜRTTEMBERG Fakultät Wirtscaft Studiengangsbescreibung (Bacelor) Studiengang: Recnungswesen Steuern Wirtscaftsrect (RSW) Studienrictung: Betriebswirtscaftlice Steuerlere, Unternemensrecnung

Mehr

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz

Optimale Steuerung. Sequentielle Quadratische Programmierung. Kevin Sieg. 14. Juli 2010. Fachbereich für Mathematik und Statistik Universität Konstanz Optimale Steuerung Kevin Sieg Fachbereich für Mathematik und Statistik Universität Konstanz 14. Juli 2010 1 / 29 Aufgabenstellung 1 Aufgabenstellung Aufgabenstellung 2 Die zusammengesetzte Trapezregel

Mehr

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy.

Übungsaufgaben zu Analysis 2 Lösungen von Blatt V vom 07.05.15. f(x, y) = 2(x + y) + xy + 3x 2, g(x, y) = xy + e xy. Prof. Dr. Moritz Kaßmann Fakultät für Matematik Sommersemester 015 Universität Bielefeld Übungsaufgaben zu Analysis Lösungen von Blatt V vom 07.05.15 Aufgabe V.1 + Punkte) Gegeben seien die Funktionen

Mehr

Numerische Analyse von Long Run Risk Modellen mit zwei Bäumen und Sprungrisiko

Numerische Analyse von Long Run Risk Modellen mit zwei Bäumen und Sprungrisiko Numerisce Analyse von Long Run Risk Modellen mit zwei Bäumen und Sprungrisiko Wissenscaftlice Arbeit zur Diplom-Hauptprüfung im Fac Matematik vorgelegt von Joannes Härtel Tema gestellt von Prof. Dr. Martin

Mehr

Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren

Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren Die Finite Elemente Methode (FEM) gibt es seit über 50 Jahren Aber es gibt bis heute kein Regelwerk oder allgemein gültige Vorschriften/Normen für die Anwendung von FEM-Analysen! Es gibt nur sehr vereinzelt

Mehr

Die wichtigsten Lehrbücher bei HD. Höhere Mathematik. Ein Begleiter durch das Studium. Bearbeitet von Karlheinz Spindler

Die wichtigsten Lehrbücher bei HD. Höhere Mathematik. Ein Begleiter durch das Studium. Bearbeitet von Karlheinz Spindler Die wictigsten Lerbücer bei HD Höere Matematik Ein Begleiter durc das Studium Bearbeitet von Karleinz Spindler Nacdruck 2010. Buc. 893 S. Hardcover ISBN 978 3 8171 1872 4 Format (B x L): 22 x 28,5 cm Weitere

Mehr

Reise nach Rio Klimadiagramme lesen

Reise nach Rio Klimadiagramme lesen Reise nac Rio Klimadiagramme lesen Maria will im Juli nac Brasilien fliegen und dort Urlaub macen. Um iren Koffer passend zu packen und Unternemungen planen zu können, suct sie im Internet zunäcst nac

Mehr

Das GingiHue Lächeln Ein Bild des Selbstvertrauens

Das GingiHue Lächeln Ein Bild des Selbstvertrauens Das GingiHue Läceln Ein Bild des Selbstvertrauens Die goldfarbene Titannitridveredelung sorgt für eine natürlice zanfarbene Farbarmonie mit der Gingiva Erältlic mit Certain Quickseat Innenverbindung und

Mehr

Modulhandbuch Master Biologie SPO 2014 (M.Sc.) Wintersemester 2014/2015 Kurzfassung Stand: 09.03.2015

Modulhandbuch Master Biologie SPO 2014 (M.Sc.) Wintersemester 2014/2015 Kurzfassung Stand: 09.03.2015 Modulandbuc Master Biologie SPO 2014 (M.Sc.) Wintersemester 2014/2015 Kurzfassung Stand: 09.03.2015 Inalt 1 Studienplan Master Biologie... 5 2 Nützlices und Informatives... 7 Das Modulandbuc... 7 Beginn

Mehr

Abbildungen mit Brechzahländerung

Abbildungen mit Brechzahländerung bbildungen mit Breczaländerung Moving Um ein Bild im gesamtmöglicen bbildungsraum zu bewegen (es vor unserem geistigen uge vorbeizieen zu lassen), ist es nac unserer biserigen, in Mikroprozessoren praktizierten

Mehr

5.1 Einführung. 5.2 Die Raumdiskretisierung. Vorlesungsskript Hydraulik II 5-1

5.1 Einführung. 5.2 Die Raumdiskretisierung. Vorlesungsskript Hydraulik II 5-1 Vorlesungsskript Hydraulik II 5-5 Numerische Methoden Das vorliegende Kapitel dient dazu, numerische Methoden unabhängig vom Anwendungsgebiet einzuführen. Es soll die Grundzüge der verschiedenen Verfahren

Mehr

e-funktion und natürlicher Logarithmus

e-funktion und natürlicher Logarithmus e-funktion und natürlicer Logaritmus. Die Differentialgleicung y=y' Gibt es eine Funktion, die mit irer Ableitung identisc ist, d.. dass f = f ' für alle gilt? Wenn die Ableitung trigonometriscer Funktionen

Mehr

Universal-Laborgeräte

Universal-Laborgeräte Universa-Laborgeräte -Universa-Laborgeräte -Motorandstücke MHX und MHX/E Sind Präzisionsgeräte für Optiker, Hörgeräte-kustiker, Scmuck- und Godscmiedewerkstätten, Designateiers, Eektroniker, Dentaabors

Mehr

Steuerliche Spendenanreize in Deutschland Eine empirische Analyse ihrer fiskalischen Effekte

Steuerliche Spendenanreize in Deutschland Eine empirische Analyse ihrer fiskalischen Effekte Steuerlice Spendenanreize in Deutscland Eine empirisce Analyse irer fiskaliscen Effekte Inauguraldissertation zur Erlangung des akademiscen Grades Doctor rerum politicarum vorgelegt und angenommen an der

Mehr

Brandschutz 4. Nicht tragende, aber brandabschnittsbildende. (ohne Verklebung) sind die Bauteile nicht luftdicht. Bei brandabschnittsbildenden

Brandschutz 4. Nicht tragende, aber brandabschnittsbildende. (ohne Verklebung) sind die Bauteile nicht luftdicht. Bei brandabschnittsbildenden 4.1 optiolz und Brandscutz In der Lignum-Dokumentation Brandscutz sind optiolz -Bauteile für tragende und/oder brandabscnittsbildende Decken und Wände bis zu einer Feuerwiderstandsdauer von 60 Minuten

Mehr

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet.

Die Bauteile 1,2,3 sind gelenkig miteinander verbunden, in A und B gelagert und durch das Gewicht G 1 der Scheibe 1 belastet. Aufgabe S1 F10 Die auteile 1,2,3 sind gelenkig miteinander verbunden, in A und gelagert und durc das Gewict G 1 der Sceibe 1 belastet. Annamen: Die Gelenke seien reibungsfrei. Das Material der Sceibe 1

Mehr

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel Der Einfluss von Kostenbweicungen uf ds Ns-Gleicgewict in einem nict-koopertiven Disponenten-Controller-Spiel Günter Fndel und Jn Trockel Diskussionsbeitrg Nr. 428 September 28 Diskussionsbeiträge der

Mehr

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage):

Protokoll 1. 1. Frage (Aufgabentyp 1 Allgemeine Frage): Protokoll 1 a) Beschreiben Sie den allgemeinen Ablauf einer Simulationsaufgabe! b) Wie implementieren Sie eine Einlass- Randbedingung (Ohne Turbulenz!) in OpenFOAM? Geben Sie eine typische Wahl für U und

Mehr

Vitamine auf Weltreise

Vitamine auf Weltreise Konzipiert vom Förderverein NaturGut Opoven Vitamine auf Weltreise Zielgruppe: Klasse 2-3 Fac: Dauer: Sacunterrict 90 Minuten Temenbereic: Zusammenang Ernärung und Klimawandel 20 % der Kinder sind zu dick,

Mehr

T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K. Ein neuer Kraftwerkstyp. von. Sabrina Berens. Alice Knauf WEIRD SCIENCE CLUB DARMSTADT

T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K. Ein neuer Kraftwerkstyp. von. Sabrina Berens. Alice Knauf WEIRD SCIENCE CLUB DARMSTADT T H E R M O H A L I N E S A U F T R I E B S K R A F T W E R K Ein neuer Kraftwerkstyp von Sabrina Berens Alice Knauf WEIRD SCIENCE CLUB DARMSTADT an der Lictenbergscule Europascule, MINT-Excellence Center,

Mehr

Spezialkupplungen System Kamlok v. a. zum Einsatz an Beschneiungsanlagen für Betriebsdrücke bis 60 bar.

Spezialkupplungen System Kamlok v. a. zum Einsatz an Beschneiungsanlagen für Betriebsdrücke bis 60 bar. let it snow! Snow Hocdruck-Hebelarmkupplungen Spezialkupplungen System Kamlok v. a. zum Einsatz an Bescneiungsanlagen für Betriebsdrücke bis 60 bar. Inalt 83 Die SNOW MASTER Sclaucansclüsse 84 Hocdruck-Sclauckupplungen

Mehr

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt

Höhere Mathematik II für die Fachrichtung Informatik. Lösungsvorschläge zum 3. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Cristop Scmoeger Heiko Hoffmann SS 24 Höere Matematik II für die Facrictung Informatik Lösungsvorscläge zum 3. Übungsblatt Aufgabe 9 a) Bestimmen

Mehr

Modulhandbuch Betriebswirtschaftslehre

Modulhandbuch Betriebswirtschaftslehre Modulandbuc Betriebswirtscaftslere Lerveranstaltungen für den Bacelorstudiengang Betriebswirtscaftslere (B.Sc.) Wintersemester 2006/07 Stand: 22.September 2006 Universität Duisburg-Essen, Campus Essen

Mehr

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946 Institut ür Bupysik und Mterilwissensct Univ.-Pro. Dr. Mx J. Seite von 9 nc Kosler, W.: Mnuskript zur E DIN 408-3:998-0, NA Buwesen (NABu) im DIN - Deutsces Institut ür Normung vom 28.0.998 Hinweise: DIN

Mehr

Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD

Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD Masterarbeit Studiendepartment Fahrzeugtechnik und Flugzeugbau Untersuchungen zum korrelationsbasierten Transitionsmodell in ANSYS CFD Michael Fehrs 04. Oktober 2011 VI Inhaltsverzeichnis Kurzreferat Aufgabenstellung

Mehr

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme. Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git

Mehr

Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS. Sven D. Simeitis

Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS. Sven D. Simeitis Vergleich von Simulationen mittels Pro/MECHANICA und ANSYS Sven D. Simeitis 04/2011 Gliederung Einleitung Art um Umfang der Berechnungen MECHANICA (p-methode) ANSYS (h-methode) Berechnungsbeispiele Rundstab

Mehr

Neue GuideLed Sicherheitsleuchten

Neue GuideLed Sicherheitsleuchten CEAG GuideLed Sicereitsleucten Neue GuideLed Sicereitsleucten Geradliniges Design kombiniert mit oer Wirtscaftlickeit C-C8 C-C GuideLed SL., 2. CG-S Deckeneinbau EN 838 LED * GuideLed SL. CG-S IP GuideLed

Mehr

Informationen zur Kennzahlenanalyse und Unternehmensbewertung

Informationen zur Kennzahlenanalyse und Unternehmensbewertung Informationen zur Kennzalenanalyse und Unternemensbewertung Liquidität Kennzal Formel Sollwert Kommentar Cas Ratio (Liquiditätsgrad 1) ü 20-30% Widerspiegelt die Bezieung zwiscen Flüssigen Mitteln (inkl

Mehr

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012

Landeswettbewerb Mathematik Baden-Württemberg Musterlösungen 1. Runde 2011/2012 Landeswettbewerb Matematik aden-württemberg Musterlösungen. Runde 0/0 Aufgabe avid wirft einen besonderen Würfel und screibt jeweils die oben liegende Zal auf. ie Abbildung zeigt ein Netz seines Würfels.

Mehr

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4

Tangenten an Funktionsgraphen (Differenzialrechnung) Aufgaben ab Seite 4 Klasse / Augaben ab Seite 4 rundlagen und Begrie der Dierenzialrecnung Die Zeicnungen und Erklärungen sind etwas ausürlicer als notwendig u versciedene Screibweisen und Darstellungen auzuzeigen. Steigung

Mehr

Kevin Caldwell. 18.April 2012

Kevin Caldwell. 18.April 2012 im Rahmen des Proseminars Numerische Lineare Algebra von Prof.Dr.Sven Beuchler 18.April 2012 Gliederung 1 2 3 Mathematische Beschreibung von naturwissenschaftlich-technischen Problemstellungen führt häufig

Mehr

3D-Optik. www.opto-engineering.com

3D-Optik. www.opto-engineering.com 3D-Optik 2014 Inalt 3D-Optik Opto Engineering entwickelt 3D-Objektive und Projektoren mit einem ocpräzisen Neigungsmecanismus, der es erlaubt, die Sceimpflug-Bedingung einzualten und das ganze Sictfeld

Mehr

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung

Heute. Motivation. Diskretisierung. Medizinische Bildverarbeitung. Volumenrepräsentationen. Volumenrepräsentationen. Thomas Jung t.jung@fhtw-berlin.de Heute Volumenrepräsentationen Thomas Jung Generierung von Volumenrepräsentationen Rendering von Volumenrepräsentationen Konvertierung in Oberflächenrepräsentationen Weitere Geometrische

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Inhaltsverzeichnis 1 Einführung 2 FFT 3 Anwendungen 4 Beschränkungen 5 Zusammenfassung Definition Fouriertransformation

Mehr

Kilimandscharo Tour Marangu-Route mit Mt. Meru. Adventure aktivität.teamerleben.natur 60+

Kilimandscharo Tour Marangu-Route mit Mt. Meru. Adventure aktivität.teamerleben.natur 60+ Kiliandscaro Tour Marangu-Route it Mt. Meru Adventure aktivität.teaerleben.natur 60+ geeignet Kiliandscaro Marangu-Route it Mt. Meru Kiliandscaro-Besteigung (5895) Marangu-Route Der Berg Gipfelziel als

Mehr

Finite Differenzen und Elemente

Finite Differenzen und Elemente Dietrich Marsal Finite Differenzen und Elemente Numerische Lösung von Variationsproblemen und partiellen Differentialgleichungen Mit 64 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris

Mehr

Differenzieren kurz und bündig

Differenzieren kurz und bündig mate online Skripten ttp://www.mate-online.at/skripten/ Differenzieren kurz und bündig Franz Embacer Fakultät für Matematik der Universität Wien E-mail: franz.embacer@univie.ac.at WWW: ttp://omepage.univie.ac.at/franz.embacer/

Mehr

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden.

Nenne verschiedene Energieformen. Nenne zu einem Beispiel aus deiner Umgebung, welche Energieformen ineinander umgewandelt werden. Grundwissenskatalog zu Pysik 8.Jargangsstufe, Seite von 5 Carl-Friedric Gauß Gymnasium Scwandorf Stand: Sept. 0 Wissen Können Beispiele, Ergänzungen Energie Energie kann in versciedenen Formen vorkommen.

Mehr

Á 4. Differenzierbarkeit, Stetigkeit

Á 4. Differenzierbarkeit, Stetigkeit Á 4. Differenzierbarkeit, Stetigkeit Historisc ist der Begriff der Differenzierbarkeit lange vor dem der Stetigkeit entwickelt worden. Untersciedlice Definitionen der Differenzierbarkeit werden von Gottfried

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 4. Praktikum Stefan Hickel Ziel Strukturiertes Gitter erstellen Stationäre kompressible Zylinderumströmung (M>0,1) im Windkanal simulieren Einfluss von y + auf den Widerstandsbeiwert

Mehr

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt

Formelsammlung. Fachangestellte für Bäderbetriebe Meister für Bäderbetriebe. Inhalt Forelsalung Facangestellte für Bäderbetriebe Meister für Bäderbetriebe Erstellt von Dipl.-Ing. (FH) Wolfgang Hetteric, BVS it Ergänzungen von Dipl.-Ing. (FH) Peter Vltavsky, BS Lindau Inalt llgeeine Mecanik...

Mehr

3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen

3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen 3-D Finite Elemente zur Diskretisierung der Maxwell-Gleichungen Christoph Schwarzbach (TU Bergakademie Freiberg) schwarzb@geophysik.tu-freiberg.de Abstract Elektromagnetische Phänomene können mathematisch-physikalisch

Mehr

4 Netzgenerierung. strukturierter Code. unstrukturierter Code

4 Netzgenerierung. strukturierter Code. unstrukturierter Code 38 4 Netzgenerierung Die Grundlage für jede numerische Strömungsberechnung ist die geometrische Diskretisierung des Problemgebietes. Das Rechennetz beeinflußt neben der Turbulenzmodellierung und der Genauigkeit

Mehr

ETS-4308 I. Programmierhandbuch zum Elektronischen Telefon-System

ETS-4308 I. Programmierhandbuch zum Elektronischen Telefon-System ETS-4308 I Programmieranduc zum Elektroniscen Telefon-System Lieferumfang 1 Grundgerät ETS-4308 I 1 Erweiterungsmodul S 0 E-4308 (walweise als 1. int. S 0 -Port oder 2. ext. S 0 -Port steckar) 2 ISDN-Ansclusskael,

Mehr

Versuch W4 - Ausdehnung von Luft und Quecksilber. Gruppennummer: lfd. Nummer: Datum:

Versuch W4 - Ausdehnung von Luft und Quecksilber. Gruppennummer: lfd. Nummer: Datum: Ernst-oritz-Arnt Universität reifswa Institut für Pysik ersuc W - Ausenung von Luft un Quecksier Name: itareiter: ruppennummer: f. Nummer: Datum:. Aufgaensteung.. ersucszie Bestimmen Sie ie oumenausenungskoeffizienten

Mehr

- Diplomarbeit - dem Fachbereich Informatik. Universität Dortmund. Matthias Miemczyk. vorgelegt von. 20. November 2007

- Diplomarbeit - dem Fachbereich Informatik. Universität Dortmund. Matthias Miemczyk. vorgelegt von. 20. November 2007 Hexaeder-Gittergenerierung durch Kombination von Gitterdeformations-, Randadaptions- und Fictitious-Boundary -Techniken zur Strömungssimulation um komplexe dreidimensionale Objekte - Diplomarbeit - dem

Mehr

E-Learning itn Patentrecht'-- unter besonderer Berücksichtigung des Patentführerscheins

E-Learning itn Patentrecht'-- unter besonderer Berücksichtigung des Patentführerscheins E-Learning itn Patentrect'-- unter besonderer Berücksictigung des Patentfürersceins THOMAS HOEREN 1 A EINLEITUNG Diegewerblicen Scutzrecte spielen im taglicenleb~n eine bedeutende Rolle, auc wenn diese

Mehr

Institut für Volkswirtschaftslehre Christian-Albrechts-Universität zu Kiel. One Money, One Market

Institut für Volkswirtschaftslehre Christian-Albrechts-Universität zu Kiel. One Money, One Market Institut ür Volkswirtscatslere Cristian-Albrects-Universität zu Kiel One Money, One Market von Ola Bartram * 15.05.2002 ür: Seminar in Realer Außenwirtscat Sommersemester 2002 Übersict: Die Arbeit untersuct

Mehr

Materialsammlung. Kommunale und regionale Energiekonzepte

Materialsammlung. Kommunale und regionale Energiekonzepte Materialsammlung Kommunale und regionale Energiekonzepte Zusammenstellung und Kommentar: Dipl.-Ing. Heinz Dallmann ZukunftsAgentur Brandenburg GmbH Steinstr. 104-106 14480 Potsdam energie@zab-brandenburg.de

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Algorithmen und deren Programmierung Prof. Dr. Nikolaus Wulff Definition Algorithmus Ein Algorithmus ist eine präzise formulierte Handlungsanweisung zur Lösung einer gleichartigen

Mehr

Cashkurs Trends InvestIeren In die Zukunft. 3-D-Drucker und Rapid Manufacturing. Ausgabe.28 17.01.2012. Trend Thema des Monats:

Cashkurs Trends InvestIeren In die Zukunft. 3-D-Drucker und Rapid Manufacturing. Ausgabe.28 17.01.2012. Trend Thema des Monats: Ausgabe.28 Caskurs Trends InvestIeren In die Zukunft unabängig nacaltig wissenscaftlic Trend Tema des Monats: 3-D-Drucker und Rapid Manufacturing www.caskurs.com I www.godmode-trader.de Trend Tema Unternemen

Mehr

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife

Feng Shui. mehr Harmonie am Arbeitsplatz. Counterlife Counterlife STORY OF THE MONTH TEXT ALEXANDRA CHRISTEN BILDER ALEXANDRA CHRISTEN / ZVG WEBCODE 7106 An der Dorfstrasse 16 im zugeriscen Baar stet ein kleines Inselparadies. Mit einem Ceck-In- Scalter,

Mehr

Robustheitsuntersuchung am Beispiel der rechnerischen Simulation der ECE-R14

Robustheitsuntersuchung am Beispiel der rechnerischen Simulation der ECE-R14 alt 1. Vergleich der Methoden Reine Monte-Carlo-Analyse Ersatzflächenbasierte Monte-Carlo-Analyse 2. Restriktionen nach ECE-R14 3. FEM-Modell 4. Bauteile/ Parameter 5. Anwendung beider Methoden auf ECE-R14

Mehr

Extrema von Funktionen in zwei Variablen

Extrema von Funktionen in zwei Variablen Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Extrema von Funktionen in zwei Variablen Literatur: Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen,

Mehr

Numerik und Simulation in der Geoökologie

Numerik und Simulation in der Geoökologie 1/43 Reapitulation Instationärer Transport Bac to reality Numeri und Simulation in der Geoöologie Sylvia Moenices VL 8 WS 2007/2008 2/43 Reapitulation Instationärer Transport Bac to reality Parcours Reapitulation

Mehr

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler

C(5 1) 1 Ballmaschine Netzhöhe 0,91 m Netz Spieler Aufträge Modellieren mitilfe der Ableitung. Modellieren mit Parabeln Auftrag Tennis Ein Spieler stet beim Training 5 m inter dem Netz. Er muss einscätzen, ob er den von einer Ballmascine gescossenen Ball

Mehr

Expander Graphen und Ihre Anwendungen

Expander Graphen und Ihre Anwendungen Expander Graphen und Ihre Anwendungen Alireza Sarveniazi Mathematisches Institut Universität Göttingen 21.04.2006 Alireza Sarveniazi (Universität Göttingen) Expander Graphen und Ihre Anwendungen 21.04.2006

Mehr

Kopplung von CFD und Populationsbilanz zur Simulation der Tropfengrößenverteilung in gerührten Systemen

Kopplung von CFD und Populationsbilanz zur Simulation der Tropfengrößenverteilung in gerührten Systemen Kopplung von CFD und Populationsbilanz zur Simulation der Tropfengrößenverteilung in gerührten Systemen A.Walle 1,J. Heiland 2,M. Schäfer 1,V.Mehrmann 2 1 TUDarmstadt, Fachgebietfür Numerische Berechnungsverfahren

Mehr

Herzlich Willkommen zur Hauptversammlung 2010! Düsseldorf, 30.Juli 2010 ecotel communication ag

Herzlich Willkommen zur Hauptversammlung 2010! Düsseldorf, 30.Juli 2010 ecotel communication ag Herzlic Willkommen zur Hauptversammlung 2010! Düsseldorf, 30.Juli 2010 ecotel communication ag 1 Tagesordnung Top 1: Vorlage der Absclüsse 2009 Top 2: Entlastung des Vorstands Top 3: Entlastung t des Aufsictsrats

Mehr

6. Schweißen für Anfänger

6. Schweißen für Anfänger 6. en für Anfänger Sie aben noc nie eine ung durcgefürt, möcten dies aber gerne einmal tun - kein Problem - in diesem Kapitel wird Inen jeder Handgriff scrittweise erklärt. Vergessen Sie jedoc niemals:

Mehr

Besonderer Kastensandwich für die gewichtsoptimierte, innovative Aussteifung großer WKA-Rotorblätter

Besonderer Kastensandwich für die gewichtsoptimierte, innovative Aussteifung großer WKA-Rotorblätter DEWI Magazin Nr. 22, Febr. 2003 esonderer Kastensandwic für die gewictsoptimierte, innovative ussteifung großer WK-Rotorblätter Zusammenfassung Leistungsfäige Windkraftanlagen erfordern bei gegebener lattspitzengescwindigkeit

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

Dienstleistungsangebot für Besitzer von Ferienwohnungen

Dienstleistungsangebot für Besitzer von Ferienwohnungen I errlices Arosa GmbH I Haus Mittagsarve I 7050 Arosa I 19. April 2013 Seite 1 von 6 Dienstleistungsangebot für Besitzer von Ferienwonungen errlices Arosa GmbH ist der kompetente Partner für Besitzer von

Mehr