Übung zu Forwards, Futures & Optionen

Größe: px
Ab Seite anzeigen:

Download "Übung zu Forwards, Futures & Optionen"

Transkript

1 Übung zu Forwards, Futures & Optionen Vertiefungsstudium Finanzwirtschaft Dr. Eric Nowak SS 2001 Finanzwirtschaft Wahrenburg Aufgabe 1: Forward auf Zerobond Wesentliche Eckpunkte des Forwardgeschäfts: wird heute abgeschlossen; heute fällt keine Zahlung an. Der in t=2 zu zahlende Betrag F ist so zu wählen, daß ihn die Vertragspartner als angemessene Kompensation für die Zahlungen in t=3 (10 DM) bzw. In t=4 (110 DM) ansehen. Übung Finanzwirtschaft Nowak 2 1

2 Aufgabe 1: Forward auf Zerobond Unter Abwesenheit von Arbitrage ist F gleich dem Nennwert eines 2- jährigen Zerobonds, dessen Barwert den der Zahlungen in t=3 bzw. 4 aufwiegt, denn diese 3 Geschäfte bilden ein duplizierendes Portfolio für den Forwardkontrakt: Verkauf eines 2-jährigen Zerobonds zum Nennwert F; erbringt heute Fd 2 Kauf eines 3-jährigen Zerobonds zum Nennwert 10; kostet heute 10d 3 Kauf eines 4-jährigen Zerobonds zum Nennwert 110; kostet heute 110d 4 Da der PV der 3 Geschäfte Null ist, muß 0 = -Fd 2 +10d d 4 gelten, also F = 1/d 2 * (10d d 4 ) =... = DM Übung Finanzwirtschaft Nowak 3 Aufgabe 1: Forward auf Zerobond Alternative: Setze das Geschäft aus zwei Zerobond-Forwardgeschäften zusammen: Zahle x in t=2, erhalte 10 DM in t=3 Zahle y in t=2, erhalte 110 DM in t=4 Die Einzelforwardkontrakte verzinsen sich mit der Forwardrate, wobei sich ein Zweijahresforwardgeschäft verzinst zu (1+f Jahr 2 auf Jahr 4 ) 2 = (1+f 2 ) (1+f 3 ) Entsprechend werden die 10 bzw. 110 DM auf das Jahr 2 diskontiert, also F = x + y = 10 DM / (1+f 2 ) DM / ((1+f 2 ) (1+f 3 )) Übung Finanzwirtschaft Nowak 4 2

3 Aufgabe 2: Währungstermingeschäfte Folgende Preise herrschen am Markt: Zero-Euroanleihen mit Restlaufzeit von 3 Monaten und Rückzahlungsbetrag EUR 100: Geldkurs EUR , Briefkurs EUR Zero-Dollaranleihen mit Restlaufzeit von 3 Monaten und Rückzahlungsbetrag USD 100: Geldkurs USD , Briefkurs USD aktueller Dollar-Geldkurs 1,122 USD je EUR aktueller Dollar-Briefkurs 1,125 USD je EUR In welchem Bereich müssen unter den o.g. Bedingungen die Kurse für in einem Vierteljahr fällige Devisentermingeschäfte liegen, damit Arbitragemöglichkeiten ausgeschlossen sind? Übung Finanzwirtschaft Nowak 5 Bewertung durch Arbitrage: Devisentermingeschäft Beispiel: Tausch von $ 100 x in 100 EURO in 3 Monaten => Terminkurs heute? Replizierendes Portfolio: 1. Beleihung der in t = 0,25 zu erwartenden Euro 100, d.h. Anleihe short 2. Kauf von * 1,122 $ = ( $) heute 3. Anlage in $ mit 3 Monaten Laufzeit t t + 0,25 in Euro in $ in Euro in $ Anlage Euro Short Anlage FX-Spot Anlage $ Saldo => 1,1025 $/Euro ist der arbitragefreie Terminkurs Übung Finanzwirtschaft Nowak 6 3

4 Aufgabe 3: Capped Calls und capped Puts Trinkaus & Burkhardt verkauften: paarweise 1 capped Call + 1 capped Put auf (irgendeine) Aktie europäische Optionen (Ausübung des Optionsrechts zur Zeit T [nicht vorher]) Übung Finanzwirtschaft Nowak 7 Payoff eines capped Call Bsp.: Recht auf Kauf einer Aktie zur Zeit t zum Preis von 100 DM, mindestens jedoch zum Preis S T der Aktie in T abzüglich 50 DM äquivalent: Auszahlung von S T - 100DM, wenn S T > 100DM, höchstens jedoch 50 DM ( Cap ) C Strike X=100 DM, Y=150 DM, S t z. Zt. unbekannt cap 0 = ST X Y X : : : ST < X X < S < Y T Y < S T Übung Finanzwirtschaft Nowak 8 4

5 Payoff eines capped Call Payoff capped Call Y-X X Y S T Übung Finanzwirtschaft Nowak 9 Duplikation eines capped Call Payoff Y-X Portfolio Call mit Strike X (long) X Y S T Call mit Strike Y (short) Übung Finanzwirtschaft Nowak 10 5

6 Payoff eines capped Put Bsp.: Recht auf Verkauf einer Aktie zur Zeit t zum Preis von 150 DM, höchstens jedoch zum Preis S T der Aktie in t zuzüglich 50 DM äquivalent: Auszahlung von 150 DM - S T, wenn S T < 150 DM, höchstens jedoch 50 DM ( Cap ) X=100 DM, Strike Y=150 DM, S T z. Zt. unbekannt P cap = Y Y X 0 S T : : : ST < X X < S < Y T Y < S T Übung Finanzwirtschaft Nowak 11 Payoff eines capped Put Payoff capped Put Y-X X Y S T Übung Finanzwirtschaft Nowak 12 6

7 Payoff des Portfolios (capped Put + capped Put) Y-X Portfolio capped Call capped Put X Y S T Übung Finanzwirtschaft Nowak 13 Aufgabe 3: Capped Calls und capped Puts Was soll das?? de facto: sichere Auszahlung eines Bonds Gewinn steuerpflichtig! de jure: Gewinn aus capped Call (Put) = Kursgewinn Gewinn aus Portfolio capped Call + capped Put = Kursgewinn steuerfrei! Übung Finanzwirtschaft Nowak 14 7

8 Aufgabe 4: Dynamisches Hedging Emission von europ. Calls (short position) Laufzeit t = 2 Jahre Strike X=100 DM aktueller Preis der Aktie: S 0 = 115 DM σ Volatilität der Aktie: = 20% keine Dividende stetiger Zins der sicheren Anlagenalternative: r = 5% Übung Finanzwirtschaft Nowak 15 Aufgabe 4: Hedging a) Berechnung des Optionswertes nach Black/Scholes C = SΦ( d ) mit d d Xe rt Φ( d ln( S / X ) + ( r + σ = σ t = d σ t / 2) t Φ( x) : Normalverteilungsfkt. von 2 ) 2 x Übung Finanzwirtschaft Nowak 16 8

9 Aufgabe 4: Hedging a) Einsetzen der Parameter in Black/Scholes-Formel Aktienpreis S = 115 Striking Price X = 100 Volatilität sigma = 0.2 risikoloser Zins r = 0.05 Laufzeit t = 2 sigma*t = =C3*SQRT(C5) d1 = =(LN(C1/C2)+C4*C5)/C6+C6/2 d2 = =C7-C6 Call-Preis C = =C1*NORMSDIST(C7)-C2*EXP(-C4*C5)*NORMSDIST(C8) Übung Finanzwirtschaft Nowak 17 Aufgabe 4: Hedging b) Abhängigkeit des Optionswertes vom akt. Aktienpreis S 70 DM 60 DM 50 DM Call-Preis 40 DM 30 DM 20 DM 10 DM 0 DM 50 DM 70 DM 90 DM 110 DM 130 DM aktueller Aktienpreis Übung Finanzwirtschaft Nowak 18 9

10 Aufgabe 4: Hedging b) Hedging: Aufbau einer Gegenposition aus Aktien + Kredit Annahme: vor 1 min Verkauf der Calls zum fairen Preis Risikoposition: Calls short + Verkaufserlös Kaufe: Aktienpaket, finanziert durch Kredit großes Paket 0 S 0 kleines Paket 115 DM Übung Finanzwirtschaft Nowak 19 Aufgabe 4: Hedging b) Hedging: Aufbau einer Gegenposition aus Aktien + Kredit Bestimme Größe des Aktienpakets so, daß Aktienpaketwert Wert des Callpakets = S S 0 0 : = C S 0 1 [ C( S + ε ε) C( S)] für kleinesε C exakt : = Φ ( d1) S 0 Übung Finanzwirtschaft Nowak 20 10

11 Aufgabe 4: Hedging Delta: Sensitivität ggü. Preisänderung Delta = Stück ausgegebene Optionen zu haltende Aktien im Hedgeportf (Optionen sind short!) Delta numerisch: S = DM DM X = DM DM sigma = 20.00% 20.00% r = 5.00% 5.00% t = 2 2 sigma*t = d1 = d2 = C = DM DM Differenzenquotient Übung Finanzwirtschaft Nowak 21 Aufgabe 4c) Vergleich von Optionspaket und Hedgeportfolio Preisveränderung -20 DM -1 DM Vergleichswert +1 DM +20 DM S = DM DM DM DM DM X = DM DM DM DM DM sigma = 20.00% 20.00% 20.00% 20.00% 20.00% r = 5.00% 5.00% 5.00% 5.00% 5.00% t = sigma*t = d1 = d2 = C = DM DM DM DM DM Veränderung von C DM DM 0.84 DM DM Wertveränderung Optionspaket 1,484,196 DM 83,488 DM - 84,240 DM - 1,793,505 DM Wertveränderung Aktienpaket -1,677,390 DM -83,869 DM 83,869 DM 1,677,390 DM Summe (=Hedgefehler) - 193,193 DM DM DM - 116,116 DM Hedgefehler relativ -15.0% 0.0% 0.0% -2.5% Interpretation: Der Hedgefehler wird immer größer mit größerer Aktienpreisveränderung, da das Hedgepaket sich im Wert natürlich linear zum Aktienpreis verändert, während der Optionspreis eine konvexe Funktion des Preises ist. Der Emittent der Optionen (er hat die Optionen short) sieht sich damit bei jeder Veränderung des Preises einem Wertverlust ausgesetzt. Übung Finanzwirtschaft Nowak 22 11

12 Aufgabe 4c) Vergleich von Optionspaket und Hedgeportfolio Wert des Gesamtportfolios -200,000 DM -400,000 DM -600,000 DM -800,000 DM -1,000,000 DM 80 DM 90 DM 0 DM 100 DM 110 DM 120 DM 130 DM 140 DM 150 DM aktueller Aktienpreis Übung Finanzwirtschaft Nowak 23 12

Financial Engineering....eine Einführung

Financial Engineering....eine Einführung Financial Engineering...eine Einführung Aufgabe 1: Lösung Überlegen Sie sich, wie man eine Floating Rate Note, die EURIBOR + 37 bp zahlt in einen Bond und einen Standard-Swap (der EURIBOR zahlt) zerlegen

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Musterlösung Übung 3

Musterlösung Übung 3 Musterlösung Übung 3 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Musterlösung Übung 2

Musterlösung Übung 2 Musterlösung Übung 2 http://www.hoadley.net/options/ http://www.eeh.ee.ethz.ch/en/power/power-systems-laboratory/services 1. Optionsbewertung nach Black / Scholes a) Bewerten Sie eine Call-Option mit den

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Termingeschäfte Forwards und Futures

Termingeschäfte Forwards und Futures Termingeschäfte Forwards und Futures Vertiefungsstudium Finanzwirtschaft Prof. Dr. Mark Wahrenburg SS 2001 20.04.01 1 Forwards: Direkte Termingeschäfte = Vereinbarung über ein zukünftiges Tauschgeschäft

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern

VALUATION Übung 5 Terminverträge und Optionen. Adrian Michel Universität Bern VALUATION Übung 5 Terminverträge und Optionen Adrian Michel Universität Bern Aufgabe Tom & Jerry Aufgabe > Terminpreis Tom F Tom ( + R) = 955'000 ( + 0.06) = 99'87. 84 T = S CHF > Monatliche Miete Jerry

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Sensitivitätsfaktoren

Sensitivitätsfaktoren Sensitivitätsfaktoren Überblick Sensitivitätsfaktoren zeigen die Änderungen des Optionspreises, wenn sich eine Einflussgröße ändert Sensitivitätsfaktoren werden mit einem Optionspreismodell errechnet Einflussgrößen:

Mehr

Arbitrage Free Pricing

Arbitrage Free Pricing Beim CAPM wurde gezeigt, dass man Finanztitel basierend auf der Verteilung ihres künftigen Preises bewerten kann. Dabei haben wir [unter der Annahme gewisser Präferenzen des Es] den Preis eines Finanztitels

Mehr

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015

Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015 Prüfung Grundprinzipien der Versicherungs- und Finanzmathematik 2015 Aufgabe 1: (20 min) a) Gegeben sei ein einperiodiger State Space-Markt mit zwei Zuständen, der aus zwei Wertpapieren bestehe, einer

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14):

Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): Nachtrag: Fehler in der Lösung von P.Q. 8 (Kapitel 14): a. Bruttogewinn 760.000,- $ - Zinszahlungen 100.000,- $ (10 % auf 1 Mio. $) = EBT (Earnings before Taxes) 660.000,- $ - Steuern (35 % auf 660.000,-

Mehr

Einführung in die Obligationenmärkte

Einführung in die Obligationenmärkte Einführung in die Obligationenmärkte Einige wichtige Begriffe Obligationenmarkt (auch Anleihenmarkt) ist der Markt für festverzinsliche Wertpapiere mittlerer bis langfristiger Laufzeit und festem Fälligkeitstermin.

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten

Finanzwirtschaft. Teil II: Bewertung. Zinssätze und Renten Zinssätze und Renten 1 Finanzwirtschaft Teil II: Bewertung Zinssätze und Renten Agenda Zinssätze und Renten 2 Effektivzinsen Spot-Zinsen Forward-Zinsen Bewertung Kennziffern Zusammenfassung Zinssätze und

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 20

Aufgaben Brealey/Myers [2003], Kapitel 20 Folie 0 Quiz: 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14 Practice Questions: 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17, 18, 21 Challenge Questions: 2 Folie 1 Lösungshinweis zu Quiz 4: Put-Call Parität: Fälligkeit

Mehr

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...)

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...) Seydel: Skript Numerische Finanzmathematik, Prolog (Version 2011) 1 ¼º ÈÖÓÐÓ µ Ö Ú Ø A. Übersicht Wesentliche Anlagemärkte sind Aktien Anleihen Rohstoffe equities, stocks bonds commodities (Waren/handelbare

Mehr

Test 1 (zu den Kapiteln 1 bis 6)

Test 1 (zu den Kapiteln 1 bis 6) Test 1 1 Test 1 (zu den Kapiteln 1 bis 6) Bearbeitungszeit: 90 Minuten Aufgabe T1.1: Bekanntmachung EUR 1.000.000.000,- Anleihe mit variablem Zinssatz der Fix AG von 2003/2013, Serie 111 Zinsperiode: 12.10.2006

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 27. April 2015 Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

Transparentes Reporting von strukturierten Produkten. Zürich, 2. Oktober 2008 Rolf Burgermeister

Transparentes Reporting von strukturierten Produkten. Zürich, 2. Oktober 2008 Rolf Burgermeister Transparentes Reporting von strukturierten Produkten Zürich, 2. Oktober 2008 Rolf Burgermeister Agenda 1. Einführung 2. Konzept: effektives Exposure 3. Umsetzung bei Wegelin & Co. 4. Zusammenfassung und

Mehr

Finance: Übungsserie I

Finance: Übungsserie I Thema Dokumentart Finance: Übungsserie I Lösungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: D1 Finanzmanagement Finance: Übungsserie I Aufgabe 1 1.1 Erklären Sie, welche zwei Arten von

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Portfoliorisiko und Minimum Varianz Hedge

Portfoliorisiko und Minimum Varianz Hedge ortfoliorisiko und Minimum Varianz Hedge Vertiefungsstudium Finanzwirtschaft rof. Dr. Mark Wahrenburg Überblick Messung von Risiko ortfoliodiversifikation Minimum Varianz ortfolios ortfolioanalyse und

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 6. Februar

Mehr

Kassa- und Terminmarkt. Am Beispiel des Devisenmarkts

Kassa- und Terminmarkt. Am Beispiel des Devisenmarkts Kassa- und Terminmarkt Am Beispiel des Devisenmarkts Unterschied zwischen Kassa- und Terminmarkt Kassageschäft Geschäftsabschluß Lieferung und Bezahlung Zeitpunkt Zeitpunkt "heute" Laufzeit "morgen" Zeit

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

FRM 2011 Übungsklausur

FRM 2011 Übungsklausur FRM 2011 Übungsklausur 1 Example 5-1: FRM Exam 1999----Question 49/Capital Markets 1 Nehmen Sie an, dass der Kassakurs (Spot Rate) USD/EUR 1,40 ist. Eine amerikanische Bank offeriert 1,5% (jährliche Verzinsung)

Mehr

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009

Optionsbewertung. Christof Heuer und Fabian Lenz. 2. Februar 2009 nach Black-Scholes mit sprüngen 2. Februar 2009 nach Black-Scholes mit sprüngen Inhaltsverzeichnis 1 Einleitung Optionsarten Modellannahmen 2 Aktienmodell Beispiele für e ohne Sprung 3 nach Black-Scholes

Mehr

Klausur zur Vorlesung Finanz- und Bankmanagement

Klausur zur Vorlesung Finanz- und Bankmanagement Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz- und Bankwirtschaft [Aufkleber] Klausur zur Vorlesung Finanz- und Bankmanagement Prof. Dr. Marco Wilkens 06. Februar 2012

Mehr

Kassa- und Terminmarkt. Am Beispiel des Devisenmarkts

Kassa- und Terminmarkt. Am Beispiel des Devisenmarkts Kassa- und Terminmarkt Am Beispiel des Devisenmarkts Unterschied zwischen Kassa- und Terminmarkt Kassageschäft Geschäftsabschluß Lieferung und Bezahlung Zeitpunkt Zeitpunkt "heute" Laufzeit "morgen" Zeit

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 22. Juni 2015 Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel

Brush-up Kurs Wintersemester 2015. Optionen. Was ist eine Option? Terminologie. Put-Call-Parität. Binomialbäume. Black-Scholes Formel Opionen Opionen Was is eine Opion? Terminologie Pu-Call-Pariä Binomialbäume Black-Scholes Formel 2 Reche und Pflichen bei einer Opion 1. Für den Käufer der Opion (long posiion): Rech (keine Pflich!) einen

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

) 10% ist (jeder würde in diese Aktie investieren, der Preis

) 10% ist (jeder würde in diese Aktie investieren, der Preis OFIN Pingo Fragen 1. Der Wert eines Gutes... lässt sich auf einem vollkommenen KM bewerten bestimmt sich durch den relativen Vergleich mit anderen Gütern 2. Jevon's Gesetz von der Unterschiedslosigkeit

Mehr

Futures und Optionen. Einführung

Futures und Optionen. Einführung Futures und Optionen Einführung Plan Märkte Kassamarkt Terminmarkt Unterscheidung Funktionsweise Die statische Sichtweise Futures und Forwards Verpflichtungen Optionen Rechte und Verpflichtungen Grundpositionen

Mehr

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe

Voraussetzungen 21.05.2012. Finanzmathematik INVESTITIONSRECHNUNG. Kapitel 4 Investitionen Prof. Dr. Harald Löwe Finanzmathematik Kapitel 4 Investitionen Prof. Dr. Harald Löwe Sommersemester 2012 1. Abschnitt INVESTITIONSRECHNUNG Voraussetzungen Investition als Zahlungsstrom Vom Investor zur leistende Zahlungen (Anschaffungen,

Mehr

Quantitative BWL 2. Teil: Finanzwirtschaft

Quantitative BWL 2. Teil: Finanzwirtschaft Quantitative BWL 2. Teil: Finanzwirtschaft Mag. Tomáš Sedliačik Lehrstuhl für Finanzdienstleistungen Universität Wien 1 Themenübersicht 1. Portfoliotheorie und Portfoliomodelle i. Grundbegriffe: Rendite,

Mehr

Optionspreistheorie Seminar Stochastische Unternehmensmodelle

Optionspreistheorie Seminar Stochastische Unternehmensmodelle Seminar Stochastische Unternehmensmodelle Lukasz Galecki Mathematisches Institut Universität zu Köln 1. Juni 2015 1 / 30 Inhaltsverzeichnis 1 Was ist eine Option? Definition einer Option Übersicht über

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Deutsche Asset & Wealth Management. Xmarkets Optionsscheine. Wissen tanken Optionsscheine Glossar

Deutsche Asset & Wealth Management. Xmarkets Optionsscheine. Wissen tanken Optionsscheine Glossar Deutsche Asset & Wealth Management Xmarkets Optionsscheine Wissen tanken Optionsscheine Glossar Inhalt 2 Optionsscheine Glossar 3 Basisdaten der Beispielrechnungen 4 Aktueller Hebel 4 Amerikanische Option

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Entspricht der Basiswert einem Aktienindex, so spricht man von einer Indexanleihe (oder auch Reverse- Convertible-Bond).

Entspricht der Basiswert einem Aktienindex, so spricht man von einer Indexanleihe (oder auch Reverse- Convertible-Bond). ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN WGZ ZERTIFIKATE AUF INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung Entspricht der Basiswert einem Aktienindex, so spricht

Mehr

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche

Termingeschäfte. Bedingte Termingeschäfte. Unbedingte Termingeschäfte, bedingte Ansprüche (contingent claims) unbedingte Ansprüche Optionen Termingeschäfte Bedingte Termingeschäfte bedingte Ansprüche (contingent claims) Optionen Kreditderivate Unbedingte Termingeschäfte, unbedingte Ansprüche Forwards und Futures Swaps 2 Optionen Der

Mehr

Lösungshinweise zum Aufgabenteil aus Kapitel 6

Lösungshinweise zum Aufgabenteil aus Kapitel 6 Lösungshinweise zum Aufgabenteil aus Kapitel 6 Aufgabe 6.A Zu 1. Ein Export nach Europa ist dann von Vorteil, wenn der US$- -Wechselkurs größer als Eins ist, d. h. wenn man für einen Euro mehr als einen

Mehr

Optionen. Univ.- Ass. Dr. Helmut Elsinger Institut für BWL an der Universität Wien. Optionen

Optionen. Univ.- Ass. Dr. Helmut Elsinger Institut für BWL an der Universität Wien. Optionen Univ.- Ass. Dr. Helmut Institut für BWL an der Universität Wien Der Käufer einer Option (long position) hat das Recht, einen bestimmten Basiswert (Aktie, Anleihe, Waren, etc.) an (bis) zu einem bestimmten

Mehr

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53

zu Aufgabe 3b) Binomialmodell: C 0 = S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 = S 0 0,909 165,28 = 16,53 zu Aufgabe 3b) Binomialmodell: C 0 S 0 B(a n;p ) E r -n B(a n;p*) Hier: C 0 S 0 0,909 65,8 6,53 Frage: Wie setzt sich das Duplikationsportfolio des Calls (anteiliger Aktienkauf teilweise kreditfinanziert)

Mehr

Forward Rate Agreements sind OTC-Produkte, werden meist telefonisch vereinbart.

Forward Rate Agreements sind OTC-Produkte, werden meist telefonisch vereinbart. 3.6 Derivate Finanzinstrumente / 3.6.2 Forward Rate Agreement EinForward-Kontrakt ist die Vereinbarung zwischen zwei Kontraktparteien über die Lieferung und Zahlung eines bestimmten Gutes zu einem späteren

Mehr

Spekulation ist die meist kurzfristige, gewinnorientierte Ausnutzung erwarteter Preisänderungen.

Spekulation ist die meist kurzfristige, gewinnorientierte Ausnutzung erwarteter Preisänderungen. 2. Spekulation Spekulation ist die meist kurzfristige, gewinnorientierte Ausnutzung erwarteter Preisänderungen. Dazu kann auf verschiedene Szenarien spekuliert werden: ( nur eine Auswahl ) Spekulation

Mehr

Hedging von Zinsrisiken. Vertiefungsstudium Finanzwirtschaft Prof. Dr. Mark Wahrenburg. Bond Yields und Preise von Zerobonds

Hedging von Zinsrisiken. Vertiefungsstudium Finanzwirtschaft Prof. Dr. Mark Wahrenburg. Bond Yields und Preise von Zerobonds Hedging von Zinsrisiken Vertiefungsstudium Finanzwirtschaft Prof. Dr. Mark Wahrenburg Bond Yields und Preise von Zerobonds 3 Zerobonds mit Nominalwert F=100 yield to maturity r=10% (horizontale Zinskurve),

Mehr

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik

Aktienanleihe. Konstruktion, Kursverhalten und Produktvarianten. 18.02.2015 Christopher Pawlik Aktienanleihe Konstruktion, Kursverhalten und Produktvarianten 18.02.2015 Christopher Pawlik 2 Agenda 1. Strukturierung der Aktienanleihe 04 2. Ausstattungsmerkmale der Aktienanleihen 08 3. Verhalten im

Mehr

Quantitative Finance

Quantitative Finance Kapitel 11 Quantitative Finance Josef Leydold c 2006 Mathematische Methoden XI Quantitative Finance 1 / 30 Lernziele für den Teil Quantitative Finance Die Welt der stetigen Zinsen (Renditen) Wichtige Finanzprodukte:

Mehr

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (48 Punkte)

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (48 Punkte) Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (48 Punkte) Herr Smith ist bei einer Anlageberatungs-Gesellschaft für anlagen verantwortlich. Um eine Tabelle mit Marktrenditen (Tabelle

Mehr

1.8 Der Wert zum Zeitpunkt t der long Position eines zum Zeitpunkt 0 abgeschlossenen

1.8 Der Wert zum Zeitpunkt t der long Position eines zum Zeitpunkt 0 abgeschlossenen 1 Einführung 1.4 Berechnung des Erfüllungspreises eines Forwards mit Hilfe des NAP 1.6 Sichere Wertgleichheit zweier Portfolios zum Zeitpunkt T liefert Wertgleichheit zum Zeitpunkt 0 1.7 Preisbestimmung

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

Klausur Bankbetriebslehre / Effektengeschäft 1996 Dr. M. Dziedzina

Klausur Bankbetriebslehre / Effektengeschäft 1996 Dr. M. Dziedzina Klausur Bankbetriebslehre / Effektengeschäft 1996 Dr. M. Dziedzina Lösung 1 Ein Zerobond mit einer Laufzeit von 1 Jahr kostet 94,00 DM, ein Zerobond mit einer Laufzeit von 2 Jahren kostet 91,00 DM. a)

Mehr

Optionen, Futures und andere Derivate

Optionen, Futures und andere Derivate John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 8., aktualisierte Auflage Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Higher Education München

Mehr

Anlage in Finanzderivaten / Strukturierten Wertpapieren

Anlage in Finanzderivaten / Strukturierten Wertpapieren Anlage in Finanzderivaten / Strukturierten Wertpapieren Prof. Dr. Martin Schmidt Friedberg, 24.10.2012 UNIVERSITY OF APPLIED SCIENCES Seite 1 Übersicht 1. Wovon reden wir eigentlich? 2. Wie bekommt man

Mehr

Finanzmathematik... was ist das?

Finanzmathematik... was ist das? Finanzmathematik... was ist das? The core of the subject matter of mathematical finance concerns questions of pricing of financial derivatives such as options and hedging covering oneself against all eventualities.

Mehr

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Praktische Fragestellungen

Mehr

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf

Flonia Lengu. Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Flonia Lengu Termingeschäfte: Futures und Optionen/Forwards/Futures: Terminkauf und -verkauf Gliederung 1. Einführung in derivative Finanzinstrumente 2. Futures und Optionen 3. Terminkauf und verkauf von

Mehr

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann

Barwertbestimmung und Effektivzins bei Anleihen. von Fanny Dieckmann Barwertbestimmung und Effektivzins bei Anleihen von Fanny Dieckmann Inhalt Definitionen Anleihenstruktur Anleihenbewertung Barwertbestimmung Renditebestimmung Bewertung von Sonderformen Literaturverzeichnis

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 von Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 4. Mai 2015 von Diskontfaktoren: Legt man heute (in t) 1 Einheit bis T an, und erhält dafür in T insgesamt x zurück (mit Zinseszins,

Mehr

AKADEMIE. Schritt für Schritt zum Profi in Sachen Zertifikate und Hebelprodukte TEIL 10 DAS HEDGING BEIM EMITTENTEN, FOLGE 2

AKADEMIE. Schritt für Schritt zum Profi in Sachen Zertifikate und Hebelprodukte TEIL 10 DAS HEDGING BEIM EMITTENTEN, FOLGE 2 Goldman Sachs Akademie Das Hedging beim Emittenten, Folge 2 Akademie Reloaded 8.211 A1 AKADEMIE Schritt für Schritt zum Profi in Sachen Zertifikate und Hebelprodukte HERAUSNEHMEN UND SAMMELN TEIL 1 DAS

Mehr

Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und festverzinsliche Wertpapiere

Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und festverzinsliche Wertpapiere Hochschule Ostfalia Fakultät Verkehr Sport Tourismus Medien apl. Professor Dr. H. Löwe Sommersemester 20 Vorlesung Finanzmathematik (TM/SRM/SM/MM) Block : Ausgewählte Aufgaben Investitionsrechnung und

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

KORREKTURBLATT 1. AUFLAGE 1 Erwarteter Ertrag μ a1 Borrowing U 3 Lending U 2 U 1 Q M i f P Risiko σ S. 142, Abb. 31: Optimales Aktienportfolio bei Separation. S. 158, Ende d. 2. Abschnitts: Bis zur

Mehr

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe

Matr.-Nr.: Name: Vorname: Aufgabe 1 2 3 4 Summe FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Finanz- und bankwirtschaftliche Modelle (32521) Prüfer: Univ.-Prof. Dr. Michael Bitz Termin: 20. März 2013

Mehr

Commercial Banking. Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate

Commercial Banking. Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate Commercial Banking Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate Kreditzusage / Kreditlinie (Loan commitment) = Zusage der Bank,

Mehr

FINANZMATHEMATIK. Toker Claudia, Hackner Denise

FINANZMATHEMATIK. Toker Claudia, Hackner Denise FINANZMATHEMATIK Toker Claudia, Hackner Denise AKTIEN Aktien Ökonomische Grundlagen Graphische Darstellung von Aktienkursverläufen Aktienkurs und Aktienindex Die Rendite einer Aktie Statistik der Aktienmärkte

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements

Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methodische Grundlagen des Controlling und Risikomanagements Prof. Dr. Arnd Wiedemann Methoden CRM / WS 12-13 1 Agenda Teil A: Teil B: Teil C: Finanzmathematisches Basiswissen

Mehr

Finanzierung und Investition

Finanzierung und Investition Kruschwitz/Husmann (2012) Finanzierung und Investition 1/46 Finanzierung und Investition Kruschwitz/Husmann (2012) Oldenbourg Verlag München 7. Auflage, Kapitel 7 Kruschwitz/Husmann (2012) Finanzierung

Mehr

WGZ Discount-Zertifikate

WGZ Discount-Zertifikate ALLGEMEINES ZU WGZ BANK-ZERTIFIKATEN WGZ Discount-Zertifikate ZERTIFIKATE AUF AKTIEN ODER INDIZES Werbemitteilung! Bitte lesen Sie den Hinweis am Ende des Dokuments! Produktbeschreibung Das WGZ Discount-Zertifikat

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

Bonus Zertifikate Geldanlage für Skeptiker

Bonus Zertifikate Geldanlage für Skeptiker Bonus Zertifikate Geldanlage für Skeptiker 4.12.2014 Martin Szymkowiak Eigenschaften von Bonus Zertifikaten Bonus Zertifikate 2 Für seitwärts tendierende, moderat steigende oder fallende Märkte Besitzen

Mehr

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (50 Punkte)

Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (50 Punkte) Frage 1: Bewertung und Analyse von fest verzinslichen Wertpapieren (50 Punkte) Sie sind bei einer Versicherungsgesellschaft in Land Z Analyst in der Abteilung, die für Obligationenanlagen verantwortlich

Mehr

Finance: Übungsserie II

Finance: Übungsserie II Thema Dokumentart Finance: Übungsserie II Übungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: D1 Finanzmanagement Finance: Übungsserie II Aufgabe 1 Sie sind ein grosser Fussballfan und besitzen

Mehr

Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps

Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps Thema 21: Risk Management mit Optionen, Futures, Forwards und Swaps Derivate Der Begriff Derivate kommt aus dem Lateinischen und heißt soviel wie abgeleitet. Derivate ist der Sammelbegriff für Optionen,

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Derivate. Risikomanagement mit Optionen. Falk Everding

Derivate. Risikomanagement mit Optionen. Falk Everding Derivate Risikomanagement mit Optionen Falk Everding Inhalt Einführung Kassa- und Termingeschäfte Basisgüter bei Optionen Handelsplätze von Optionen Optionsarten Funktionsweisen von Optionen Ausstattungsmerkmale

Mehr

Dynamik von Optionen

Dynamik von Optionen Dynamik von Optionen Plan Der Optionspreis und seine Einflussfaktoren Wert des Calls / Puts bei unterschiedlichen Marktbedingungen Änderung des Optionspreises bei Änderung eines oder mehrerer Einflussfaktoren

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Plan. Market Spreads. Volatility Spreads. Straddle Long Straddle Short Straddle. Bull Spread. Strangle. Mit Calls Mit Puts Bear Spread

Plan. Market Spreads. Volatility Spreads. Straddle Long Straddle Short Straddle. Bull Spread. Strangle. Mit Calls Mit Puts Bear Spread Spreads Plan Market Spreads Bull Spread Mit Calls Mit Puts Bear Spread Mit Calls Mit Puts Volatility Spreads Straddle Long Straddle Short Straddle Strangle Long Strangle Short Strangle Burkhard Weiss Futures

Mehr

Übung Währungstheorie WS 2007/08 - Julia Bersch

Übung Währungstheorie WS 2007/08 - Julia Bersch Übung Währungstheorie WS 2007/08 - Julia Bersch Aufgabe a - Zinsparität Spot exchange rate / Deviskassakurs: Wechselkurs, der sich auf dem Spotmarkt (=Deviskassamarkt) bildet Devis werd spätests 2 Tage

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Variabel verzinsliche Anleihen und Swaps

Variabel verzinsliche Anleihen und Swaps Variabel verzinsliche Anleihen und Swaps Vertiefungsstudium Finanzwirtschaft Prof. Dr. Mark Wahrenburg Überblick Variabel verzinste Anleihen (Floating Rate Notes FRN ) Formen Bewertung Zinsrisiko Reverse

Mehr

Optionspreistheorie von Black & Scholes

Optionspreistheorie von Black & Scholes Optionspreistheorie von Black & Scholes Vortrag zum Seminar Econophysics Maximilian Eichberger 20. November 2007 Zusammenfassung Nach einer kurzen Erläuterung zu den Grundbegriffen und -prinzipien des

Mehr