Modellbasierte Business Intelligence in der Praxis. Nürnberg,

Größe: px
Ab Seite anzeigen:

Download "Modellbasierte Business Intelligence in der Praxis. Nürnberg, 10.11.2009"

Transkript

1 Modellbasierte Business Intelligence in der Praxis Nürnberg,

2 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen für BI 3. Inhalte von Prozessmodellen 4. Modelle für die Fachabteilung 5. Mehrwert durch Modelle 6. Kritische Erfolgsfaktoren für eine erfolgreiche Modellierung

3 Warum Modelle für Business Intelligence (BI)?

4 Warum Modelle für Business Intelligence (BI)? Die Anzahl der Schichten und damit die Komplexität der Erstellung einer Faktentabelle mit Dimensionen und Kennzahlen ist frei skalierbar. Das Befüllen eines DataMart bezeichnet man als ETL-Prozess. ETL steht für Extract, Transform, Load. Hat man Daten aus einem System kann man die Daten direkt in einen OLAP-Cube laden. Werden nicht alle Daten mit historischen Werte geliefert, müssen Daten aus mehreren Monate in einer sog. Ladeschicht vorgehalten werden. Ist mehr als ein Quellsystem beteiligt, müssen evtl. Konsolidierungen in einer sog. staging area durchgeführt werden Werden die Daten für mehr als eine Abteilung aufbereitet, sollten die Konsolidierungsergebnisse zur Wiederverwendung in einer DWH-Schicht vorgehalten werden. Sollen Auswertungen zu historisch unterschiedlichen Zeitpunkten erstellt werden, muss die DWH-Schicht historisiert vorgehalten werden. Quelldaten Quelldaten Ladeschicht DWH- Schicht Data DataMart Mart Data Mart Die Anzahl der Schichten bei der Erstellung einer Faktentabelle hängt von den Bedürfnissen ab. Modelle lohnen sich ab 3 Schichten. 4

5 Warum Modelle für Business Intelligence (BI)? Innovator macht komplexe Systeme beherrschbar durch Dokumentation, Navigation und Steuerung (DNS). Dokumentieren Hinterlegen der Konsolidierungsregeln zwischen den Systemen Vereinheitlichen der Sichtweisen Einheitlichkeit in der Dokumentation und ein zentrales, gemeinsames Repository Sichern von Know-How bei Personalwechsel Navigieren Nachvollziehen der Datenbereinigungsprozesse Konsequenzen von Änderungen nachvollziehen Festlegen welche Datenmodelle der einzelnen Schichten als Ausgangspunkt für neue Prozesse / Auswertungen dienen können Wissen mit einem Gang durch das Modell erwerben Steuern Angleichen von Anforderungen anhand der Gleichheit der gewünschten Daten und Prozesse Einheitliche Sichtweise auf natürliche Art durch zentrales, gemeinsames Repository Aufwand von Änderungen besser schätzen und auch nachvollziehbar machen beständige Änderungen sind nicht nur beherrschbar, sondern natürlich 5

6 Inhalte von Datenmodellen für BI

7 Inhalte von Datenmodellen für BI Das Datenmodell vermittelt, welche Daten vorhanden sind. Durch gute Strukturierung findet man sich leicht zu recht. Inhalte der einzelnen Schichten Die Ladeschicht und die DWH-Schicht enthalten lediglich relationale Modelle In der DWH-Schicht sind die Dimensionen in einer kompletten Version (der Dimensionsbaum) mit allen Möglichkeiten enthalten. Für den Data Mart werden jeweils Ausschnitte aus dem Dimensionsbaum verwendet. Im Data Mart werden die Faktentabellen als multi-dimensionale Diagramme hinterlegt Die Datenmodell sind in einem großem Modell ohne Trennung, so können die Dimensionen zwischen DWH-Schicht und DataMart geteilt werden Datenmodelle Ladeschicht DWH- Schicht DataMart Schicht 7

8 Inhalte von Datenmodellen für BI Die Metadaten für OLAP-Werkzeuge lassen sich auf einen gemeinsamen Nenner bringen (hier Dimensionen in MSI und MS Analysis Services). Bezeichnung Hierarchie-Ordner Länge Bezeichnung Dimension/Hierarchie MS OLAP Level ID des Levels Tabellen Views Name Darstellung Sortierung Sonstiges, Filter Beschreibungstext 8

9 Inhalte von Prozessmodellen

10 Inhalte von Prozessmodellen Ein klares Verständnis für die Funktionalität von ETL-Prozessschritten erleichtert die Implementierung und verhindert historische Wachstumsprozesse. Prozessmodelle bieten einen leicht verständlichen Zugang zu den ETL-Prozessen Mit diesem Verständnis lassen sich existierende Prozesse leichter ändern So entstehen keine Prozesse, bei denen Änderungen nur noch am Output vorgenommen werden (das sog. dranschachteln ) Ziel: generieren der ETL-Strecken aus dem Prozessmodell heraus 80% können vorgegeben werden, 20% werden manuell erstellt zudem lässt sich so verständlich im Modell darstellen, welchen Weg die Daten durch das Modell nehmen Prozessmodelle Ladeschicht DWH- Schicht DataMart Schicht 10

11 Inhalte von Prozessmodellen Derzeit verwenden wir für die Darstellung der Prozesse Datenflussdiagramme. Alternativ können die Aktivitätsdiagramme der UML verwendet werden. Prozess als Datenflussdiagramm und als Aktivitätsdiagramm 11

12 Inhalte von Prozessmodellen Im Rahmen der Umsetzung ergeben sich trotz sorgfältiger Modellierung häufig neue Erkenntnisse, diese müssen zurück in die Modelle fließen. Der Entwicklungsprozess als Abstimmung unter gleichberechtigten Partnern bevor modelliert wird, werden die Daten genau analysiert dennoch sind Änderungen während der Umsetzung nötig, z.b. wegen falschen Annahmen bezüglich der Daten einen effizienteren Weg, den der Programmierer gefunden hat hierzu gehen Modellierer und Programmierer das Modell gemeinsam durch (4-Augen- Prinzip), dabei werden grob 50% der Vorschläge umgesetzt die Änderungen müssen in das Modell eingehen, mitunter auch zurück an den Anforderer findet diese Pflege nicht statt stimmen Modell und Realität nicht überein und alle Vorteile im Sinne der DNS sind in der Wartung verloren Ladeschicht DWH- Schicht DataMart Schicht Ladeschicht DWH Data Marts 12

13 Modelle für die Fachabteilung

14 Modelle für die Fachabteilung Modelle sorgen auch im Fachbereich für Transparenz. Anforderungen aus dem Fachbereich in Word veralten nach ein bis zwei Jahren frägt meist der Fachbereich nach der aktuellen Umsetzung, er verliert mitunter das Vertrauen in die Umsetzung dem Fachbereich dann die technischen Modelle beizubringen ist ein schwieriges Unterfangen in diesen Fällen kann ein eigenes semi-formales Modell helfen, dass durch die IT unterstützt wird die Erkenntnisse aus der Umsetzung fließen auch in den Fachbereich zurück es entsteht ein Verständnis für die Arbeit der IT 14

15 Modelle für die Fachabteilung Ein fachliches Modell kann vom Fachbereich gezielt zur Datensuche verwendet werden und reduziert so die Recherchekosten für neue Auswertungen Die 3 Schichten müssen der Fachabteilung transparent gemacht werden: Data Mart Eine Liste der verfügbaren Dimensionen und Kennzahlen pro Domäne DWH-Schicht Ein grobes fachliches Modell mit Kennzeichnung nach Domänen, um die Zusammenhänge und Verknüpfungsmöglichkeiten zwischen den Domänen zu erfassen Ladeschicht Sammlung der verfügbaren Attribute pro Quellsystem Der Ablauf der Datenaufbereitungsprozesse in einer kompletten Prozesssicht Sammeln offener Anforderungen an zentraler Stelle Geschickte Verknüpfen von Anforderungen Resultiert in mehr fachlichen Input Nun kann sich der Fachbereich die Daten zusammenstellen, er schaut zunächst nach bisherigen Dimensionen/Kennzahlen, danach sucht er in der DWH-Schicht und dann in der DWH-Schicht Auswertungen Quellsystem Prozessablauf Ladeattribute DWH- Schicht Kennzahlen Dimensionen 15

16 Modelle für die Fachabteilung Dimensionen werden in ihrer Hierarchie dargestellt und zueinander in Kontext gesetzt. Die Schlüssel sind über Fakten mit dem Kennzahlen verknüpft Beispiel für eine fachliche Dimension Synonyme Definition der Dimensionen Zuordnung der Dimensionebenen zur Dimension Hierarchische Reihenfolge 16

17 Mehrwert durch Modelle

18 Mehrwert durch Modelle Dieses Vorgehen schafft Transparenz und Prozessverständnis auf allen Ebenen, erhält die Watungsfähigkeit und sorgt so für langlebige BI-Prozesse Aus den bisherigen Teilmodellen ergibt sich ein Gesamtbild Fachlichen Kontext herstellen Fachliche Ebene Quellsystem Prozessablauf Ladeattribute DWH- Schicht Kennzahlen Dimensionen Auswertungen Modellierung und Detailprüfung System Modell Ebene Schnitt stelle Ladeschicht DWH- Schicht DataMart Schicht Implementierung und Bereitstellung Quelldaten Auswertungen Ladeschicht DWH Data Marts System Ebene 18

19 Kritische Erfolgsfaktoren für eine erfolgreiche Modellierung

20 Kritische Erfolgsfaktoren für eine erfolgreiche Modellierung Eine schrittweise Umsetzung anhand von erfolgreich gelösten Problemen führt zum Ziel Rom wurde nicht an einem Tag erbaut Bei einem existierenden BI-System nimmt die Erstellung der Modelle viel Zeit in Anspruch eine Umsetzung anhand von Problem-Lösung Problem: viel vorhanden, es wird ein Re-Design nötig Lösung: Datenmodell per Re-Engineering erstellen, System in Top-Level-Prozesse aufteilen, einzelne Prozesse nach und nach ablösen Problem: die Datenquelle ist nicht immer klar Lösung: Datenmodell per Re-Engineering erstellen, Quelle zu jedem Attribut erfassen, dann nach und nach Prozesse erstellen Problem: Merger von 2 BI-Modellen, es ist unklar was von wem übernommen werden soll Lösung: ein fachliches Wunschmodell erstellen, dabei jeweils existierende Systemteile vermerken die schrittweise Umstellung sorgt für Akzeptanz und schafft allen Beteiligten Zeit sich auf die Veränderungen einzustellen 20

21 Fragen <Titel für Details eintragen> Ansprechpartner: Michael Müller, 2008 MID GmbH 21

22 Hauptverwaltung Nürnberg MID GmbH Eibacher Hauptstraße Nürnberg Telefon: +49 (0) Telefax: +49 (0) Niederlassung Stuttgart MID GmbH Silberburgstraße Stuttgart Telefon: +49 (0) Telefax: +49 (0)

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010

Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld. München, 26. Januar 2010 Modellbasierte Business Intelligence- Praxiserfahrungen in einem komplexen Data Warehouse Umfeld München, 26. Januar 2010 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Inhalte von Datenmodellen

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009

Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 Wie integriert sich BI in den unternehmensweiten Softwareentwicklungsprozess? Nürnberg, 10.11.2009 I N H A L T 1. Warum Modelle für Business Intelligence (BI)? 2. Anforderungen von BI an Software- Entwicklungsprozesse

Mehr

Solution for Business Intelligence. MID Insight 2013

Solution for Business Intelligence. MID Insight 2013 Solution for Business Intelligence MID Insight 2013 A G E N D A 1. Solution für Business Intelligence (BI) 2. Die Gründe und Hintergründe 3. Die Methode 4. Vorteile MID GmbH 2013 2 Solution für Business

Mehr

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014

Data-Vault-Automation aus dem Datenmodellierungstool. 1. Tagung der DDVUG am 24.Juni2014 Data-Vault-Automation aus dem Datenmodellierungstool 1. Tagung der DDVUG am 24.Juni2014 A G E N D A 1. MID & Innovator 2. Modell & Methode 3. Architektur & Automatisierung 4. Nutzen & Veränderung MID GmbH

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Quo Vadis Oracle BI Relational oder besser multidimensional? DOAG 2013 Business Intelligence, 17.04.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann

Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Data Lineage goes Traceability - oder was Requirements Engineering von Business Intelligence lernen kann Andreas Ditze MID GmbH Kressengartenstraße 10 90402 Nürnberg a.ditze@mid.de Abstract: Data Lineage

Mehr

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Architektur und Konzepte. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Architektur und Konzepte Josef Kolbitsch Manuela Reinisch Übersicht Mehrstufiges BI-System Architektur eines Data Warehouses Architektur eines Reporting-Systems Benutzerrollen in

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Bachelor of Eng. (Wirtschafts-Ing.-wesen)

Bachelor of Eng. (Wirtschafts-Ing.-wesen) Persönliche Daten Name Philipp Müller Geburtsdatum 21.11.1982 Berufsausbildung Studium Industriekaufmann Bachelor of Eng. (Wirtschafts-Ing.-wesen) Kompetenzen Methodisch Datenmodellierung Fachlich Allgemeines

Mehr

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015

Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 Modellierung agiler Data Warehouses mit Data Vault Dani Schnider, Trivadis AG DOAG Konferenz 2015 BASEL BERN BRUGG DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. GENEVA HAMBURG COPENHAGEN LAUSANNE MUNICH STUTTGART

Mehr

Welche Daten gehören ins Data Warehouse?

Welche Daten gehören ins Data Warehouse? Welche Daten gehören ins Warehouse? Dani Schnider Principal Consultant 9. Januar 2012 In vielen DWH-Projekten stellt sich die Frage, welche Daten im Warehouse gespeichert werden sollen und wie dieser Datenumfang

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

1 Ihre BI-Galaxie von BITMARCK!

1 Ihre BI-Galaxie von BITMARCK! 1 Ihre BI-Galaxie von BITMARCK! Die Summe aller Sterne ist die Galaxie Ihre BI-Galaxie von BITMARCK! Michael Heutmann, Peter Hernold, Markus Jankowski Neuss, 4. November 2013 Sie haben uns mit auf den

Mehr

Ontologiebasiertes Kennzahlenmanagement

Ontologiebasiertes Kennzahlenmanagement Ontologiebasiertes Kennzahlenmanagement Dan Garconita Competence Center Information Management Bundesrechenzentrum GmbH www.brz.gv.at Der IT-Dienstleister des Bundes Kennzahlensysteme No doubt companies

Mehr

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen

Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Praxistag für die öffentliche Verwaltung 2012 Titel Präsentation Studierenden-Kennzahlen im Griff dank flexiblem Reporting und Ad-hoc-Analysen Referenten-Info Gerhard Tschantré, Leiter Controllerdienste

Mehr

Nach Data Warehousing kommt Business Intelligence

Nach Data Warehousing kommt Business Intelligence Nach Data Warehousing kommt Business Intelligence Andrea Kennel Trivadis AG Glattbrugg, Schweiz Schlüsselworte: Business Intelligence, Data Warehouse Zusammenfassung Data Warehouse bedeutet, dass operative

Mehr

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT

BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT BUSINESS INTELLIGENCE IM MITTELSTAND EIN PRAXISBERICHT Meik Truschkowski Architekt für Business Intelligence und Data Warehousing nobilia-werke J. Stickling GmbH & Co. KG Verl, den 31. Oktober 2011 UNTERNEHMENSPROFIL

Mehr

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN

tdwi E U R D P E OPEN SOURCE BUSINESS INTELLIGENCE HANSER MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN OPEN SOURCE BUSINESS INTELLIGENCE MÖGLICHKEITEN, CHANCEN UND RISIKEN QUELLOFFENER BI-LÖSUNGEN uwehaneke Stephan TRAHASCH tobias HAGEN tobias LAUER (Hrsg.)' tdwi E U R D P E HANSER Vorwort 9 Einführung

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Best Practices: BI mit Open-Source-Tools

Best Practices: BI mit Open-Source-Tools Best Practices: BI mit Open-Source-Tools Alf Hellmund - GIUA 2009 Seite 1 Agenda Einleitung Best Practices Fazit Vorstellung & Motivation Vorteile Architektur & Entwurf Datenmodellierung ETL Reporting

Mehr

ITGAIN Fach- und Technikspezialist

ITGAIN Fach- und Technikspezialist ITGAIN Fach- und Technikspezialist KOMPETENZ GEWINNBRINGEND EINSETZEN. Copyright 2012 ITGAIN GmbH 1 SPoT Wir bringen Ihre Informationen auf den Punkt. Hamburg, 07.05.2012 FACTORY-ANSATZ FÜR ETL-PROZESSE

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

ENTERBRAIN Reporting & Business Intelligence

ENTERBRAIN Reporting & Business Intelligence Überblick Vorhandene Listen/Analysen in ENTERBRAIN Die Daten in ENTERBRAIN Das Fundament des BI - Hauses Details zur ENTERBRAIN Staging Area Reports und Cubes auf Basis der Staging Area Data Mining mit

Mehr

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects

INVEST projects. Besseres Investitionscontrolling mit INVESTprojects Besseres Investitionscontrolling mit Der Investitionsprozess Singuläres Projekt Idee, Planung Bewertung Genehmigung Realisierung Kontrolle 0 Zeit Monate, Jahre Perioden Der Investitionsprozess Singuläres

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Übersicht über Business Intelligence. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Übersicht über Business Intelligence Josef Kolbitsch Manuela Reinisch Übersicht Beispiel: Pantara Holding Der Begriff Business Intelligence Übersicht über ein klassisches BI-System

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Survival Guide für Ihr Business Intelligence-Projekt

Survival Guide für Ihr Business Intelligence-Projekt Survival Guide für Ihr Business Intelligence-Projekt Sven Bosinger Solution Architect BI Survival Guide für Ihr BI-Projekt 1 Agenda Was ist Business Intelligence? Leistungsumfang Prozesse Erfolgsfaktoren

Mehr

UML-DSLs effizient eingesetzt. Insight 07, 13.11.2007 Klaus Weber

UML-DSLs effizient eingesetzt. Insight 07, 13.11.2007 Klaus Weber UML-DSLs effizient eingesetzt Insight 07, 13.11.2007 Klaus Weber Einladung Domänenspezifische Sprachen (DSLs) sind notwendige Voraussetzung für den Erfolg einer MDA-Strategie. MID favorisiert statt der

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

1Ralph Schock RM NEO REPORTING

1Ralph Schock RM NEO REPORTING 1Ralph Schock RM NEO REPORTING Bereit für den Erfolg Business Intelligence Lösungen Bessere Entscheidungen Wir wollen alle Mitarbeiter in die Lage versetzen, bessere Entscheidungen schneller zu treffen

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

BI - Der strategische Erfolgsfaktor im Unternehmen

BI - Der strategische Erfolgsfaktor im Unternehmen BI - Der strategische Erfolgsfaktor im Unternehmen Kunde: Universität Oldenburg, Department für Informatik Ort: Oldenburg, 26.09.2008 Referent: Dirk Vahlkamp Gedruckt: 28.09.2008, [Version 0.1] 2007-2008

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Zeitgemäße Verfahren für ganzheitliche Auswertungen

Zeitgemäße Verfahren für ganzheitliche Auswertungen Intelligente Vernetzung von Unternehmensbereichen Zeitgemäße Verfahren für ganzheitliche Auswertungen Sächsische Industrie- und Technologiemesse Chemnitz, 27. Juni 2012, Markus Blum 2012 TIQ Solutions

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Analytic mit Oracle BI relational oder besser multidimensional? 8. Oracle BI & DWH Konferenz, 20.03.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

BI around the world - Globale Reporting Lösungen bei Continental Automotive

BI around the world - Globale Reporting Lösungen bei Continental Automotive BI around the world - Globale Reporting Lösungen bei Continental Automotive Stefan Hess Trivadis GmbH Stuttgart Herbert Muckenfuss Continental Nürnberg Schlüsselworte: Oracle BI EE, Business Intelligence,

Mehr

Marketing Intelligence Vorstellung der Übungsaufgabe. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Übungsaufgabe. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Übungsaufgabe Josef Kolbitsch Manuela Reinisch Übersicht Ausgangssituation Ist-Situation Aufgabenstellung Vorgeschlagene Herangehensweise Ausgangssituation 1/2 Willkommen

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP

Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP Microsoft SQL-Server 2008 R2/2012 Reporting und OLAP Kompakt-Intensiv-Training OLAP gilt als Schlüsseltechnologie auf dem Gebiet Business Intelligence. In unserer Schulung "Microsoft SQL-Server 2008 R2/2012

Mehr

Oracle Scorecard & Strategy Management

Oracle Scorecard & Strategy Management Oracle Scorecard & Strategy Management Björn Ständer ORACLE Deutschland B.V. & Co. KG München Schlüsselworte: Oracle Scorecard & Strategy Management; OSSM; Scorecard; Business Intelligence; BI; Performance

Mehr

Aeiforia Referenzmodell: Modellierung von Geschäftsprozessen in der Verwaltung von Riester-Verträgen

Aeiforia Referenzmodell: Modellierung von Geschäftsprozessen in der Verwaltung von Riester-Verträgen Aeiforia Referenzmodell: Modellierung von Geschäftsprozessen in der Verwaltung von Riester-Verträgen Gesetze und Regeln bei der Verwaltung von Riester-Verträgen einhalten, Compliance sichern: Riester-Prozesse

Mehr

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen

Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen Strategisches Informationsmanagement auf Basis von Data Warehouse-Systemen SAS PharmaHealth & Academia Gabriele Smith KIS-Tagung 2005 in Hamburg: 3. März 2005 Copyright 2003, SAS Institute Inc. All rights

Mehr

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04.

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04. Data Vault Modellierungsmethode für agile Data Warehouse Systeme Dr. Bodo Hüsemann Informationsfabrik GmbH DOAG BI, München, 17.04.2013 Die Informationsfabrik Die Informationsfabrik macht erfolgreiche

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte BI Operations Erfolgsfaktoren für einen effizienten Data Warehouse Betrieb

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte BI Operations Erfolgsfaktoren für einen effizienten Data Warehouse Betrieb 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Schwierigkeiten bei der Umsetzung. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Schwierigkeiten bei der Umsetzung Josef Kolbitsch Manuela Reinisch Übersicht Schwierigkeiten bei der Umsetzung eines BI-Systems Schwierigkeiten der Umsetzung 1/13 Strategische Ziele

Mehr

Projekt zur Lehrveranstaltung Informationssysteme

Projekt zur Lehrveranstaltung Informationssysteme Prof. Dr.-Ing. Thomas Kudraß Dipl.-Math. Dörte König HTWK Leipzig, F IMN Projekt zur Lehrveranstaltung Informationssysteme Das Projekt ist in drei Teile aufgeteilt, die den Phasen eines Data-Warehouse-Projekts

Mehr

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015

Fachbereich Informatik Praktikumsversuch 4. Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 Hochschule Darmstadt Data Warehouse SS2015 Fachbereich Informatik Praktikumsversuch 4 Prof. Dr.. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 11.06.2015 1. Kurzbeschreibung Dieses Praktikum

Mehr

Integration mit Service Repositories zur SOA Governance

Integration mit Service Repositories zur SOA Governance Integration mit Service Repositories zur SOA Governance Nürnberg, 10.11.2009 I N H A L T 1. SOA Governance 2. Service Repository 3. Modelle und Service Repository 4. Modell-Driven SOA I N H A L T 1. SOA

Mehr

Oracle BI EE mit großen Datenmengen

Oracle BI EE mit großen Datenmengen Oracle BI EE mit großen Datenmengen Christian Casek Riverland Solutions GmbH München Schlüsselworte: Oracle BI EE, Oracle BI Applications, Informatica, RPD, große Datenmengen, Performance, Performanceoptimierung,

Mehr

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand

Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand Business Intelligence Entscheidungsinformationen für eine erfolgreiche Unternehmensentwicklung im Mittelstand 2. Fachtagung Dynamisierung des Mittelstandes durch IT, 09.09.2008 Was ist Business Intelligence

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Anforderungsanalyse für SOA Services

Anforderungsanalyse für SOA Services Anforderungsanalyse für SOA Services mittels BPMN 2.0 und UML Björn Hardegen b.hardegen@mid.de Dr. Gregor Scheithauer gregor.scheithauer@opitz consulting.com München, 29.02.2012 I N H A L T 1. Herausforderungen

Mehr

DWH Szenarien. www.syntegris.de

DWH Szenarien. www.syntegris.de DWH Szenarien www.syntegris.de Übersicht Syntegris Unser Synhaus. Alles unter einem Dach! Übersicht Data-Warehouse und BI Projekte und Kompetenzen für skalierbare BI-Systeme. Vom Reporting auf operativen

Mehr

Praxishandbuch SAP BW 3-1

Praxishandbuch SAP BW 3-1 Norbert Egger Praxishandbuch SAP BW 3-1 Technische Universität DarmsUdt FACHBEREICH INFORMATIK BIBLIOTHEK Inventar-Nr.: Ä/A< Sachgebiete: Standort- Co Galileo Press Inhalt Vorwort 13 Zu diesem Buch 17

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung

Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3. Aufgabenstellung Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 3 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 18.12.2013 1. Kurzbeschreibung Dieses Praktikum

Mehr

Adlerblick So gewinnen Sie einen Überblick über ein DWH Dr. Andrea Kennel InfoPunkt Kennel GmbH CH-8600 Dübendorf Schlüsselworte Einleitung

Adlerblick So gewinnen Sie einen Überblick über ein DWH Dr. Andrea Kennel InfoPunkt Kennel GmbH CH-8600 Dübendorf Schlüsselworte Einleitung Adlerblick So gewinnen Sie einen Überblick über ein DWH Dr. Andrea Kennel InfoPunkt Kennel GmbH CH-8600 Dübendorf Schlüsselworte DWH Projekt, Methodik, Stärken und Schwächen, Übersicht, Weg der Daten,

Mehr

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis

Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis Dimensionale Modellierung mit Oracle BI EE und Oracle OLAP Tipps und Tricks aus der Praxis DOAG Konferenz 2010 Claus Jordan Senior Consultant, Trivadis GmbH 16.11.2010 Basel Bern Lausanne Zürich Düsseldorf

Mehr

Einführung BI und Logistik werden zu Logistics Intelligence

Einführung BI und Logistik werden zu Logistics Intelligence Beratung Software Lösungen Logistics Intelligence Mit Logistik-Kennzahlen zum Erfolg DOAG Logistik & SCM 2009 12. Mai 2009 Gisela Potthoff Michael Baranowski Inhalt Einführung BI und Logistik werden zu

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Online Analytical Processing

Online Analytical Processing Online Analytical Processing Online Analytical Processing Online Analytical Processing (OLAP) ermöglicht die multidimensionale Betrachtung von Daten zwecks E rmittlung eines entscheidungsunterstützenden

Mehr

Das generierte Data Warehouse

Das generierte Data Warehouse Das generierte Data Warehouse DOAG BI Konferenz 2012 Gregor Zeiler BASEL BERN LAUSANNE ZÜRICH DÜSSELDORF FRANKFURT A.M. FREIBURG I.BR. HAMBURG MÜNCHEN STUTTGART WIEN 1 Erwartungshaltungen und Hoffnungen

Mehr

Geschäftsprozesse modellieren mit BPMN. Nürnberg, 10.11.2009

Geschäftsprozesse modellieren mit BPMN. Nürnberg, 10.11.2009 Geschäftsprozesse modellieren mit BPMN Nürnberg, 10.11.2009 I N H A L T 1. Warum noch ein Notation? 2. Grundlegende BPMN-Elemente 3. Prozess versus Interaktion 4. Services 5. Fazit Warum noch eine Notation?

Mehr

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4

Contents. Ebenen. Data Warehouse - ETL Prozess Version: July 10, 2007. 1 Ebenen. Andreas Geyer-Schulz und Anke Thede. 2 Problemquelle Quellsysteme 4 Contents Data Warehouse - ETL Prozess Version: July 10, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften

Mehr

Steuerung und Berichtswesen für die öffentliche Verwaltung mit BI. Analyse- und Steuerungssystem

Steuerung und Berichtswesen für die öffentliche Verwaltung mit BI. Analyse- und Steuerungssystem Ihre Praxis. Unsere Kompetenz. Sichere Zukunft. Steuerung und Berichtswesen für die öffentliche Verwaltung mit BI Analyse- und Steuerungssystem Jürgen Scherer Part of Auszug Beauftragungen Analyse- und

Mehr

Raber+Märcker Business Intelligence Lösungen und Leistungen

Raber+Märcker Business Intelligence Lösungen und Leistungen Business Intelligence Raber+Märcker Business Intelligence Lösungen und Leistungen www.raber-maercker.de 2 LEISTUNGEN Business Intelligence Beratungsleistung Die Raber+Märcker Business Intelligence Beratungsleistung

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3

Inhaltsverzeichnis. Teil I OLAP und der Microsoft SQL-Server 1. 1 Theoretische Grundlagen 3 vii Teil I OLAP und der Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1 Was ist OLAP?......................................... 3 1.1.1 Business Intelligence............................... 4 1.1.2

Mehr

Vollständig generisches DWH für kleine und mittelständische Unternehmen

Vollständig generisches DWH für kleine und mittelständische Unternehmen Vollständig generisches DWH für kleine und mittelständische Unternehmen Marc Werner Freiberufler Berlin Schlüsselworte: Wirtschaftlichkeit, Kostenreduzierung, Metadaten, Core Data Warehouse, Slowly Changing

Mehr

Performance Modelling Strukturen Portfolio Calculation Benchmark und Funddecomposition Risikokennzahlen Transaktionen

Performance Modelling Strukturen Portfolio Calculation Benchmark und Funddecomposition Risikokennzahlen Transaktionen Zeitraum Februar 2008 bis Januar 2009 Anforderungen Bank in Zürich Erweiterung des bestehenden Client Reporting Systems für institutionelle Kunden. Erstellung von Konzepten zur fachlichen und technischen

Mehr

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung

Profil Andy Sydow. Persönliche Daten. Profil. Profil Andy Sydow. Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Andy Sydow Persönliche Daten Nationalität Sprachen Abschluss deutsch Deutsch, Englisch (gut) Fachinformatiker für Anwendungsentwicklung Profil Herr Sydow verfügt über mehrjährige Erfahrung als DWH/BI

Mehr

Geschäftsprozesse SOA-gerecht modellieren mit BPMN und UML. München, 28. Januar 2010

Geschäftsprozesse SOA-gerecht modellieren mit BPMN und UML. München, 28. Januar 2010 Geschäftsprozesse SOA-gerecht modellieren mit BPMN und UML München, 28. Januar 2010 INHALT Warum BPMN? Prozesse modellieren mit BPMN 2.0 Fachliche Services identifizieren BPMN-Prozesse mit UML ergänzen

Mehr

Agile Analytics Neue Anforderungen an die Systemarchitektur

Agile Analytics Neue Anforderungen an die Systemarchitektur www.immobilienscout24.de Agile Analytics Neue Anforderungen an die Systemarchitektur Kassel 20.03.2013 Thorsten Becker & Bianca Stolz ImmobilienScout24 Teil einer starken Gruppe Scout24 ist der führende

Mehr

Data Warehousing in der Lehre

Data Warehousing in der Lehre Data Warehousing in der Lehre Prof. Dr.-Ing. Tomas Benz Dipl.-Inform. Med. Alexander Roth Agenda Vorstellung Fachhochschule Heilbronn Vorstellung i3g Vorlesungen im DWH-Bereich Seminare Projekte Studien-

Mehr

BI Organisation und Governance. Patrick Keller, Senior Analyst und Prokurist CeBIT 2016

BI Organisation und Governance. Patrick Keller, Senior Analyst und Prokurist CeBIT 2016 BI Organisation und Governance Patrick Keller, Senior Analyst und Prokurist CeBIT 2016 15.03.2016 BARC 2016 2 Warum eine Organisation für BI? Menschen verursachen mehr Probleme als Technik! 15.03.2016

Mehr

Seminar C02 - Praxisvergleich OLAP Tools

Seminar C02 - Praxisvergleich OLAP Tools C02: Praxisvergleich OLAP Tools Ein Seminar der DWH academy Seminar C02 - Praxisvergleich OLAP Tools Das Seminar "Praxisvergleich OLAP-Tools" bietet den Teilnehmern eine neutrale Einführung in die Technologien

Mehr

Aufbau von Informations- management- Systemen

Aufbau von Informations- management- Systemen Aufbau von Informations- management- Systemen Agenda 1. Das deutsche Krankenhauswesen im Umbruch 2. Einführung eines Informationsmanagement-Systems im Krankenhaus 3. Projektvorgehensweise am Beispiel von

Mehr

SEA. Modellgetriebene Softwareentwicklung in der BA

SEA. Modellgetriebene Softwareentwicklung in der BA SEA Modellgetriebene Softwareentwicklung in der BA MDA bei der BA Ziele/Vorteile: für die Fachabteilung für die Systementwicklung für den Betrieb Wie wird MDA in der BA umgesetzt? Seite 2 MDA bei der BA

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Produkt und Methode. SIRIUSlogic 4.0 in der Praxis. SIRIUS Consulting & Training AG. www.sirius-consult.com. SIRIUS Consulting & Training AG

Produkt und Methode. SIRIUSlogic 4.0 in der Praxis. SIRIUS Consulting & Training AG. www.sirius-consult.com. SIRIUS Consulting & Training AG Produkt und Methode SIRIUSlogic 4.0 in der Praxis SIRIUS Consulting & Training AG www.sirius-consult.com SIRIUSlogic 4.0 Warum ein weiteres Prozessmanagement Werkzeug? Motivation Was muß das Tool leisten

Mehr

Modelle und Anforderungen integrieren mit Innovator und Microsoft Word

Modelle und Anforderungen integrieren mit Innovator und Microsoft Word mit Innovator und Microsoft Word MID Insight 09, Nürnberg, 10 November 2009 Vortrag auf der Innovator-Anwenderkonferenz MID Insight 09 Track: Technologie & Integration Modelle und Anforderungen integrieren

Mehr

Analyse und Optimierung das A&O des Marktdaten- Managements

Analyse und Optimierung das A&O des Marktdaten- Managements Analyse und Optimierung das A&O des Marktdaten- Managements Marktdaten-Management dacoma A&O Services Herausforderung Handlungsbedarf: Die Praxis des Marktdaten-Managements risikobehaftet und kostenintensiv?

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

Self Service BI der Anwender im Fokus

Self Service BI der Anwender im Fokus Self Service BI der Anwender im Fokus Frankfurt, 25.03.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC 1 Kernanforderung Agilität = Geschwindigkeit sich anpassen zu können Quelle: Statistisches

Mehr

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format.

Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH. Software mit Format. Fördercontrolling im öffentlichen Bereich Aspekte beim Aufbau eines DWH Gerd Schandert, Neuss den 18.03.2014 Agenda 1. Vorstellung Auftraggeber 2. Förderung allgemein 3. Schichten im Data Warehouse 4.

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

Business Intelligence-Projekte mit SAP BO - Best Practices für den Mittelstand

Business Intelligence-Projekte mit SAP BO - Best Practices für den Mittelstand Business Intelligence-Projekte mit SAP BO - Best Practices für den Mittelstand Name: Michael Welle Funktion/Bereich: Manager Business Intelligence Organisation: Windhoff Software Services Liebe Leserinnen

Mehr

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009

Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar. 24. September 2009 Open Source BI 2009 Flexibilität und volle Excel-Integration von Palo machen OLAP für Endanwender beherrschbar 24. September 2009 Unternehmensdarstellung Burda Digital Systems ist eine eigenständige und

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Strategische Unternehmenssteuerung immer in richtung Erfolg

Strategische Unternehmenssteuerung immer in richtung Erfolg Strategische Unternehmenssteuerung immer in richtung Erfolg cp-strategy ist ein Modul der corporate Planning Suite. StrAtEgiSchE UntErnEhMEnSStEUErUng Immer in Richtung Erfolg. Erfolgreiche Unternehmen

Mehr

ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is.

ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is. ANTARES Informations-Systeme GmbH Stuttgarter Strasse 99 D-73312 Geislingen Tel. +49 73 31 / 30 76-0 Fax +49 73 31 / 30 76-76 www.antares-is.de insight und dynasight sind eingetragene Markenzeichen der

Mehr

INNOVATOR im Entwicklungsprozess

INNOVATOR im Entwicklungsprozess Erfahrungsbericht INNOVATOR im Entwicklungsprozess Basis für Host- und Java-Anwendungen Dr. Carl-Werner Oehlrich, Principal Consultant MID GmbH Das Modellierungswerkzeug INNOVATOR Geschäftsprozess-Modellierung

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

VisualCockpit. agile business analytics

VisualCockpit. agile business analytics VisualCockpit agile business analytics Agile Business Analytics mit VisualCockpit Für Unternehmen wird es immer wichtiger die gesamte Wertschöpfungskette aus Daten, sowohl für das operative Geschäft als

Mehr