Kapitel 11* Grundlagen ME. Aufbau eines ME-Systems Entwicklung eines ME-Systems. Kapitel11* Grundlagen ME p.1/12

Größe: px
Ab Seite anzeigen:

Download "Kapitel 11* Grundlagen ME. Aufbau eines ME-Systems Entwicklung eines ME-Systems. Kapitel11* Grundlagen ME p.1/12"

Transkript

1 Kapitel 11* Kapitel11* Grundlagen ME p.1/12 Grundlagen ME Aufbau eines ME-Systems Entwicklung eines ME-Systems

2 Kapitel11* Grundlagen ME p.2/12 Aufbau eines ME-Systems (1) on line Phase digitalisiertes Muster abstrakte Darstellung des Musters unbekanntes Muster SENSOR VORVERARBEITUNG SEGMENTIERUNG MERKMALSEXTRAKTION KLASSIFIKATION NACHVERARBEITUNG Ergebnis Trainings / Lern Stichprobe TRAINING LERNEN abstrakte Modelle der Muster off line Phase

3 Kapitel11* Grundlagen ME p.3/12 Aufbau eines ME-Systems (2) Sensor Videokamera, Tiefenbildkamera, Scanner, Mikrofon, etc. jeweils mit A/D-Wandler und Interface Vorverarbeitung Filterung des Bildes/Signals zur Störungsunterdrückung Segmentierung Trennung des zu klassifizierenden Musters vom Rest Schrift/Hintergrund, Gesicht/Hintergrund Objektkonturen Regionen mit homogenen Eigenschaften

4 Kapitel11* Grundlagen ME p.4/12 Aufbau eines ME-Systems (3) Merkmalsextraktion Eigenschaften zur Beschreibung des zu klassifizierenden Musters Klassifikation Klassifikatoren (statistisch, strukturell, syntaktisch, hybrid) Nachverarbeitung Berücksichtigung von Kontextinformationen (z.b. Straße und PLZ beim Adressenlesen) Kombination von Klassifikatoren

5 Kapitel11* Grundlagen ME p.5/12 Merkmale Repräsentation von Mustern im Merkmalsraum F Intuitive Merkmale Unterscheidung Äpfel/Orangen (links): Verhältnis von Grün- und Rot-Komponente (F = R); gilt allerdings nicht für Situation rechts

6 Kapitel11* Grundlagen ME p.5/12 Merkmale Repräsentation von Mustern im Merkmalsraum F Intuitive Merkmale Unterscheidung Äpfel/Orangen (links): Verhältnis von Grün- und Rot-Komponente (F = R); gilt allerdings nicht für Situation rechts Komplexe Merkmale Kieselalge (diatom), > Typen (Klassen), Anwendung in Biologie, Klimaforschung, Gerichtsmedizin. Merkmale: Konturform + Textur

7 Kapitel11* Grundlagen ME p.5/12 Merkmale Repräsentation von Mustern im Merkmalsraum F Intuitive Merkmale Unterscheidung Äpfel/Orangen (links): Verhältnis von Grün- und Rot-Komponente (F = R); gilt allerdings nicht für Situation rechts Komplexe Merkmale Kieselalge (diatom), > Typen (Klassen), Anwendung in Biologie, Klimaforschung, Gerichtsmedizin. Merkmale: Konturform + Textur String: Text, Objektkontur (zyklische Strings)

8 Kapitel11* Grundlagen ME p.5/12 Merkmale Repräsentation von Mustern im Merkmalsraum F Intuitive Merkmale Unterscheidung Äpfel/Orangen (links): Verhältnis von Grün- und Rot-Komponente (F = R); gilt allerdings nicht für Situation rechts Komplexe Merkmale Kieselalge (diatom), > Typen (Klassen), Anwendung in Biologie, Klimaforschung, Gerichtsmedizin. Merkmale: Konturform + Textur String: Text, Objektkontur (zyklische Strings) Graph: Schriftzeichen, komplexe Strukturen

9 Kapitel11* Grundlagen ME p.6/12 Typ von Klassifikatoren (1) Statistischer Ansatz (numerisch) Darstellung des Musters: Merkmalvektor (x 1,...,x n ) R n Klassifikation: Annahme: verschiedene Klassen nehmen einen kompakten Teil von R n ein; Klassengrenzen durch Trennfunktionen definiert (Training/Lernen anhand einer Stichprobe) Beispiel: x 2 C 1 = Jockeys (klein und leicht) C 2 = Boxer der Schwergewichtsklasse (gross und schwer) x 1 = Grösse x 2 = Gewicht C 1 C 2 d(x) = w 1 x 1 + w 2 x 2 + w 0 = 0 x 1

10 Kapitel11* Grundlagen ME p.7/12 Typ von Klassifikatoren (2) Struktureller Ansatz (symbolisch) Darstellung des Musters: Symbolische Datenstruktur, z.b. String, Baum oder Graph Klassifikation: Direkter Strukturvergleich; prototypische Muster aus Stichprobe

11 Kapitel11* Grundlagen ME p.7/12 Typ von Klassifikatoren (2) Struktureller Ansatz (symbolisch) Darstellung des Musters: Symbolische Datenstruktur, z.b. String, Baum oder Graph Klassifikation: Direkter Strukturvergleich; prototypische Muster aus Stichprobe Syntaktischer Ansatz (symbolisch) Darstellung des Musters: String (unbekanntes Muster), Grammatik (Modelle) Klassifikation: Das unbekannte Muster als String mittels eines Parsers mit den Modellen vergleichen

12 Kapitel11* Grundlagen ME p.8/12 Generalisierung (1) Single feature histograms; decision based on threshold Length or lightness alone does not suffice!

13 Kapitel11* Grundlagen ME p.9/12 Generalisierung (2) Using two features: Linear decision boundary separates reasonably well but incurs errors! Can achieve zero classification error! Is this good?

14 Kapitel11* Grundlagen ME p.10/12 Generalisierung (3) Compromise Quadratic boundary balance complexity and error

15 Kapitel11* Grundlagen ME p.11/12 Entwicklungszyklus Datengewinnung: repräsentative Stichprobe zum Trainieren/Testen; zeit- und kostenintensiv. Zweistufiges Vorgehen: Machbarkeitsstudie: kleine Menge von typischen Mustern Realisierung: stark erweiterte Menge von Mustern Start Datengewinnung Wissen Merkmalsselektion Methodenselektion Training Performance Evaluation Ende Es gibt keine besseren Daten alsmehr Daten! Merkmalsselektion: Wahl von charakteristischen Merkmalen stellt einen kritischen Schritt dar und hängt von der jeweiligen Problemstellung ab Methodenselektion: Wahl des Klassifikationsverfahrens Training: Bestimmung von Modellparametern Performance Evaluation: Steuerung des Entwicklungszyklus

16 Kapitel11* Grundlagen ME p.12/12 Warum ist ME so schwierig? Localization / segmentation Invariances (normalization not always easy) Occlusion Context Temporal structure Missing features Noisy data

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens

Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Seminar Textmining SS 2015 Grundlagen des Maschinellen Lernens Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 17.04.2015 Entscheidungsprobleme beim Textmining

Mehr

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10

Computer Vision: AdaBoost. D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Computer Vision: AdaBoost D. Schlesinger () Computer Vision: AdaBoost 1 / 10 Idee Gegeben sei eine Menge schwacher (einfacher, schlechter) Klassifikatoren Man bilde einen guten durch eine geschickte Kombination

Mehr

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web.

Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web. Using TerraSAR-X data for mapping of damages in forests caused by the pine sawfly (Dprion pini) Dr. Klaus MARTIN klaus.martin@slu-web.de Damages caused by Diprion pini Endangered Pine Regions in Germany

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

HIR Method & Tools for Fit Gap analysis

HIR Method & Tools for Fit Gap analysis HIR Method & Tools for Fit Gap analysis Based on a Powermax APML example 1 Base for all: The Processes HIR-Method for Template Checks, Fit Gap-Analysis, Change-, Quality- & Risk- Management etc. Main processes

Mehr

HiOPC Hirschmann Netzmanagement. Anforderungsformular für eine Lizenz. Order form for a license

HiOPC Hirschmann Netzmanagement. Anforderungsformular für eine Lizenz. Order form for a license HiOPC Hirschmann Netzmanagement Anforderungsformular für eine Lizenz Order form for a license Anforderungsformular für eine Lizenz Vielen Dank für Ihr Interesse an HiOPC, dem SNMP/OPC Gateway von Hirschmann

Mehr

Praktikum Entwicklung von Mediensystemen mit ios

Praktikum Entwicklung von Mediensystemen mit ios Praktikum Entwicklung von Mediensystemen mit ios WS 2011 Prof. Dr. Michael Rohs michael.rohs@ifi.lmu.de MHCI Lab, LMU München Today Heuristische Evaluation vorstellen Aktuellen Stand Software Prototyp

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

TomTom WEBFLEET Tachograph

TomTom WEBFLEET Tachograph TomTom WEBFLEET Tachograph Installation TG, 17.06.2013 Terms & Conditions Customers can sign-up for WEBFLEET Tachograph Management using the additional services form. Remote download Price: NAT: 9,90.-/EU:

Mehr

Texturanalyse zur Detektion gruppierter Mikroverkalkungen bei der Brustkrebsfrüherkennung

Texturanalyse zur Detektion gruppierter Mikroverkalkungen bei der Brustkrebsfrüherkennung Texturanalyse zur Detektion gruppierter Mikroverkalkungen bei der Brustkrebsfrüherkennung T.O. Müller, R. Stotzka, D. Höpfel* und H. Yang* Hauptabteilung Prozeßdatenverarbeitung und Elektronik Forschungszentrum

Mehr

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser

Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Sentiment Analysis (SA) Robert Bärhold & Mario Sänger Text Analytics WS 2012/13 Prof. Leser Gliederung Einleitung Problemstellungen Ansätze & Herangehensweisen Anwendungsbeispiele Zusammenfassung 2 Gliederung

Mehr

Automatische Mustererkennung

Automatische Mustererkennung Automatische Mustererkennung Eine Einführung Eine Präsentation von Valentin Kraft Im Modul Digitale Bildverarbeitung Prof. Vogel FH Düsseldorf WS 12/13 Gliederung Anwendungsgebiete / Definition Ziele Zentrales

Mehr

p^db=`oj===pìééçêíáåñçêã~íáçå=

p^db=`oj===pìééçêíáåñçêã~íáçå= p^db=`oj===pìééçêíáåñçêã~íáçå= How to Disable User Account Control (UAC) in Windows Vista You are attempting to install or uninstall ACT! when Windows does not allow you access to needed files or folders.

Mehr

Lohntabelle gültig ab 1. Januar 2016

Lohntabelle gültig ab 1. Januar 2016 Klasse 1 A 34'953 2'912.75 16.00 37'865.75 B 36'543 3'045.25 16.73 39'588.25 C 38'130 3'177.50 17.46 41'307.50 1 39'720 3'310.00 18.19 43'030.00 2 41'307 3'442.25 18.91 44'749.25 3 42'897 3'574.75 19.64

Mehr

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining.

Personalisierung. Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung. Data Mining. Personalisierung Personalisierung Thomas Mandl Der Personalisierungsprozess Nutzerdaten erheben aufbereiten auswerten Personalisierung Klassifikation Die Nutzer werden in vorab bestimmte Klassen/Nutzerprofilen

Mehr

Programmentwicklung ohne BlueJ

Programmentwicklung ohne BlueJ Objektorientierte Programmierung in - Eine praxisnahe Einführung mit Bluej Programmentwicklung BlueJ 1.0 Ein BlueJ-Projekt Ein BlueJ-Projekt ist der Inhalt eines Verzeichnisses. das Projektname heißt wie

Mehr

AS Path-Prepending in the Internet And Its Impact on Routing Decisions

AS Path-Prepending in the Internet And Its Impact on Routing Decisions (SEP) Its Impact on Routing Decisions Zhi Qi ytqz@mytum.de Advisor: Wolfgang Mühlbauer Lehrstuhl für Netzwerkarchitekturen Background Motivation BGP -> core routing protocol BGP relies on policy routing

Mehr

(Prüfungs-)Aufgaben zum Thema Scheduling

(Prüfungs-)Aufgaben zum Thema Scheduling (Prüfungs-)Aufgaben zum Thema Scheduling 1) Geben Sie die beiden wichtigsten Kriterien bei der Wahl der Größe des Quantums beim Round-Robin-Scheduling an. 2) In welchen Situationen und von welchen (Betriebssystem-)Routinen

Mehr

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011

Vorlesung Algorithmische Geometrie. Streckenschnitte. Martin Nöllenburg 19.04.2011 Vorlesung Algorithmische Geometrie LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Martin Nöllenburg 19.04.2011 Überlagern von Kartenebenen Beispiel: Gegeben zwei

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Seminar Text- und Datamining Datamining-Grundlagen

Seminar Text- und Datamining Datamining-Grundlagen Seminar Text- und Datamining Datamining-Grundlagen Martin Hacker Richard Schaller Künstliche Intelligenz Department Informatik FAU Erlangen-Nürnberg 23.05.2013 Gliederung 1 Klassifikationsprobleme 2 Evaluation

Mehr

Text Mining 4. Seminar Klassifikation

Text Mining 4. Seminar Klassifikation Text Mining 4. Seminar Klassifikation Stefan Bordag 1. Klassifikation Stringklassifikation (männliche-weibliche Vornamen) Dokument klassifikation Bayesian Neuronal network (Decision tree) (Rule learner)

Mehr

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie

Computerviren, Waldbrände und Seuchen - ein stochastisches Modell für die Reichweite einer Epidemie Computerviren, Waldbrände und Seuchen - ein stochastisches für die Reichweite einer Epidemie Universität Hildesheim Schüler-Universität der Universität Hildesheim, 21.06.2012 Warum Mathematik? Fragen zum

Mehr

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words

Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words Entwicklung eines Distanzmaßes zwischen Bildern über dem Modell der Fields of Visual Words André Viergutz 1 Inhalt Einführung. Einordnung der Arbeit in die zugrunde liegenden Konzepte Das Modell der Fields

Mehr

Efficient Design Space Exploration for Embedded Systems

Efficient Design Space Exploration for Embedded Systems Diss. ETH No. 16589 Efficient Design Space Exploration for Embedded Systems A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ZURICH for the degree of Doctor of Sciences presented by

Mehr

Knowledge Discovery. Lösungsblatt 1

Knowledge Discovery. Lösungsblatt 1 Universität Kassel Fachbereich Mathematik/nformatik Fachgebiet Wissensverarbeitung Hertie-Stiftungslehrstuhl Wilhelmshöher Allee 73 34121 Kassel Email: hotho@cs.uni-kassel.de Tel.: ++49 561 804-6252 Dr.

Mehr

Identifizierung regulärer Ausdrücke zum Blockieren von Email-Kampagnen

Identifizierung regulärer Ausdrücke zum Blockieren von Email-Kampagnen Identifizierung regulärer Ausdrücke zum Blockieren von Email-Kampagnen Paul Prasse, Tobias Scheffer Universität Potsdam Motivation Spammer verbreitet Postmaster schreibt I m a [a-z]+ russian (girl lady).

Mehr

Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick

Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick Bildverarbeitung/Mustererkennung: Zusammenfassung und Ausblick D. Schlesinger TUD/INF/KI/IS D. Schlesinger () BV/ME: Zusammenfassung 1 / 6 Organisatorisches Es gibt keine Scheine und keine bestanden Abschlüsse

Mehr

Schulinternes Curriculum für Informatik (Q2) Stand April 2015

Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Schulinternes Curriculum für Informatik (Q2) Stand April 2015 Unterrichtsvorhaben Q2-I Thema: Modellierung und Implementierung von Anwendungen mit dynamischen, nichtlinearen Datenstrukturen Modellieren

Mehr

Mustererkennung mit Baumautomaten

Mustererkennung mit Baumautomaten Mustererkennung mit Baumautomaten Eine Ausarbeitung von Gisse Alvarado für das Seminar Mustererkennung mit syntaktischen und graphbasierten Methoden bei Prof. Dr. W. Kurth/ Th. Mangoldt Cottbus 2006 Inhalt

Mehr

Bildverarbeitung für die automatisierte Verpackungstechnik

Bildverarbeitung für die automatisierte Verpackungstechnik Bildverarbeitung für die automatisierte Verpackungstechnik Markus Hüttel 6. Juli 2011 Übersicht Unsere Arbeitsschwerpunkte - Thermographie - NIR-Spektroskopie - Texturanalyse - Fehlerdetektion - 3D Bild-

Mehr

Netzwerke und Sicherheit auf mobilen Geräten

Netzwerke und Sicherheit auf mobilen Geräten Netzwerke und Sicherheit auf mobilen Geräten Univ.-Prof. Priv.-Doz. DI Dr. René Mayrhofer Antrittsvorlesung Johannes Kepler Universität Linz Repräsentationsräume 1. Stock (Uni-Center) 19.1.2015, 16:00

Mehr

SemTalk Services. SemTalk UserMeeting 29.10.2010

SemTalk Services. SemTalk UserMeeting 29.10.2010 SemTalk Services SemTalk UserMeeting 29.10.2010 Problemstellung Immer mehr Anwender nutzen SemTalk in Verbindung mit SharePoint Mehr Visio Dokumente Viele Dokumente mit jeweils wenigen Seiten, aber starker

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken

Support Technologies based on Bi-Modal Network Analysis. H. Ulrich Hoppe. Virtuelles Arbeiten und Lernen in projektartigen Netzwerken Support Technologies based on Bi-Modal Network Analysis H. Agenda 1. Network analysis short introduction 2. Supporting the development of virtual organizations 3. Supporting the development of compentences

Mehr

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung

2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung 2. Microsoft Innovationstag Nord Integrierte Lösungen in der Öffentlichen Verwaltung Reporting, Analyse und Data Mining André Henkel, initions AG 22. und 23. Oktober 2013 in Hamburg

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Inhaltliche Planung für die Vorlesung

Inhaltliche Planung für die Vorlesung Vorlesung: Künstliche Intelligenz - Mustererkennung - P LS ES S ST ME Künstliche Intelligenz Miao Wang 1 Inhaltliche Planung für die Vorlesung 1) Definition und Geschichte der KI, PROLOG 2) Expertensysteme

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Digitale Bildverarbeitung Eine praktische Einführung von Thorsten Hermes 1. Auflage Hanser München 2004 Verlag C.H. Beck im Internet: www.beck.de ISBN 978 3 446 22969 3 Zu Leseprobe schnell und portofrei

Mehr

INNOVATION IM DECKBAU INNOVATION IN DECKBUILDING # 4 WOLZYNTEEK DIE KUNSTSTOFFTECHNOLOGIE THE SYNTHETIC TECHNOLOGY

INNOVATION IM DECKBAU INNOVATION IN DECKBUILDING # 4 WOLZYNTEEK DIE KUNSTSTOFFTECHNOLOGIE THE SYNTHETIC TECHNOLOGY INNOVATION IM DECKBAU INNOVATION IN DECKBUILDING # 4 WOLZYNTEEK DIE KUNSTSTOFFTECHNOLOGIE THE SYNTHETIC TECHNOLOGY Innovation im Deckbau #4 DIE KUNSTSTOFFTECHNOLOGIE THE SYNTHETIC TECHNOLOGY WOLZYNTEEK

Mehr

ML-Werkzeuge und ihre Anwendung

ML-Werkzeuge und ihre Anwendung Kleine Einführung: und ihre Anwendung martin.loesch@kit.edu (0721) 608 45944 Motivation Einsatz von maschinellem Lernen erfordert durchdachtes Vorgehen Programmieren grundlegender Verfahren aufwändig fehlerträchtig

Mehr

Einführung Point Cloud Library

Einführung Point Cloud Library Fakultät Umweltwissenschaften / Professur für Photogrammetrie Professur für Geoinformationssysteme Einführung Point Cloud Library Inhalt 1. Was ist PCL? 2. Was kann PCL? 3. Wie funktioniert PCL? 4. Module

Mehr

Customer-specific software for autonomous driving and driver assistance (ADAS)

Customer-specific software for autonomous driving and driver assistance (ADAS) This press release is approved for publication. Press Release Chemnitz, February 6 th, 2014 Customer-specific software for autonomous driving and driver assistance (ADAS) With the new product line Baselabs

Mehr

Backup and Recovery. Der Abschnitt beschreibt Vorgehensweisen zur Sicherung und Wiederherstellung der Daten mit Applikationsmitteln.

Backup and Recovery. Der Abschnitt beschreibt Vorgehensweisen zur Sicherung und Wiederherstellung der Daten mit Applikationsmitteln. by Jens Kupferschmidt 2015-03-05 Der Abschnitt beschreibt Vorgehensweisen zur Sicherung und Wiederherstellung der Daten mit Applikationsmitteln. Table of contents 1 Allgemeines... 2 2 Backup... 2 3 Recovery...

Mehr

Mensch-Maschine-Interaktion 2 Übung 1

Mensch-Maschine-Interaktion 2 Übung 1 Mensch-Maschine-Interaktion 2 Übung 1 Ludwig-Maximilians-Universität München Wintersemester 2012/2013 Alexander De Luca, Aurélien Tabard Ludwig-Maximilians-Universität München Mensch-Maschine-Interaktion

Mehr

Calibration Services Application Note AN001

Calibration Services Application Note AN001 The Rosenberger calibration laboratory offers two types of calibration services, the and the. Each calibration kit, calibration standard, gauge and torque wrench comes with a calibration certificate if

Mehr

1. Einfuhrung zur Statistik

1. Einfuhrung zur Statistik Philipps-Universitat Marburg Was ist Statistik? Statistik = Wissenschaft vom Umgang mit Daten Phasen einer statistischen Studie 1 Studiendesign Welche Daten sollen erhoben werden? Wie sollen diese erhoben

Mehr

Data-Mining: Ausgewählte Verfahren und Werkzeuge

Data-Mining: Ausgewählte Verfahren und Werkzeuge Fakultät Informatik Institut für Angewandte Informatik Lehrstuhl Technische Informationssysteme Data-Mining: Ausgewählte Verfahren und Vortragender: Jia Mu Betreuer: Dipl.-Inf. Denis Stein Dresden, den

Mehr

Jan Parthey, Christin Seifert. 22. Mai 2003

Jan Parthey, Christin Seifert. 22. Mai 2003 Simulation Rekursiver Auto-Assoziativer Speicher (RAAM) durch Erweiterung eines klassischen Backpropagation-Simulators Jan Parthey, Christin Seifert jpar@hrz.tu-chemnitz.de, sech@hrz.tu-chemnitz.de 22.

Mehr

Klassifikation von Modelltransformationen

Klassifikation von Modelltransformationen Klassifikation von Modelltransformationen feat. feature diagrams Andreas Blunk blunk@informatik.hu-berlin.de 1 Agenda 1. Einführung in Modelltransformationen 2. Vorstellung von Merkmalsdiagrammen 3. Beschreibung

Mehr

8. Clusterbildung, Klassifikation und Mustererkennung

8. Clusterbildung, Klassifikation und Mustererkennung 8. Clusterbildung, Klassifikation und Mustererkennung Begriffsklärung (nach Voss & Süße 1991): Objekt: wird in diesem Kapitel mit einem zugeordneten Merkmalstupel (x 1,..., x M ) identifiziert (Merkmalsextraktion

Mehr

Java Einführung Abstrakte Klassen und Interfaces

Java Einführung Abstrakte Klassen und Interfaces Java Einführung Abstrakte Klassen und Interfaces Interface Interface bieten in Java ist die Möglichkeit, einheitliche Schnittstelle für Klassen zu definieren, die später oder/und durch andere Programmierer

Mehr

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII

Inhaltsverzeichnis. Vorwort... V. Symbolverzeichnis... XIII Inhaltsverzeichnis Vorwort................................................................. V Symbolverzeichnis...................................................... XIII Kapitel 1: Einführung......................................................

Mehr

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining

Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Tiefgreifende Prozessverbesserung und Wissensmanagement durch Data Mining Ausgangssituation Kaizen Data Mining ISO 9001 Wenn andere Methoden an ihre Grenzen stoßen Es gibt unzählige Methoden, die Abläufe

Mehr

Data Mining und maschinelles Lernen

Data Mining und maschinelles Lernen Data Mining und maschinelles Lernen Einführung und Anwendung mit WEKA Caren Brinckmann 16. August 2000 http://www.coli.uni-sb.de/~cabr/vortraege/ml.pdf http://www.cs.waikato.ac.nz/ml/weka/ Inhalt Einführung:

Mehr

Automatische Erkennung von Objekten in 3D Millimeterwellen Bilddaten für den QPS Sicherheitsscanner

Automatische Erkennung von Objekten in 3D Millimeterwellen Bilddaten für den QPS Sicherheitsscanner 2. Fachseminar Mikrowellen- und Terahertz-Prüftechnik in der Praxis Vortrag 3 Automatische Erkennung von Objekten in 3D Millimeterwellen Bilddaten für den QPS Sicherheitsscanner Athanasios KARAMALIS 1,

Mehr

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden

Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Qualitäts- und Kostenoptimierung von verfahrenstechnischen Prozessen mit Data-Mining-Methoden Dr. Thomas Bernard 6. Karlsruher Automations-Treff (KAT) Leit- und Automatisierungstechnik der Zukunft Karlsruhe,

Mehr

Schulinterner Lehrplan für das Fach Informatik der Sekundarstufe II an der Bettine von Arnim Gesamtschule

Schulinterner Lehrplan für das Fach Informatik der Sekundarstufe II an der Bettine von Arnim Gesamtschule des Zweckverbandes Langenfeld / Hilden - Sekundarstufen I und II - B.V.A-Gesamtschule Hildener Str. 3 40764 Langenfeld 02173 / 9956-0 Fax 02173 / 9956-99 Email: mail@bva-gesamtschule.de Web: www.bva-gesamtschule.de

Mehr

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke

Vorlesungsplan. Von Naïve Bayes zu Bayesischen Netzwerk- Klassifikatoren. Naïve Bayes. Bayesische Netzwerke Vorlesungsplan 17.10. Einleitung 24.10. Ein- und Ausgabe 31.10. Reformationstag, Einfache Regeln 7.11. Naïve Bayes, Entscheidungsbäume 14.11. Entscheidungsregeln, Assoziationsregeln 21.11. Lineare Modelle,

Mehr

selbst verständlich certainly

selbst verständlich certainly selbst verständlich certainly Messe Gastronomie, Hannover selbst verständlich Selbstverständlich ist in der Gastronomie ein geflügeltes Wort. Das Kassensystem Matrix POS ist intuitiv in der Bedienung und

Mehr

Technische Dokumentation SilentStatistikTool

Technische Dokumentation SilentStatistikTool Technische Dokumentation SilentStatistikTool Version 1.0 Marko Schröder 1115063 Inhalt Einleitung... 3 Klasse Program... 3 Klasse ArgumentHandler... 3 Bereitgestellte Variablen... 3 Bereitgestellte Methoden...

Mehr

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und

Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Was bisher geschah Künstliche Neuronen: Mathematisches Modell und Funktionen: Eingabe-, Aktivierungs- Ausgabefunktion Boolesche oder reelle Ein-und Ausgaben Aktivierungsfunktionen: Schwellwertfunktion

Mehr

Knasmüller.book Seite vii Mittwoch, 28. März 2001 11:11 11. vii. Inhaltsverzeichnis

Knasmüller.book Seite vii Mittwoch, 28. März 2001 11:11 11. vii. Inhaltsverzeichnis Knasmüller.book Seite vii Mittwoch, 28. März 2001 11:11 11 vii 1 Einführung 1 1.1 Motivation.................................... 1 1.2 Vorteile der neuen Techniken...................... 3 1.3 Aufbau des

Mehr

Eclipse User Interface Guidelines

Eclipse User Interface Guidelines SS 2009 Softwarequalität 06.05.2009 C. M. Bopda, S. Vaupel {kaymic/vaupel84}@mathematik.uni-marburg.de Motivation (Problem) Motivation (Problem) Eclipse is a universal tool platform - an open, extensible

Mehr

Skills Resource Planning

Skills Resource Planning Skills Resource Planning Data Assessment Solutions GmbH Jena, 1.6.2015 Was wir machen Software Consulting Operations Management Skills- und Ressourcen-Management Data Analytics Daten- und Prozessintegration

Mehr

Algorithmische Modelle als neues Paradigma

Algorithmische Modelle als neues Paradigma Algorithmische Modelle als neues Paradigma Axel Schwer Seminar über Philosophische Grundlagen der Statistik, WS 2010/11 Betreuer: Prof. Dr. Thomas Augustin München, den 28. Januar 2011 1 / 29 LEO BREIMAN

Mehr

Inhaltsverzeichnis. 3. Erläuterungen zu den Programmbeispielen 13 3.1 Arbeitsblätter 13

Inhaltsverzeichnis. 3. Erläuterungen zu den Programmbeispielen 13 3.1 Arbeitsblätter 13 Inhaltsverzeichnis 1. Einführung 1 1.1 Ursprünge der Bildverarbeitung 1 1.2 Einordnung und Anwendungen der Bildverarbeitung ] 1.3 Die Bildverarbeitungskette 2 1.4 Aufbau und Inhalt des Buches 3 2. Das

Mehr

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen

Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Ein Vergleich von Methoden für Multi-klassen Support Vector Maschinen Einführung Auf binären Klassifikatoren beruhende Methoden One-Against-All One-Against-One DAGSVM Methoden die alle Daten zugleich betrachten

Mehr

aqpa Vereinstreffen 15. Okt. 2014, Wien

aqpa Vereinstreffen 15. Okt. 2014, Wien aqpa Vereinstreffen 15. Okt. 2014, Wien EU-GMP-Richtlinie Part II Basic Requirements for Active Substances used as Starting Materials Dr. Markus Thiel Roche Austria GmbH History ICH Richtlinie Q7 Nov.

Mehr

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen

Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut, keine vorgegebenen Klassen 7. Clusteranalyse (= Häufungsanalyse; Clustering-Verfahren) wird der multivariaten Statistik zugeordnet Voraussetzung wieder: Datenraum mit Instanzen, mehrere Attribute - kein ausgezeichnetes Zielattribut,

Mehr

GridMate The Grid Matlab Extension

GridMate The Grid Matlab Extension GridMate The Grid Matlab Extension Forschungszentrum Karlsruhe, Institute for Data Processing and Electronics T. Jejkal, R. Stotzka, M. Sutter, H. Gemmeke 1 What is the Motivation? Graphical development

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Vertretungsstunde Englisch 5. Klasse: Grammatik Das komplette Material finden Sie hier: School-Scout.de Pronouns I Let s talk about

Mehr

Distributed testing. Demo Video

Distributed testing. Demo Video distributed testing Das intunify Team An der Entwicklung der Testsystem-Software arbeiten wir als Team von Software-Spezialisten und Designern der soft2tec GmbH in Kooperation mit der Universität Osnabrück.

Mehr

Themen für Seminararbeiten WS 15/16

Themen für Seminararbeiten WS 15/16 Themen für Seminararbeiten WS 15/16 Institut für nachhaltige Unternehmensführung Themenblock A: 1) Carsharing worldwide - An international Comparison 2) The influence of Carsharing towards other mobility

Mehr

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG DB Fernverkehr AG Dr.-Ing. Axel Schulz, Dr. Matthias Platho P.FMB 2, DB Fernverkehr AG Frankfurt, 22.05.2015 Motivation An meinem

Mehr

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG

SEMINAR AUTOMATISCHE GESICHTSERKENNUNG SEMINAR AUTOMATISCHE GESICHTSERKENNUNG OBERSEMINAR AUTOMATISCHE ANALYSE VON GESICHTSAUSDRÜCKEN Organisation, Überblick, Themen Überblick heutige Veranstaltung 1. Organisatorisches 2. Überblick über beide

Mehr

Software Engineering in der Praxis

Software Engineering in der Praxis Software Engineering in der Praxis Praktische Übungen Adersberger, Spisländer FAU Erlangen-Nürnberg Software-Metriken 1 / 26 Software-Metriken Josef Adersberger Marc Spisländer Lehrstuhl für Software Engineering

Mehr

Living Agile! Velocity made good. @Thomas_van_Aken

Living Agile! Velocity made good. @Thomas_van_Aken Living Agile! Velocity made good @Thomas_van_Aken Sybit GmbH Agile Consulting seit 2010 Coaching von Kunden-Teams Schulungen Darüber hinaus 1. & 2. Oktober 2014 Etwas über mich Aktuelle Titel: - Scrum

Mehr

Entwicklung von Data-Warehouse-Systemen

Entwicklung von Data-Warehouse-Systemen Matthias Goeken Entwicklung von Data-Warehouse-Systemen Anforderungsmanagement, Modellierung, Implementierung Mit einem Geleitwort von Prof. Dr. Ulrich Hasenkamp Deutscher Universitäts-Verlag Inhaltsverzeichnis

Mehr

Presentation of a diagnostic tool for hybrid and module testing

Presentation of a diagnostic tool for hybrid and module testing Presentation of a diagnostic tool for hybrid and module testing RWTH Aachen III. Physikalisches Institut B M.Axer, F.Beißel, C.Camps, V.Commichau, G.Flügge, K.Hangarter, J.Mnich, P.Schorn, R.Schulte, W.

Mehr

Zabbix 2.4. What's new? What's new in Zabbix 2.4. 1 of

Zabbix 2.4. What's new? What's new in Zabbix 2.4. 1 of Zabbix 2.4 What's new? 1 of What's new in Zabbix 2.4 About me Name: Pascal Schmiel Email: Schmiel@dv-loesungen.de WEB: www.dv-loesungen.de Senior Consultant Zabbix Certified Professional 2 of What's new

Mehr

Opinion Mining in der Marktforschung

Opinion Mining in der Marktforschung Opinion Mining in der Marktforschung von andreas.boehnke@stud.uni-bamberg.de S. 1 Überblick I. Motivation Opinion Mining II. Grundlagen des Text Mining III. Grundlagen des Opinion Mining IV. Opinion Mining

Mehr

How to develop and improve the functioning of the audit committee The Auditor s View

How to develop and improve the functioning of the audit committee The Auditor s View How to develop and improve the functioning of the audit committee The Auditor s View May 22, 2013 Helmut Kerschbaumer KPMG Austria Audit Committees in Austria Introduced in 2008, applied since 2009 Audit

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Automatisierte Auswertung von Positionsdaten zur Wettkampfanalyse im Beachvolleyball (AZ 071603/11)

Automatisierte Auswertung von Positionsdaten zur Wettkampfanalyse im Beachvolleyball (AZ 071603/11) 73 Automatisierte Auswertung von Positionsdaten zur Wettkampfanalyse im Beachvolleyball (AZ 071603/11) Daniel Link Technische Universität München Problemstellung Videoaufnahmen von Wettkämpfen sind eine

Mehr

Scaling Out Column Stores: Data, Queries, and Transactions

Scaling Out Column Stores: Data, Queries, and Transactions DISS. ETH NO. 20314 Scaling Out Column Stores: Data, Queries, and Transactions A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by STEFAN HILDENBRAND Master of Science

Mehr

Industrielle Bildverarbeitung

Industrielle Bildverarbeitung Christian Demant Bernd Streicher-Abel Peter Waszkewitz Industrielle Bildverarbeitung Wie optische Qualitätskontrolle wirklich funktioniert 2. Auflage Mit 239 Abbildungen und 29 Tabellen Springer Inhaltsverzeichnis

Mehr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr

Einführung. Information Retrieval. IR-Aufgaben. IR in Beispielen. Adhoc-Suche: Web. IR in Beispielen. Was ist IR? Norbert Fuhr Einführung Information Retrieval Norbert Fuhr 13. Oktober 2011 IR in Beispielen Was ist IR? Daten Information Wissen Dimensionen des IR Rahmenarchitektur für IR-Systeme Adhoc-Suche: Web IR in Beispielen

Mehr

Compiler. Kapitel. Syntaktische Analyse. Kapitel 4. Folie: 1. Syntaktische Analyse. Autor: Aho et al.

Compiler. Kapitel. Syntaktische Analyse. Kapitel 4. Folie: 1. Syntaktische Analyse. Autor: Aho et al. Folie: 1 Kapitel 4 Übersicht Übersicht Syntax: Definition 4 syn-tax: the way in which words are put together to form phrases, clauses, or sentences. Webster's Dictionary Die Syntax (griechisch σύνταξις

Mehr

Model-based Development of Hybrid-specific ECU Software for a Hybrid Vehicle with Compressed- Natural-Gas Engine

Model-based Development of Hybrid-specific ECU Software for a Hybrid Vehicle with Compressed- Natural-Gas Engine Model-based Development of Hybrid-specific ECU Software for a Hybrid Vehicle with Compressed- Natural-Gas Engine 5. Braunschweiger Symposium 20./21. Februar 2008 Dipl.-Ing. T. Mauk Dr. phil. nat. D. Kraft

Mehr

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN

KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN KONSTRUKTION VON ROT-SCHWARZ-BÄUMEN RALF HINZE Institut für Informatik III Universität Bonn Email: ralf@informatik.uni-bonn.de Homepage: http://www.informatik.uni-bonn.de/~ralf Februar, 2001 Binäre Suchbäume

Mehr

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07

Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Regression Trees Methoden der Datenanalyse AI-basierte Decision Support Systeme WS 2006/07 Ao.Univ.Prof. Dr. Marcus Hudec marcus.hudec@univie.ac.at Institut für Scientific Computing, Universität Wien 2

Mehr

Software-SPS: Software PLC: Vom Industrie-PC fähigen From industrial PCzur to leistungs high-performance Steuerung controller Zur Visualisierung und Bedienung von PCs are used in countless machines and

Mehr

Data Mining (ehem. Entscheidungsunterstützungssysteme)

Data Mining (ehem. Entscheidungsunterstützungssysteme) Data Mining (ehem. Entscheidungsunterstützungssysteme) Melanie Pfoh Anja Tetzner Christian Schieder Übung WS 2014/15 AGENDA TEIL 1 Aufgabe 1 (Wiederholung OPAL / Vorlesungsinhalte) ENTSCHEIDUNG UND ENTSCHEIDUNGSTHEORIE

Mehr

Event-Aggregation in Frühwarnsystemen. Till Dörges. 2009 by PRESENSE Technologies GmbH

Event-Aggregation in Frühwarnsystemen. Till Dörges. 2009 by PRESENSE Technologies GmbH Event-Aggregation in Frühwarnsystemen Till Dörges Gliederung Motivation Definitionen Aggregationsverfahren Implementierung Ergebnisse / Ausblick Folie 2 / Event-Aggregation 18. März 2009 Hamburg Motivation

Mehr

Virtual PBX and SMS-Server

Virtual PBX and SMS-Server Virtual PBX and SMS-Server Software solutions for more mobility and comfort * The software is delivered by e-mail and does not include the boxes 1 2007 com.sat GmbH Kommunikationssysteme Schwetzinger Str.

Mehr

Important information. Migration made easy. Migration leicht gemacht. SIMATIC HMI Panels. siemens.com/panel-innovation

Important information. Migration made easy. Migration leicht gemacht. SIMATIC HMI Panels. siemens.com/panel-innovation Important information Migration made easy. Migration leicht gemacht. SIMATIC HMI Panels siemens.com/panel-innovation Das Totally Integrated Automation Portal (TIA Portal) ist das wegweisende, durchgängige

Mehr

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung

Prof. Dr. Christoph Kleinn Institut für Waldinventur und Waldwachstum Arbeitsbereich Waldinventur und Fernerkundung Systematische Stichprobe Rel. große Gruppe von Stichprobenverfahren. Allgemeines Merkmal: es existiert ein festes, systematisches Muster bei der Auswahl. Wie passt das zur allgemeinen Forderung nach Randomisierung

Mehr