Data Warehouse Technologien

Größe: px
Ab Seite anzeigen:

Download "Data Warehouse Technologien"

Transkript

1 Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien

2 Sachindex B + -Baum, 185 R -Baum, 207 R a-baum, 207 R + -Baum, 206 abgeleitete Partitionierung, 154 abhängiger Data Mart, 35 Ableitbarkeit, 224, 230, 236 Ableiten, 29 Achse MDX, 130 Achsenspezifikation, 130 Aggregatfunktion, 231 Aggregation, 113 Aggregationsgitter, 224, 236 Aktualisierung inkrementelle, 239 synchrone, 238 vollständige, 239 Algebraterm, 219 Allokation, 153 Analyse, 5 Analysedatenbank, 28 Analysedatenmodell, 28 Anfrage äquivalente, 228 Anfrageersetzung, 229 Anfrageplan, 219 Anfrageumformulierung, 229 Append-Mode-Tabelle, 140 Apriori-Algorithmus, 268 Arbeitsbereich, 24 Architektur, 9 Array-Speicherung, 145 Auswahl kostenbasierte, 218 B-Baum, 184 degenerierter, 186 ordnungsabhängigkeit, 187 Balanced Scorecard, 261 Basisdatenbank, 21, 27 BAT-Algebra, 173 Batchläufe, 83 BDB, 27 Befüllen, 21 berechneter Index, 189 bereichsgeclusterte Tabelle, 140 bereichskodierter Bitmap-Index, 194 Bereichspartitionierung, 153 Bereinigung, 26 Bestandsgrößen, 83 Bit Interleaving, 202, 208 Bit-Array, 189 Bitmap-Index, 189 bereichskodierter, 194 intervallkodierter, 196 Mehrkomponenten-, 193 Standard-, 192 Bitmap-Verbundindex, Sachindex

3 Blocking, 73 bulk loader, 28 Bulk-Loader, 89, 97 Business Intelligence, 9, 10, 250 Cache Lines, 173 Cache-Lokalität, 173 Checkpoints, 97 Clustering, 182 Codd, 16 Codeerzeugung, 218 column-oriented DBMS, 162 confidence, 267 Cube-Operator, 151 Data Auditing, 26 Data Cleaning, 14, 68 data cube, 28 Data Mart, 9, 14, 28, 34 abhängiger, 35 unabhängiger, 36 Data Profiling, 68 Data Scrubbing, 26 Data Warehouse, 1, 29 föderiertes, 37 virtuelles, 36 Data Warehousing, 9 Data-Warehouse-Manager, 30 Data-Warehouse-System, 13 Datenbereinigung, 66 Datenbereinigungsbereich, 21, 24 Datenfehler, 66 Datenintegration, 18, 26, 90 Datenkonflikt, 79 Datenorganisation spaltenorientierte, 174 Datenqualität, 23, 66 Datentransformationen, 92 Datenwurfel, 129 Datenwürfel, 28 föderierter, 37 Partitionierung, 157 virtueller, 36 dauerhaft, 8 DB2, 140, 245 DBB, 24 Decomposed Storage Model, 162, 167 degenerierter B-Baum, 186 Dekompression, 175 Delta-Relation, 177 DeweyID, 212 Dictionary Encoding, 175 Differential-Snapshot-Problem, 84 Dimension, 9, 129 Mini-, 156 Dimensionalitat generische, 17 Dimensionalität, 182 Dimensionstabelle, 117 DIRECTPATH, 97 DMX, 285 Drill-down, 117 DSM, 167 dunnbesetzte Strukturen, 17 Duplikaterkennung, 72 Durchschnitt gleitender, 128 DW-System, 13 Dwarf, 150 dynamisches Hashen, 202 dünn besetzte Indexe, 141 Edit-Distanz, 75 einheitsabhängige Daten, 83 ELT, 101 ELT-Prozess, 101 Entscheidungsbaum, 279, 282 Entscheidungsunterstützung, 8 Erweiterbarkeit, 15 ETL, 5, 21, 65, 80 ETL light, 101 Euklidische Distanz, 75 exegetisches Modell, 18 Extraktion, 25 Extraktions-, Transformations- und Ladeprozess, 10 Extraktionstechniken, 83 Sachindex 297

4 Fact-Constellation-Schema, 57 Faktentabelle, 112 FASMI, 19 Fenster, 122 dynamische, 127 Fensteranfrage, 183 Flussgrößen, 82 formelbasiertes Modell, 18 Fragment, 153 Frequent Pattern Tree, 271 Frequent-Pattern-Growth-Algorithmus, 271 Full-Table-Scan, 181, 183 föderierte Datenbanken, 8 föderierter Datenwürfel, 37 föderiertes Data Warehouse, 37 Galaxie-Schema, 57 gemischte Partitionierung, 154 Genauigkeit, 24 generische Dimensionalitat, 17 Gini-Index, 282 Gitter, 200 Glaubwürdigkeit, 24 Granularität, 24 Grid, 201 Grid-Directory, 201 Grid-File, 200 Grid-Region, 201 Grid-Zelle, 201 Gruppierung, 113, 223 Gruppierungskombination, 118, 230 Hash-Funktionen, 87 Hash-Partitionierung, 153 Hashen dynamisches, 202 lineares, 202 mehrdimensionales, 202 Hauptspeicherdatenbank, 171 Heterogenität, 89 HOLAP, 149 Homogenisierung, 25 horizontale Partitionierung, 153 hub and spoke, 35 hybride Speicherung, 149 hybrides OLAP, 149 In-Memory-Datenbank, 8, 101 Index, 10, 181 berechneter, 189 Bitmap-, 189 dünn besetzt, 141 mehrdimensionaler, 200 Oversized, 188 Verbund-, 198 Indexierung intervallkodierte, 196 Informationsgewinn, 282 inkrementelle Vorberechnung, 144 Integration, 5, 26 integriert, 8 Integritätsbeziehung, 79 intervallkodierte Indexierung, 196 intervallkodierter Bitmap-Index, 196 Jaro-Distanz, 78 Jaro-Winkler-Distanz, 78 k-means, 277 Kachel, 157 Kachelung, 157 kategorisches Modell, 18 KdB-Baum, 203 Kennzahl, 129 Kennzahlen, 9 Kern-Data-Warehouse, 37 Kompensationsanfrage, 230, 233 Konsistenz, 23 Konsistenzprüfung, 79 kontemplatives Modell, 18 Korrektheit, 23 L1 Cache, 173 Laden, 21, 27 Ladevorgang, 96 Lauflängenkodierung, 174 lineares Hashen, Sachindex

5 Linearisierung, 145 Log, 83 log-basierte Monitorstrategie, 32 main memory database, 171 Massenlader, 28, 89, 97 Masterrelation, 153 Materialisierung, 228 Materialisierungskonfiguration, 237 Materialized View, siehe Sicht, materialisierte MDC, 140 MDH, 202 MDX, 129, 264 Mehrbenutzerbetrieb, 17 mehrdimensionales Hashen, 202 Mehrdimensionales hierarchisches Clustering, 213 Mehrkomponenten-bereichskodierter Bitmap-Index, 195 Mehrkomponenten-Bitmap-Index, 193 Mehrkomponentensurrogat, 213 memory wall, 172 Merge-Sort-Verfahren, 87 Metadaten, 33 Metadaten-Manager, 33 Methode des Differential Snapshot, 84 MHC, 213 Mini-Dimension, 156 Minkowski, 75 MKBKBMI, 195 Modell exegetisches, 18 formelbasiertes, 18 kategorisches, 18 kontemplatives, 18 MOLAP, 142 MonetDB, 173 Monitor, 31 Monitorstrategie, 31 log-basiert, 32 replikations-basiert, 31 snapshot-basiert, 32 trigger-basiert, 31 zeitstempel-basiert, 32 Multi-Attribut-Index, 187 Multi-Core-Architekturen, 173 Multi-Pass-Technik, 74 Multi-Table-Insert, 100 multidimensional clustering tables, 140 Multidimensional Expressions, 264 Multidimensionale Sicht, 16 multidimensionale Speicherung, 142 multidimensionales Datenmodell, 9 multidimensionalgeclusterte 140 Nabe-und-Speiche-Architektur, 35 Tabelle, Objektidentifikation, 79 ODS, 27 OLAP-Funktion, 122, 128 sequenzorientierte, 126 OLAP-Server, 129 OLAP-Zugriffe, 16 OLTP-Systeme, 90 Online Analytical Processing, 5, 16 Online Transactional Processing, 4 Operational Data Store, 27 Operatorbaum, 219 Optimierung, 218 algebraische, 218 logische, 218 physische, 218 Oracle, 243 Bitmap-Verbundindex, 199 Partitionierung, 155 Ordnung attributlokale, 125 Ordnungsabhängigkeit in B-Baum, 187 Oversized Index, 188 Partition, 153 Partitionierung, 153 Bereich-, 153 Sachindex 299

6 fensterbasierte, 122 gemischte, 154 Hash-, 153 horizontale, 153 Oracle, 155 Range-, 153 vertikale, 154 von Datenwürfeln, 157 Partitioning around Medoids, 277 PAX-Modell, 169 Performanz, 17 PipeSort, 225 Planparametrisierung, 218 positionaler Join, 165 Prefetching, 182 Primärindexe, 182 Prinzip der zwei Plattenzugriffe, 201 Purging, 79 q-gramm, 76 Quelle, 21 Query Containment, siehe Anfrageersetzung query execution plan, 219 Query Graph Model, 232 Query Rewriting, siehe Anfrageumformulierung R-Baum, 204 range-clustered tables, 140 Range-Partitionierung, 153 Ranking, 126 RCT, 140 Reconciliation, 79 record linkage, 26 Region, 200 relation merging, 26 relationale Speicherung, 140 Relevanz, 24 Replikation, 83 replikations-basierte Monitorstrategie, 31 Repository, 33 RLE, 174 ROLAP, 140 Roll-up, 117 row-oriented storage, 162 RQ-Algorithmus, 209 Run Length Encoding, siehe Lauflängenkodierung Schema Fact-Constellation, 57 Galaxie, 57 Snowflake, 53 Star, 55 Schemaintegration, 90 Seiten-Clustering, 182 Sekundärindexe, 182 Sequenzbildung, 127 Sequenznummer, 141 Sicht materialisierte, 228 Aktualisierung, 238 Sichtexpansion, 218 Skala, 201 Skalierbarkeit, 17 Slicer, 130 snapshot-basierte Monitorstrategie, 32 Snapshots, 83 Snowflake-Schema, 53 Sortierte Nachbarschaft, 73 Soundex, 77 spaltenorientierte DBMS, 162, 178 Speicherung, 10 Array-, 145 hybride, 149 SQL Server, 246 SQL-Loader, 98 SQL-Loader von Oracle, 27, 97 SQL/OLAP, 112 SQL:2003, 112, 122 staging area, 24 Standard-Bitmap-Index, 192 Star Join, 112 Star-Query-Transformation, Sachindex

7 Star-Schema, 55 Summary Table, siehe Sicht, materialisierte support, 267 Surrogat, 213 Symmetrie, 182 Tabelle multidimensionalgeclusterte, 140 bereichsgeclusterte, 140 themenorientiert, 8 TID, 182 Transfomationskomponente, 25 Transformation, 21, 68 Transformationsphase, 89 Transparenz, 16 Trigger, 83 trigger-basierte Monitorstrategie, 31 Tupel-Clustering, 182 Tupelidentifikator, 182 Tupelrekonstruktion, 164 Tupelverweise, 182 UB-Baum, 207 Ubersetzung, 218 unabhängiger Data Mart, 36 Verbundindex, 198 Bitmap, 199 Vergleichsfunktionen, 74 Verständlichkeit, 24 Verteilte Datenbanken, 8 verteilte Datenbanken, 4 vertikale Partitionierung, 154 Verwendbarkeit, 24 virtueller Datenwürfel, 36 virtuelles Data Warehouse, 36 Vorberechnung, 144 Workload, 236 Z-Kurve, 208 Z-Region, 208 Z-Wert, 208 zeilenorientierte Speicherung, 162 zeitbezogen, 8 Zeitstempel, 32 zeitstempel-basierte Monitorstrategie, 32 Zelle, 200 zentrale Datenbank, 4 Zugriffsplan, siehe Anfrageplan Zugriffsstruktur, 181 Zuverlässigkeit, 24 Zwei-Ebenen-Speicherung, 161 Sachindex 301

Sachindex. Array-Speicherung, 159 Attribut dimensionales, 48 Auswahl kostenbasierte, 232

Sachindex. Array-Speicherung, 159 Attribut dimensionales, 48 Auswahl kostenbasierte, 232 Sachindex abgeleitete Partitionierung, 168 abhängiger Data Mart, 37 Ableitbarkeit, 238, 244, 250 Ableiten, 31 Achse MDX, 146 Achsenspezifikation, 146 Ad-hoc-Reporting, 274 ADAPT, 54 Aggregatfunktion, 245

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Teil VII Indexstrukturen für Data Warehouse

Teil VII Indexstrukturen für Data Warehouse Teil VII Indexstrukturen für Data Warehouse Indexstrukturen für Data Warehouse 1 Klassifikation von Indexstrukturen c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte Änderung: 19.09.2012 7

Mehr

Anforderungen des Data Warehousing. 2. Data-Warehouse-Architektur. Anforderungen des Data Warehousing. Referenzarchitektur. Data-Warehouse-Manager

Anforderungen des Data Warehousing. 2. Data-Warehouse-Architektur. Anforderungen des Data Warehousing. Referenzarchitektur. Data-Warehouse-Manager 2. Data-Warehouse-Architektur Anforderungen Referenzarchitektur Phasen des Data Warehousing Komponenten Anforderungen des Data Warehousing Unabhängigkeit zwischen Datenquellen und Analysesystemen (bzgl.

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

Data-Warehouse-Architektur

Data-Warehouse-Architektur Data-Warehouse-Architektur Anforderungen Referenzarchitektur Phasen des Data Warehousing Komponenten VL Data Warehouses, WS 2000/2001 2-1 Anforderungen des Data Warehousing Unabhängigkeit zwischen Datenquellen

Mehr

Data-Warehouse-Architektur

Data-Warehouse-Architektur Data-Warehouse-Architektur ƒ Anforderungen ƒ Referenzarchitektur ƒ Phasen des Data Warehousing ƒ Komponenten Vorlesung Data-Warehouse-Technologien 2-1 Anforderungen des Data Warehousing ƒ Unabhängigkeit

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

OLAP und Aggregierung

OLAP und Aggregierung Stärkung der SelbstOrganisationsfähigkeit im Verkehr durch I+K-gestützte Dienste Seminar Data Warehousing im Verkehrsbereich Sommersemester 2003 OLAP und Aggregierung von Jan Sandberger Betreuer: Heiko

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

OLAP mit dem SQL-Server

OLAP mit dem SQL-Server Hartmut Messerschmidt Kai Schweinsberg OLAP mit dem SQL-Server Eine Einführung in Theorie und Praxis IIIBibliothek V dpunkt.verlag Teil OLAP undder Microsoft SQL-Server 1 1 Theoretische Grundlagen 3 1.1

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Teil XI Spalten-orientierte DBMSs

Teil XI Spalten-orientierte DBMSs Teil XI Spalten-orientierte DBMSs Spalten-orientierte Datenbankmanagementsysteme 1 Motivation 2 Funktionsweise 3 Erweiterungen 4 Literatur c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Data-Warehouse-Systeme Architektur, Entwicklung, Anwendung von Andreas Bauer, Holger Günzel 3., überarb. u. aktualis. Aufl. Data-Warehouse-Systeme Bauer / Günzel schnell und portofrei erhältlich bei beck-shop.de

Mehr

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Einführung Gegenstand der Vorlesung fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Datenvolumen (effiziente Speicherung

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Data Warehouses. Alexander Fehr. 23. Dezember 2002

Data Warehouses. Alexander Fehr. 23. Dezember 2002 Data Warehouses Alexander Fehr 23. Dezember 2002 Inhaltsverzeichnis 1 Einführung 1 1.1 Motivation.............................. 1 1.2 Definitionen.............................. 1 1.3 Abgrenzung von operativen

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Architektur und Komponenten von Data Warehouses Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Architektur Komponenten ETL Ulf Leser: Data Warehousing

Mehr

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier

Realisierung von OLAP Operatoren in einem visuellen Analysetool. Vortrag von Alexander Spachmann und Thomas Lindemeier Realisierung von OLAP Operatoren in einem visuellen Analysetool Vortrag von Alexander Spachmann und Thomas Lindemeier Gliederung Ausgangssituation/Motivation Was ist OLAP? Anwendungen Was sind Operatoren?

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 Dr. Veit Köppen 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische

Mehr

Multidimensionales Datenmodell

Multidimensionales Datenmodell Multidimensionales Datenmodell Grundbegriffe fi Fakten, Dimensionen, Würfel Analyseoperationen fi Drill-Down, Roll-Up, Slice und Dice Notationen zur konzeptuellen Modellierung fi ME/R, ADAPT Relationale

Mehr

Modellierung und Implementierung einer End-to-End BI Lösung

Modellierung und Implementierung einer End-to-End BI Lösung IBM Software Group Modellierung und Implementierung einer End-to-End BI Lösung DB2 Information Management Software Martin Clement, mclement@de.ibm.com Otto Görlich, ogoerlich@de.ibm.com Stefan Sander,

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück

Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware Falk Neubert, Universität Osnabrück Zusammenspiel von Business Intelligence mit betrieblicher Anwendungssoftware 14. März 2013, IHK Osnabrück-Emsland-Grafschaft Bentheim Geschichte Kassenbuch des Liederkranz, 1886 Hutmachergesangvereins

Mehr

Data Warehouse. für den Microsoft SQL SERVER 2000/2005

Data Warehouse. für den Microsoft SQL SERVER 2000/2005 Warehouse für den Microsoft SQL SERVER 2000/2005 Begriffe 1 DWH ( Warehouse) ist eine fachübergreifende Zusammenfassung von Datentabellen. Mart ist die Gesamtheit aller Datentabellen für einen fachlich

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

Gunter Saake Kai-Uwe Sattler Andreas Heuer. 3. Auflage. Datenbanken. Implementierungstechniken

Gunter Saake Kai-Uwe Sattler Andreas Heuer. 3. Auflage. Datenbanken. Implementierungstechniken Gunter Saake Kai-Uwe Sattler Andreas Heuer 3. Auflage Datenbanken Implementierungstechniken Vorwort v ix 1 Aufgaben und Prinzipien von Datenbanksystemen 1 1.1 Wiederholung der Datenbank-Grundbegriffe...

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse.

1 Einführung. Unbekannte Begriffe: Business Intelligence, Knowledge Management, Unternehmensportale, Information Warehouse. 1 Einführung mysap Business Intelligence stellt mit Hilfe von Knowledge Management die Verbindung zwischen denen, die etwas wissen und denen, die etwas wissen müssen her. mysap Business Intelligence integriert

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr

Literaturverzeichnis

Literaturverzeichnis Literaturverzeichnis Albrecht J (2001) Anfrageoptimierung in Data-Warehouse-Systemen auf Grundlage des multidimensionalen Datenmodells. Institut für Informatik- Dissertation, Universität Erlangen- Nürnberg.

Mehr

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks . Einführung Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks Sattler / Saake Data-Warehouse-Technologien Szenario: Getränkemarkt Umsatz, Portfolio SSaufland

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Logische Optimierung Ulf Leser Wissensmanagement in der Bioinformatik Inhaltsübersicht Vorlesung Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung

Mehr

23. Daten-Analyse. Datenwarenhäuser. Grundlagen des OLAP (On-Line Analytical Processing)

23. Daten-Analyse. Datenwarenhäuser. Grundlagen des OLAP (On-Line Analytical Processing) 23. Daten-Analyse Datenwarenhäuser Grundlagen des OLAP (On-Line Analytical Processing) Data Mining: Klassifikation, Assoziationsregeln, Sequenzanalyse Datenmodelle, Datenbanksprachen und Datenbankmanagement-Systeme,

Mehr

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9

1 Einführung 1 1.1 SAP Business Information Warehouse... 3. 1.1.1 BW Version 3.0...5. Architekturplanung... 9 vii 1 Einführung 1 1.1 SAP Business Information Warehouse... 3 1.1.1 BW Version 3.0...5 Architekturplanung.................................... 9 2 BW-Basissystem 11 2.1 Client/Server-Architektur... 12

Mehr

REAL-TIME DATA WAREHOUSING

REAL-TIME DATA WAREHOUSING REAL-TIME DATA WAREHOUSING Lisa Wenige Seminarvortrag Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität Jena - 19.01.12 Lisa Wenige 19.01.2012 2 Agenda 1. Motivation 2. Begriffsbestimmung

Mehr

Mit Transbase Hypercube Data Warehouse Anwendungen effizient betreiben. Die Hypercube-Technologie

Mit Transbase Hypercube Data Warehouse Anwendungen effizient betreiben. Die Hypercube-Technologie Mit Transbase Hypercube Data Warehouse Anwendungen effizient betreiben Transbase Hypercube ist eine Transbase -Option, die die innovative Hypercube-Technologie für komplexe analytische Anwendungen (OLAP)

Mehr

OLAP und Data Mining. On-Line Analytical Processing. Coddsche Regeln OLAP. Data Mining. Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen

OLAP und Data Mining. On-Line Analytical Processing. Coddsche Regeln OLAP. Data Mining. Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen OLAP und Data Mining OLAP Begriff Coddsche Regeln FASMI Operationen und Anfragesprachen Data Mining Begriff und Prozeß Verfahren Vorlesung Data-Warehouse-Technologien 9-1 On-Line Analytical Processing

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

SAP Business Intelligence

SAP Business Intelligence SAP Business Intelligence Helmut Roos Diplom-Ingenieur Unternehmensberater Grundlagen zu Netweaver 7.0 D-67067 Ludwigshafen +49 (621) 5 29 44 65 Data Acquisition Common Read / Write Interface Open Interface

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft

Ausarbeitung Projekt. Sven Elvers. Business Intelligence: Analyse. Betreuender Prüfer: Prof. Dr. Olaf Zukunft Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences Ausarbeitung Projekt Sven Elvers Business Intelligence: Analyse Betreuender Prüfer: Prof. Dr. Olaf Zukunft Fakultät

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004

BIW - Überblick. Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 BIW - Überblick Präsentation und Discoverer Demonstration - Teil 1 - Humboldt Universität zu Berlin am 10. Juni 2004 Annegret Warnecke Senior Sales Consultant Oracle Deutschland GmbH Berlin Agenda Überblick

Mehr

Selektion von Aggregationstabellen zur Optimierung der Antwortzeiten eines OLAP-Servers

Selektion von Aggregationstabellen zur Optimierung der Antwortzeiten eines OLAP-Servers TECHNISCHE UNIVERSITÄT ILMENAU Institut für Praktische Informatik und Medieninformatik Fakultät für Informatik und Automatisierung Fachgebiet Datenbanken und Informationssysteme Diplomarbeit Selektion

Mehr

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 24. Juni 2014 Agenda Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen

Mehr

3. Architektur eines DBS (Oracle)

3. Architektur eines DBS (Oracle) 3. Architektur eines DBS (Oracle) aus Sicht des Datenbank Server Rechners Connectivity Komponente(n) des DBS (z.b. Oracle Listener) Installation ORACLE_HOME Instanz ORACLE_SID Datenbank Oracle: 1 (aktive)

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch

Marketing Intelligence Vorstellung der Softwarekomponenten. Josef Kolbitsch Manuela Reinisch Marketing Intelligence Vorstellung der Softwarekomponenten Josef Kolbitsch Manuela Reinisch Übersicht Übersicht über die Systemlandschaft Übersicht über die Werkzeuge Workshop Systemlandschaft 1/8 Klassische

Mehr

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 -

Informationssysteme. Prof. Dr. Hans Czap. Lehrstuhl für Wirtschaftsinformatik I. Lehrstuhl für Wirtschaftsinformatik I - II - 1 - Vorlesung Grundlagen betrieblicher Informationssysteme Prof. Dr. Hans Czap Email: Hans.Czap@uni-trier.de - II - 1 - Inhalt Kap. 1 Ziele der Datenbanktheorie Kap. 2 Datenmodellierung und Datenbankentwurf

Mehr

Data Warehouse und Data Mining

Data Warehouse und Data Mining Data Warehouse und Data Mining Marktführende Produkte im Vergleich von Dr. Heiko Schinzer, Carsten Bange und Holger Mertens 2., völlig überarbeitete und erweiterte Auflage -. - Verlag Franz Vahlen München

Mehr

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining

Data Warehousing. Weitere Buzzwörter: OLAP, Decision Support, Data Mining Data Warehousing Weitere Buzzwörter: OLAP, Decision Support, Data Mining Wichtige Hinweise Zu diesem Thema gibt es eine Spezialvorlesung im Sommersemester Hier nur grober Überblick über Idee und einige

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.10.2013 Business Intelligence Praktikum

Mehr

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 16 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining operationale DB operationale DB operationale DB Data Warehouse operationale

Mehr

Datawarehouse Architekturen. Einheitliche Unternehmenssicht

Datawarehouse Architekturen. Einheitliche Unternehmenssicht Datawarehouse Architekturen Einheitliche Unternehmenssicht Was ist Datawarehousing? Welches sind die Key Words? Was bedeuten sie? DATA PROFILING STAGING AREA OWB ETL OMB*PLUS SAS DI DATA WAREHOUSE DATA

Mehr

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit

BI Konsolidierung: Anspruch & Wirklichkeit. Jacqueline Bloemen. in Kooperation mit BI Konsolidierung: Anspruch & Wirklichkeit Jacqueline Bloemen in Kooperation mit Agenda: Anspruch BI Konsolidierung Treiber Was sind die aktuellen Treiber für ein Konsolidierungsvorhaben? Kimball vs. Inmon

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Vertrautmachen mit Daten

Vertrautmachen mit Daten Kapitel III Vertrautmachen mit Daten 2004 AIFB / FZI 1 III Vertrautmachen mit Daten (see also Data Preparation ) 2004 AIFB / FZI 2 III Vertrautmachen mit Daten III.1 OLAP III.1.1 Einführung in OLAP Wie

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Konzeption und Realisierung eines Data Warehouses zur Analyse chirurgischer Workflows

Konzeption und Realisierung eines Data Warehouses zur Analyse chirurgischer Workflows Matthias Röger Konzeption und Realisierung eines Data Warehouses zur Analyse chirurgischer Workflows Diplomica Verlag Matthias Röger Konzeption und Realisierung eines Data Warehouses zur Analyse chirurgischer

Mehr

Data Warehousing. Architektur Komponenten Prozesse. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Architektur Komponenten Prozesse. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Architektur Komponenten Prozesse Ulf Leser Wissensmanagement in der Bioinformatik Zusammenfassung letzte Vorlesung Aufbau eines Data Warehouse Redundante, transformierte Datenhaltung Asynchrone

Mehr

good. better. outperform.

good. better. outperform. good. better. outperform. Analytic mit Oracle BI relational oder besser multidimensional? 8. Oracle BI & DWH Konferenz, 20.03.2013 Dirk Fleischmann Director Business Intelligence & DWH Business Intelligence

Mehr

Hetero-Homogene Data Warehouses

Hetero-Homogene Data Warehouses Hetero-Homogene Data Warehouses TDWI München 2011 Christoph Schütz http://hh-dw.dke.uni-linz.ac.at/ Institut für Wirtschaftsinformatik Data & Knowledge Engineering Juni 2011 1 Data-Warehouse-Modellierung

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien 1 Einführung in Data- Warehouse-Systeme Die Verwaltung großer Datenbestände ist seit vielen Jahren im Bereich der Datenbanken

Mehr

Einsatz von Anwendungssystemen

Einsatz von Anwendungssystemen Einsatz von Anwendungssystemen WS 2013/14 7 Führungssysteme 7.1 Data Warehouse 7.2 Planungssysteme 7.3 Balanced Scorecard (BSC) 7.4 Business Intelligence 7 Führungssysteme 7.1 Data Warehouse Ein Data Warehouse

Mehr

Data Warehousing und BI

Data Warehousing und BI Data Warehousing und BI IT-Spezialisierung Informationswirtschaft Vertiefungskurs VI Seminararbeit Betreuer: Priv. Doz. Dr. Michael Hahsler Christian Deutsch 03.07. 2007 Abstract Die vorliegende Arbeit

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

The integration of business intelligence and knowledge management

The integration of business intelligence and knowledge management The integration of business intelligence and knowledge management Seminar: Business Intelligence Ketevan Karbelashvili Master IE, 3. Semester Universität Konstanz Inhalt Knowledge Management Business intelligence

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de Data Warehouses Sommersemester 2011 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen Data Warehouse Architektur Data-Warehouse-System Teilsichten

Mehr

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 7: Data Warehousing-Anfragen. H. Schuldt. 7.1 Einführung. Filiale Allschwil

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 7: Data Warehousing-Anfragen. H. Schuldt. 7.1 Einführung. Filiale Allschwil Frühjahrsemester 3 CS43 Datenbanken Kapitel 7: Data Warehousing-Anfragen H. Schuldt Wiederholung aus Kapitel 7. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen:

Mehr

Themen des Kapitels. 2 Oracle Features und Architektur

Themen des Kapitels. 2 Oracle Features und Architektur 2 Oracle Features und Architektur Einführung in die Eigenschaften und die Funktionsweise von Oracle. 2.1 Übersicht Themen des Kapitels - Oracle Features und Architektur Themen des Kapitels Oracle Produkte

Mehr

1. Data Warehouses - Einführung

1. Data Warehouses - Einführung 1. s - Einführung Definition Einsatzbeispiele OLTP vs. OLAP Grobarchitektur Virtuelle vs. physische Datenintegration Mehrdimensionale Datensicht Star-Schema, -Anfragen Data Mining Prof. E. Rahm 1-1 y yy

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

1... Einleitung... 15. 2... Grundlagen der Datenmodellierung... 25. 3... SAP NetWeaver BW und SAP BusinessObjects Überblick... 57

1... Einleitung... 15. 2... Grundlagen der Datenmodellierung... 25. 3... SAP NetWeaver BW und SAP BusinessObjects Überblick... 57 1... Einleitung... 15 1.1... Zielgruppen dieses Buches... 17 1.2... Aufbau des Buches... 18 1.3... Hinweise zur Benutzung des Buches... 21 1.4... Danksagung... 23 2... Grundlagen der Datenmodellierung...

Mehr

Datawarehousing mit SAP @ BW 7

Datawarehousing mit SAP @ BW 7 Christian Mehrwald Datawarehousing mit SAP @ BW 7 Bl in SAP NetWeaver 2004s Architektur, Konzeption, Implementierung 4., vollständig überarbeitete und erweiterte Auflage i" dpunkt.verlag Übersicht 1 Einleitung

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Informationsintegration

Informationsintegration Informationsintegration Grundlegende Architekturen Ulf Leser Inhalt diese Vorlesung Klassifikation verteilter, autonomer, heterogener Systeme Weitere Klassifikationskriterien Schichtenaufbau integrierter

Mehr

Leseprobe. Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker. Data Warehousing mit Oracle. Business Intelligence in der Praxis

Leseprobe. Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker. Data Warehousing mit Oracle. Business Intelligence in der Praxis Leseprobe Claus Jordan, Dani Schnider, Joachim Wehner, Peter Welker Data Warehousing mit Oracle Business Intelligence in der Praxis ISBN: 978-3-446-42562-0 Weitere Informationen oder Bestellungen unter

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Darüber hinaus wird das Training dazu beitragen, das Verständnis für die neuen Möglichkeiten zu erlangen.

Darüber hinaus wird das Training dazu beitragen, das Verständnis für die neuen Möglichkeiten zu erlangen. Ora Education GmbH www.oraeducation.de info@oraeducation.de Lehrgang: Oracle 11g: New Features für Administratoren Beschreibung: Der Kurs über fünf Tage gibt Ihnen die Möglichkeit die Praxis mit der neuen

Mehr