Data Warehouses. Kapitel 1 Einführung. Sommersemester Melanie Herschel

Größe: px
Ab Seite anzeigen:

Download "Data Warehouses. Kapitel 1 Einführung. Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de"

Transkript

1 Data Warehouses Sommersemester 2011 Melanie Herschel Lehrstuhl für Datenbanksysteme, Universität Tübingen Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 2 Credit: Michael Marcol

2 Willkommen! Zu meiner Person Aufgewachsen in Bayern & Lothringen Studium an der Berufsakademie Stuttgart Information Technology Wissenschaftliche Mitarbeiterin an der HU Berlin und am HPI Potsdam Datenqualität & Datenintegration 2007 Promotionsverteidigung seit 06/2009 Post-Doc am IBM Almaden Research Center, Kalifornien Datenherkunft Wissenschaftliche Mitarbeiterin an der Uni Tübingen Debugging von Anfragen mit Nautilus Melanie Herschel Tel Web 3 Willkommen... und jetzt sind Sie dran. Einheimisch oder zugezogen? Welches Semester? Studiengang: Informatik, andere? Master vs. Diplom? Ihre Motivation? Vorwissen DBS1, DBS2, andere DB-Vorlesungen? 4

3 Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 5 Credit: Michael Marcol Termine & Vorlesungsmaterial Vorlesung Wann? jeden Donnerstag, 10:15-11:45 Uhr ca. jeden 2. Freitag, 10:15-11:45 Uhr Wo? Sand 13, A104 Sand 13, A104 Sand C118 am Vorlesungstermine: 15.4., 21.4., 6.5., 12.5., 13.5., 20.5., 26.5., 27.5., 27.5., 9.6.,10.6., 24.6., 1.7., 7.7., 8.7., 14.7., Übung Wann? Wo? ca. jeden 2. Freitag, 10:15-11:45 Uhr Sand 13, A104 Übungstermine: 5.5., 19.5., 3.6., 30.6., Hier werden die Folien und aktuelle News zur Vorlesung bereitgestellt. 6

4 Organisatorisches Voraussetzungen Mindestvoraussetzung: Datenbanken I Relationenmodell ER-Modellierung SQL Von Vorteil: Datenbanken II Anfrageübersetzung von Joins Grundzüge der Anfrageoptimierung 7 Organisatorisches Leistungserfassung Klausur / Prüfung Je nach Teilnehmerzahl am 22. Juli 2011 Übung Klausur 90 minütige Klausur, die um 10:15 Uhr beginnt Es sind keine Hilfsmittel erlaubt. Mündliche Prüfung: 30 Minuten, Termin nach Vereinbarung Die Übung besteht aus fünf Übungsblättern. Sie dürfen und sollten die Aufgaben in Zweier-Gruppen bearbeiten. Spätester Abgabetermin (nur schriftliche Abgabe!) ist jeweils der Tag vor dem Besprechungstermin, 13 Uhr 8

5 Zu diesen Folien... Quizzies Definition Hier lohnt es sich, mitzuschreiben! Beispiel Code snippet 9 Literatur Andreas Bauer und Holger Günzel. Data Warehouse Systeme. dpunkt Verlag. Wolfgang Lehner. Datenbanktechnologie für Data-Warehouse-Systeme Christian S. Jensen, Torben Bach Pedersen und Christian Thomsen. Multidimensional Databases and Data Warehousing. Synthesis Lecture on Data Management, Morgan & Claypool. Jeweils Literaturhinweise in der Vorlesung 10

6 Fragen & Feedback Fragen bitte jederzeit! Während der Vorlesung , Telephon Feedback und Anregungen sind Willkommen! Folien Informationen im Web... Sprechstunde nach Vereinbarung 11 Lehrstuhl für Datenbansysteme, Uni Tübingen Ferry Nautilus Pathfinder Habitat 12

7 Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 13 Credit: Michael Marcol Data Warehouse Einsatzgebiete Risikomanagement bei Versicherungen Marktforschung bei WalMart und Co. über alle Filialen Konzernmonitoring von ERP-Prozessen in Pharma-Unternehmen Customer Relationship Management bei Amazon und Partnershops Weltweite Logistik bei DHL Analyse weltweit gewonnener wissenschaftlicher Daten... Wesentliche Eigenschaften! Integration mehrerer Datenquellen, um eine globale Sicht zu erhalten.! Analyse großer Datenmengen 14

8 Definition eines Data Warehouse Definition eines Data Warehouse nach William H. Inmon A data warehouse is a subject oriented, integrated, time variant, non-volatile collection of data in support of management s decision making process. [Inmon92] subject oriented: für bestimmte Entitätentypen zugeschnitten, z.b. Verkäufe, Produkte, Läden. integrated: die Daten im Data Warehouse stammen i.d.r. aus verschiedenen Quelldatenbanken, z.b., aus mehreren Verlagskatalogen, Lagerbeständen einzelner Lager, Einnahmen einzelner Läden, usw. time-variant: Data Warehouse zeigt die zeitliche Evolution der betrachteten Entitäten. non-volatile: Daten werden nicht gelöscht oder nachträglich geändert, Änderungen im Datenbestand sind allein auf das Laden neuer Daten zurückzuführen. support decision making: nur wichtige Daten für solche Entscheidungen speichern. 15 Motivation für ein Data Warehouse Anwendungsfall! Eine oder mehrere (ähnliche) Datenbanken mit Bücherverkaufsinformationen! Daten werden oft aktualisiert! Jede Bestellung einzeln! Katalogupdates täglich! Management benötigt Entscheidungshilfen (decision support)! Komplexe Anfragen 16

9 Motivation für ein Data Warehouse Anwendungsfall - Bücher im Internet bestellen Backup Durchsatz Loadbalancing Zielkonflikt Portfolio Umsatz Werbung SQL 17 Motivation für ein Data Warehouse Anwendungsfall - Die Datenbank dazu Year id year Month Id Month year_id Day Id day month_id Order Order_id book_id amount single_price Orders Id Day_id Customer_id Total_amt Bookgroup id name Book id Book_group_id Customer id name 18

10 Motivation für ein Data Warehouse Anwendungsfall - Fragen eines Marketingleiters Wie viele abgeschlossene Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach Produktgruppen? Year id year Month Id Month year_id Day Id day month_id Order Order_id book_id amount single_price Orders Id Day_id Customer_id Total_amt Bookgroup id name Book id Book_group_id Customer id name 19 Motivation für ein Data Warehouse Anwendungsfall - Technisch SQL Anfrage des Marketingleiters SELECT! Y.year, BG.name, count(b.id) FROM year Y, month M, day D, order O, orders OS, book B, bookgroup BG WHERE! M.year = Y.id and! M.id = D.month and! O.day_id = D.id and! OS.order_id = O.id and! B.id = O.book_id and! B.book_group_id = BG.id and! day < 24 and month = 12 GROUP BY Y.year, PG.product_name ORDER BY Y.year 6 Joins Year:! 10 Records Month:! 120 Records Day:! 3650 Records Orders:! Order:! Books:! Bookgroups:! 100 Problem! Schwierig zu optimieren (Join-Reihenfolge) Je nach Ausführungsplan riesige Zwischenergebnisse Ähnliche Anfragen ähnlich riesige Zwischenergebnisse 20

11 Motivation für ein Data Warehouse Anwendungsfall - In Wahrheit... Es gibt noch:! Amazon.de! Amazon.fr! Amazon.it!... Verteilte Ausführung! Count über Union mehrerer gleicher Anfragen in unterschiedlichen Datenbanken? 21 Motivation für ein Data Warehouse Anwendungsfall - In Wahrheit... 22

12 Motivation für ein Data Warehouse Anwendungsfall - Technisch eine Sicht (View) Sichtdefinition CREATE VIEW christmas AS! SELECT! Y.year, PG.name, count(b.id) FROM!! DE.year Y, DE.month M, DE.day D, DE.order O,... WHERE! M.year = Y.id and... GROUP BY!Y.year, PG.product_name ORDER BY! Y.year UNION! SELECT! Y.year, PG.name, count(b.id) FROM! EN.year Y, EN.month M, EN.day D, DE.order O,... WHERE! M.year = Y.id and... Verwendung der Sicht in einer SQL Anfrage SELECT! year, name, count(b.id) FROM!! christmas GROUP BY! year, name ORDER BY! year! 23 Motivation für ein Data Warehouse Anwendungsfall - Probleme Frage 1: Count über Union über verteilte Datenbanken?! Heterogenitätsproblem Quellen werden Schemata verändern Länderspezifischer Eigenheiten (MWST, Versandkosten, Sonderaktionen,...) Oftmals verborgene Änderungen in der Semantik der Daten Frage 2: Berechnung riesiger Zwischenergebnisse bei jeder Anfrage?! Datenmengenproblem Transport großer Datenmengen durchs Netz Historische Sicht -Datenmengen wachsen immer weiter Operative Systeme brauchen die historischen Daten nicht " Ziel: Frühes löschen (abgeschlossene Bestellungen) Manager brauchen viele der operativen Daten nicht " Ziel: Alles aufheben 24

13 Motivation für ein Data Warehouse Anwendungsfall - Lösung Heterogenitätsproblem? Probleme:! Zweigstellen schreiben übers Netz! Lange Antwortzeiten im operativen Betrieb! Datenmengenproblem bleibt Zentrale Datenbank 25 Motivation für ein Data Warehouse Anwendungsfall - Lösung Anfragezeit? UK FR DE Probleme:! Schnelle lokale Anfragen! Lange Antwortzeiten für strategische Anfragen! Heterogenitätsproblem bleibt 26

14 Motivation für ein Data Warehouse Anwendungsfall - Lösung Datenmengenproblem? A Replikation A Replikation A Probleme:! Lokale Anfrage arbeiten auf riesigen Tabellen! Verzögerung im operativen Betrieb! Lange Antwortzeiten für strategische Anfragen 27 Motivation für ein Data Warehouse Anwendungsfall - Tatsächliche Lösung Aufbau eines Data Warehouse! Redundante Datenhaltung! Transformierte und Selektierte Daten! Spezielle Modellierung! Asynchrone Aktualisierung 28

15 Operative Datenbanken vs. Data Warehouses Perspektive der Anwendung Anwendertyp Interaktionsdauer und -typ Anfragestruktur Bereich einer Anfrage Anzahl gleichzeitiger Zugriffe Anwenderzahl Operative Datenbank Sachbearbeiter kurze Transaktionen (echtzeit bis wenige Sekunden) Insert, Update, Delete einfach strukturiert wenige Datensätze (überwiegend Einzeltupelzugriffe) sehr viele (Tausende) sehr viele Data Warehouse Manager, Controller, Analyst Analyse-Anfragen (Minuten) Lesen, periodisches Hinzufügen komplex, jedoch überwiegend bestimmten Mustern folgend viele Datensätze (überwiegend Bereichsanfragen) wenige (Hunderte) wenige, bis einige hundert 29 Operative Datenbanken vs. Data Warehouses Perspektive der Datenhaltung Datenquellen Schemaentwurf Eigenschaften des Datenbestands Datenvolumen Typische Antwortzeit Verfügbarkeit Operative Datenbank zentraler Datenbestand anfrageneutrale Datenmodellierung (3NF) originär zeitaktuell autonom dynamisch Megabyte - Gigabyte ms - s Hochverfügbar (Ausfall kostet Millionen!) Data Warehouse mehrere unabhängige Datenquellen analysebezogene Datenmodellierung abgeleitet/ konsolidiert historisiert integriert stabil teilweise (vor-) aggregiert Gigabyte - Terabyte s - min Ausfall ärgerlich, aber nicht kritisch 30

16 Operative Datenbanken vs. Data Warehouses Technische Sicht Architektur Operative Datenbank ANSI-SPARC 3-Schichtenarchitektur Geeignet für Daten aus einer Datenquelle! keine Heterogenität Data Warehouse Data Warehouse integriert Daten aus mehreren Datenquellen. Datenquellen üblicherweise heterogen (im Schema, z.b. Name vs. Nachname, in den Daten, z.b vs. 01/06,...) Architketur zur Integration verschiedener Datenquellen Details siehe Kapitel 2 31 Operative Datenbanken vs. Data Warehouses Technische Sicht Schema Operative Datenbank Vermeidung von Redundanz / Anomalien Schema in 3NF Schema unabhängig von der Art der Anfragen entworfen Data Warehouse Modellierung von Dimensionen und Fakten, basierend auf geplante analytische Anfragen Redundanz möglich bzw. erwünscht Multidimensionales Modell (Star-Schema, Snowflake-Schema) Details siehe Kapitel 3 Jahr Books CDs DVDs... Region... North America Asia Europe Produktgruppe 32

17 Operative Datenbanken vs. Data Warehouses Technische Sicht Anfragen Operative Datenbank Transaktionale Anfragen Insert, Update, Delete, Select Anfragen über einzelne / wenige Tupel Anfrageoptimierung siehe VL Datenbanken II UPDATE Order SET amount = amount + 1 WHERE OrderID = 1 AND BookID = 204 Data Warehouse Analytische Anfragen Bulk-Insert und Select Typische Anfragetypen (drill down, slice, dice,...) Spezialisierte Optimierungsverfahren Details siehe Kapitel 3 und 4 Jahr Books CDs DVDs... Region... North America Asia Europe Produktgruppe 33 Extract-Transform-Load (ETL) Prozess Datenübertragung in das Data Warehouse?! Extrahiere relevante Daten aus den Quellen.! Transformiere die extrahierten Daten in das Schema des Data Warehouse.! Lade die transformierten Daten in das Data Warehouse.! Siehe Kapitel 5 (Hauptfokus auf Datenqualität, die während der Transformationsphase gewährleistet wird). 34

18 Data Warehouse Systeme und Tools! Diverse Data Warehouse Lösungen auf dem Markt! Siehe Kapitel 6! Gastvortrag Dr. Jens Bleihoder, OPITZ Consulting GmbH 35 Entwicklungsprozess eines Data Warhouse! Integration mehrerer, oft autonomer Datenquellen erfordert folgende Maßnahmen:! Einbindung / Mitwirkung der Fachabteilungen! Durchsetzen eines Qualitätsanspruchs! Gemeinsames Sprachverständnis! Nachvollziehbarkeit! Vom Produkt- zum Prozess-Gedanken 36

19 Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 37 Credit: Michael Marcol Inhalte der Vorlesung Einführung Definition Data Warehouse Motivation für ein Data Warehouse Unterschied zu einer operativen Datenbank Architektur von Data Warehouse Systemen Bestandteile eines Data Warehouse Systems Konfigurationen Ermöglichung der Integration Datenmodellierung Multidimensionale Modellierung (Dimensionen, Fakten, Datenwürfel) Umsetzung des Datenmodells (relationale Abbildung, Star-Schema, SQL Operatoren,...) 38

20 Inhalte der Vorlesung Anfrageverarbeitung und Optimierung Indexstrukturen Optimierung von Star-Joins Materialisierte Sichten Partitionierung Datenreinigung ETL und Datenreinigung Typische Datenfehler Beheben von Datenfehlern durch Data Scrubbing, Dublettenerkennung, Datenfusion ETL-Werkzeuge und Anwendungsfälle 39 Fragen? Zum Inhalt der Vorlesung? Zur Leistungserfassung? Zum Ablauf?... 40

Datenintegration & Datenherkunft Verteilung, Autonomie und Heterogenität

Datenintegration & Datenherkunft Verteilung, Autonomie und Heterogenität Datenintegration & Datenherkunft Verteilung, Autonomie und Heterogenität Wintersemester 2010/11 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen 1

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Data Warehousing. Einleitung und Motivation. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Einleitung und Motivation. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Einleitung und Motivation Ulf Leser Wissensmanagement in der Bioinformatik Bücher im Internet bestellen Backup Durchsatz Loadbalancing Portfolio Umsatz Werbung Daten bank Ulf Leser: Data

Mehr

Überblick. Informationsintegration Materialisierte vs. Virtuelle Integration. 1.11.2005 Felix Naumann. Ankündigungen

Überblick. Informationsintegration Materialisierte vs. Virtuelle Integration. 1.11.2005 Felix Naumann. Ankündigungen Informationsintegration Materialisierte vs. Virtuelle Integration 1.11.2005 Felix Naumann Ankündigungen Überblick 2 Szenarien der Informationsintegration Data Warehouse Föderierte Datenbanken Einführung

Mehr

Datenbanksysteme II Architektur und Implementierung von Datenbanksystemen

Datenbanksysteme II Architektur und Implementierung von Datenbanksystemen Datenbanksysteme II Architektur und Implementierung von Datenbanksystemen Winter 2009/10 Melanie Herschel Willhelm-Schickard-Institut für Informatik Kapitel 1 Einführung Vorstellung Überblick Organisatorisches

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Data Warehousing. Einleitung und Motivation. Wissensmanagement in der. Bioinformatik. Ulf Leser

Data Warehousing. Einleitung und Motivation. Wissensmanagement in der. Bioinformatik. Ulf Leser Data Warehousing Einleitung und Motivation Ulf Leser Wissensmanagement in der Bioinformatik Backup Durchsatz Loadbalancing Bücher im Internet bestellen Portfolio Umsatz Werbung Daten bank Ulf Leser: Data

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Wintersemester 2011 / 2012 Ulf Leser Wissensmanagement in der Bioinformatik Datenbanken und Datenanalyse... Der typische Wal-Mart Kaufagent verwendet täglich mächtige Data

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Einführung Gegenstand der Vorlesung fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Datenvolumen (effiziente Speicherung

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Data Warehousing. Architektur Komponenten Prozesse. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Architektur Komponenten Prozesse. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Architektur Komponenten Prozesse Ulf Leser Wissensmanagement in der Bioinformatik Zusammenfassung letzte Vorlesung Aufbau eines Data Warehouse Redundante, transformierte Datenhaltung Asynchrone

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

Informationsintegration

Informationsintegration Informationsintegration Grundlegende Architekturen Ulf Leser Inhalt diese Vorlesung Klassifikation verteilter, autonomer, heterogener Systeme Weitere Klassifikationskriterien Schichtenaufbau integrierter

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 11 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Logische Optimierung Ulf Leser Wissensmanagement in der Bioinformatik Inhaltsübersicht Vorlesung Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks . Einführung Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks Sattler / Saake Data-Warehouse-Technologien Szenario: Getränkemarkt Umsatz, Portfolio SSaufland

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

DW Data Warehousing Funktionsweise, Einsatz- und Problemfelder

DW Data Warehousing Funktionsweise, Einsatz- und Problemfelder DW Data Warehousing Funktionsweise, Einsatz- und Problemfelder Andreas Meier, Universität Fribourg Folie 1 DW Cartoon Quelle: Knoll M., Meier A. (Hrsg): Web & Data Mining. Praxis der Wirtschaftsinformatik,

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Cassandra Query Language (CQL)

Cassandra Query Language (CQL) Cassandra Query Language (CQL) Seminar: NoSQL Wintersemester 2013/2014 Cassandra Zwischenpräsentation 1 Gliederung Basic facts Datentypen DDL/DML ähnlich zu SQL Besonderheiten Basic facts CQL kurz für

Mehr

Verteilungsmechanismen in verschiedenen RDBMS

Verteilungsmechanismen in verschiedenen RDBMS Verteilungsmechanismen in verschiedenen RDBMS Vorlesung im Wintersemester 2013 (Analyse verschiedener RDBMS-Produkte hinsichtlich angebotener Verteilmechanismen) Prof. Dr. Andreas Schmietendorf 1 Zielstellung

Mehr

Kapitel 6 Einführung in Data Warehouses

Kapitel 6 Einführung in Data Warehouses Kapitel 6 Einführung in Data Warehouses Skript zur Vorlesung: Datenbanksysteme II Sommersemester 2008, LMU München 2008 Dr. Peer Kröger Dieses Skript basiert zu einem Teil auf dem Skript zur Vorlesung

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 29. April 2013 - MySQL 2 Sebastian Cuy sebastian.cuy@uni-koeln.de Aufgaben Anmerkungen Best practice: SQL Befehle

Mehr

ISTEC.MIP Messdaten-Integrations-Plattform

ISTEC.MIP Messdaten-Integrations-Plattform ISTEC.MIP Messdaten-Integrations-Plattform Dr.-Ing. Carsten Folie 1 ISTEC Firmenprofil unabhängiges Software- und Systemhaus seit 1982 erfolgreich am Markt ca. 60 festangestellte Mitarbeiter (Informatiker,

Mehr

Informa(onssysteme Übersicht Sommersemester 2015

Informa(onssysteme Übersicht Sommersemester 2015 Prof. Dr.-Ing. Stefan Deßloch AG Heterogene Informationssysteme Zi. 36/329, Tel.: 0631-205-3275 E-Mail: dessloch@cs.uni-kl.de Informa(onssysteme Übersicht Sommersemester 2015 h8p://wwwlgis.informa(k.uni-

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE'

WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Take control of your decision support WAHLPFLICHTBEREICH WIRTSCHAFTSINFORMATIK 'DATA WAREHOUSE' Sommersemester 2008 Gliederung Business Intelligence und Data Warehousing On-Line Analytical Processing Ziel

Mehr

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001

MIS by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 MIS Glossar by Franziska Täschler, Winformation GmbH ftaeschler@winformation-gmbh.ch Ausgabe 01/2001 Aggregat Data Cube Data Marts Data Mining Data Warehouse (DWH) Daten Decision Support Systeme (DSS)

Mehr

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06

Business Intelligence. Data Warehouse / Analyse Sven Elvers 2005-07-06 Business Intelligence Data Warehouse / Analyse Sven Elvers 2005-07-06 Einleitung Dieses Dokument beschreibt einen für das Verständnis relevanten Teil der Präsentation. Business Intelligence Motivation

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

1 Einleitung. Betriebswirtschaftlich administrative Systeme

1 Einleitung. Betriebswirtschaftlich administrative Systeme 1 1 Einleitung Data Warehousing hat sich in den letzten Jahren zu einem der zentralen Themen der Informationstechnologie entwickelt. Es wird als strategisches Werkzeug zur Bereitstellung von Informationen

Mehr

Event Stream Processing & Complex Event Processing. Dirk Bade

Event Stream Processing & Complex Event Processing. Dirk Bade Event Stream Processing & Complex Event Processing Dirk Bade Die Folien sind angelehnt an eine Präsentation der Orientation in Objects GmbH, 2009 Motivation Business Activity Monitoring Sammlung, Analyse

Mehr

Einführung in die Informatik II

Einführung in die Informatik II Einführung in die Informatik II Die Structured Query Language SQL Prof. Dr. Nikolaus Wulff SQL Das E/R-Modell lässt sich eins zu eins auf ein Tabellenschema abbilden. Benötigt wird eine Syntax, um Tabellen

Mehr

Multidimensionales Datenmodell, Cognos

Multidimensionales Datenmodell, Cognos Data Warehousing (II): Multidimensionales Datenmodell, Cognos Praktikum: Data Warehousing und Mining Praktikum Data Warehousing und Mining, Sommersemester 2010 Vereinfachte Sicht auf die Referenzarchitektur

Mehr

REAL-TIME DATA WAREHOUSING

REAL-TIME DATA WAREHOUSING REAL-TIME DATA WAREHOUSING Lisa Wenige Seminarvortrag Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität Jena - 19.01.12 Lisa Wenige 19.01.2012 2 Agenda 1. Motivation 2. Begriffsbestimmung

Mehr

Einleitung. Literatur. Pierre Fierz. Architektur von Datenbanksystemen. Physische Datenunabhängigkeit. Der Datenbank Administrator (DBA) 1.

Einleitung. Literatur. Pierre Fierz. Architektur von Datenbanksystemen. Physische Datenunabhängigkeit. Der Datenbank Administrator (DBA) 1. Inhalt der Vorlesung Literatur 1 Datenmodellierung (Entity-Relationship Modell) 2 Das relationale Modell 3 Relationenalgebra 4 Datenbanksprache (SQL) 5 Normalisierung 6 Vom ERM zum Datenbankschema 7 Routinen

Mehr

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de

Data Warehouses. Data Warehouse Architektur ... Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de Data Warehouses Sommersemester 2011 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen Data Warehouse Architektur Data-Warehouse-System Teilsichten

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen

IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen IBM Netezza Data Warehouse Appliances - schnelle Analysen mit hohen Datenmengen Nahezu 70% aller Data Warehouse Anwendungen leiden unter Leistungseinschränkungen der unterschiedlichsten Art. - Gartner

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Data Warehousing in der Lehre

Data Warehousing in der Lehre Data Warehousing in der Lehre Prof. Dr.-Ing. Tomas Benz Dipl.-Inform. Med. Alexander Roth Agenda Vorstellung Fachhochschule Heilbronn Vorstellung i3g Vorlesungen im DWH-Bereich Seminare Projekte Studien-

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Vorlesung Datenbankmanagementsysteme. Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-1

Vorlesung Datenbankmanagementsysteme. Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-1 Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-1 Vorlesung Datenbankmanagementsysteme Überblick M. Lange, S. Weise Folie #0-2 Bioinformatik:

Mehr

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede

Data Warehouse Version: June 26, 2007. Andreas Geyer-Schulz und Anke Thede Data Warehouse Version: June 26, 2007 Andreas Geyer-Schulz und Anke Thede Schroff-Stiftungslehrstuhl Informationsdienste und Elektronische Märkte Fakultät für Wirtschaftswissenschaften Gebäude 20.20 Rechenzentrum,

Mehr

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung

Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen Fragen Vertiefung Modellierung Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 24. Juni 2014 Agenda Hinweise zur Klausur Zusammenfassung OPAL-Übungen / Kontrollfragen

Mehr

Konzeption eines Master-Data-Management-Systems. Sven Schilling

Konzeption eines Master-Data-Management-Systems. Sven Schilling Konzeption eines Master-Data-Management-Systems Sven Schilling Gliederung Teil I Vorstellung des Unternehmens Thema der Diplomarbeit Teil II Master Data Management Seite 2 Teil I Das Unternehmen Vorstellung

Mehr

Open Source Datawarehouse für das IT-Management

Open Source Datawarehouse für das IT-Management Open Source Datawarehouse für das IT-Management 09.06.2010 Linuxtag Berlin Referent: Bernd Erk Agenda DESTINATION TIME REMARK KURZVORSTELLUNG ÜBERBLICK DATAWAREHOUSE DATENINTEGRATION DATENHALTUNG DATENORGANISATION

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Architektur und Komponenten von Data Warehouses Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Architektur Komponenten ETL Ulf Leser: Data Warehousing

Mehr

LINQ to SQL. Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel. Institut für Informatik Software & Systems Engineering

LINQ to SQL. Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel. Institut für Informatik Software & Systems Engineering LINQ to SQL Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel Institut für Informatik Software & Systems Engineering Agenda 1. LINQ allgemein Vorteile Bausteine und Varianten

Mehr

Complex Event Processing. Sebastian Schmidbauer 18.01.2011

Complex Event Processing. Sebastian Schmidbauer 18.01.2011 Complex Event Processing Sebastian Schmidbauer 18.01.2011 Cirquent im Profil Zahlen Kompetenzen 350 300 250 200 150 100 50 0 1748 1747 1722 1515 1041 1180 286 266 247 260 165 139 2003 2004 2005 2006 2007

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Data-Warehouse-Systeme Architektur, Entwicklung, Anwendung von Andreas Bauer, Holger Günzel 3., überarb. u. aktualis. Aufl. Data-Warehouse-Systeme Bauer / Günzel schnell und portofrei erhältlich bei beck-shop.de

Mehr

Business Intelligence im Krankenhaus

Business Intelligence im Krankenhaus Business Intelligence im Krankenhaus Dr. Thomas Lux Holger Raphael IT-Trends in der Medizin 03.September 2008 Essen Gliederung Herausforderungen für das Management im Krankenhaus Business Intelligence

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation Zusammenfassung OPAL 6. Übung Juni 2015 Agenda Hinweise zur Klausur Zusammenfassung OPAL Übungen / Kontrollfragen

Mehr

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse

Download:.../~rieche. gehalten am 2. Februar 2004. Stephan Rieche. Vortrag. Thema: Index Selection. von. Seminar Advanced Data Warehouse Seminar Advanced Data Warehouse Thema: Index Selection Vortrag von Stephan Rieche gehalten am 2. Februar 2004 Download:.../~rieche Inhalt des Vortrages 1. Einleitung - Was ist das Index Selection Problem?

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendungssysteme (BIAS) Lösung Aufgabe 1 Übung WS 2012/13 Business Intelligence Erläutern Sie den Begriff Business Intelligence. Gehen Sie bei der Definition von Business Intelligence

Mehr

Umsetzung der Anforderungen - analytisch

Umsetzung der Anforderungen - analytisch Umsetzung der Anforderungen - analytisch Titel des Lernmoduls: Umsetzung der Anforderungen - analytisch Themengebiet: New Economy Gliederungspunkt im Curriculum: 4.2.5.5 Zum Inhalt: In diesem Modul wird

Mehr

Business Intelligence

Business Intelligence Business Intelligence Anwendung 1 MInf1 HAW Hamburg Betreuender Professor: Prof. Dr. Zukunft by Jason Hung Vuong [12] Gliederung 1. Hamburg Energie Kooperation 2. Motivation 3. Business Intelligence 4.

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

adcubum ACADEMY. Die Vertiefung von Hochstehendem. SQL-Datenbankkurse

adcubum ACADEMY. Die Vertiefung von Hochstehendem. SQL-Datenbankkurse adcubum ACADEMY. Die Vertiefung von Hochstehendem. SQL-Datenbankkurse Rubrik: Datenbanken Einleitung adcubum SYRIUS legt alle Bewegungsdaten in der Datenbank ab. Als Consultant, Parametrierer, Kundendienstmitarbeitender,

Mehr

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU

25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling. Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU BLUEFORTE GmbH Dirk Lerner 25.06.2014 TDWI Konferenz DWH Architektur Agilität durch Data Vault Modeling Twitter: #TDWI #DataVault @DV_Modeling @BLUEFORTE @TDWI_EU 1 Elemente des Data Vault (Basic) HUB

Mehr

Spezialisierung Business Intelligence

Spezialisierung Business Intelligence Spezialisierung Business Intelligence Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg peter.becker@h-brs.de 10. Juni 2015 Was ist Business Intelligence? Allgemein umfasst der Begriff Business

Mehr

Einführung in die Wissensverarbeitung und Data Mining

Einführung in die Wissensverarbeitung und Data Mining Einführung in die Wissensverarbeitung und Data Mining Peter Becker FH Bonn-Rhein-Sieg Fachbereich Angewandte Informatik!" $# Vorlesung Wintersemester 2001/02 1. Einführung Vorbemerkungen 1 Einführung Vorbemerkungen

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Kapitel 4: Data Warehouse Architektur

Kapitel 4: Data Warehouse Architektur Data Warehousing, Motivation Zugriff auf und Kombination von Daten aus mehreren unterschiedlichen Quellen, Kapitel 4: Data Warehousing und Mining 1 komplexe Datenanalyse über mehrere Quellen, multidimensionale

Mehr

Datenadminstrator, Datenbankdesigner, Systemanalytiker (für die logische Sicht zuständig)

Datenadminstrator, Datenbankdesigner, Systemanalytiker (für die logische Sicht zuständig) 1 Grundlagen Begriffe Daten bekannte zutreffende Tatsachen über die Domäne/Miniwelt DBS Einsatz eines DBMS für eine Datenbank, DBS besteht aus folgenden Komponenten: 1. DBMS 2. Datenbank DBMS Software

Mehr

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2

7. Datenbank-Zugriff. Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn. Zum Beispiel aus PHP-Skripten: Client 7-2 5 Vorlesung und Übung Dr. Peter Pfahler Institut für Informatik Universität Paderborn 7 7. Datenbank-Zugriff Zum Beispiel aus PHP-Skripten: Client 7-2 Struktur einer Datenbank 7-3 Erzeugen von Datenbanken

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht)

Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Performanceoptimierung mit Exadata Verarbeitung extremer Datenmengen mit PL/SQL basierter Datenbewirtschaftung (Erfahrungsbericht) Christian Haag, DATA MART Consulting Consulting Manager Oracle DWH Team

Mehr