Data Warehouses. Kapitel 1 Einführung. Sommersemester Melanie Herschel

Größe: px
Ab Seite anzeigen:

Download "Data Warehouses. Kapitel 1 Einführung. Sommersemester 2011. Melanie Herschel melanie.herschel@uni-tuebingen.de"

Transkript

1 Data Warehouses Sommersemester 2011 Melanie Herschel Lehrstuhl für Datenbanksysteme, Universität Tübingen Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 2 Credit: Michael Marcol

2 Willkommen! Zu meiner Person Aufgewachsen in Bayern & Lothringen Studium an der Berufsakademie Stuttgart Information Technology Wissenschaftliche Mitarbeiterin an der HU Berlin und am HPI Potsdam Datenqualität & Datenintegration 2007 Promotionsverteidigung seit 06/2009 Post-Doc am IBM Almaden Research Center, Kalifornien Datenherkunft Wissenschaftliche Mitarbeiterin an der Uni Tübingen Debugging von Anfragen mit Nautilus Melanie Herschel Tel Web 3 Willkommen... und jetzt sind Sie dran. Einheimisch oder zugezogen? Welches Semester? Studiengang: Informatik, andere? Master vs. Diplom? Ihre Motivation? Vorwissen DBS1, DBS2, andere DB-Vorlesungen? 4

3 Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 5 Credit: Michael Marcol Termine & Vorlesungsmaterial Vorlesung Wann? jeden Donnerstag, 10:15-11:45 Uhr ca. jeden 2. Freitag, 10:15-11:45 Uhr Wo? Sand 13, A104 Sand 13, A104 Sand C118 am Vorlesungstermine: 15.4., 21.4., 6.5., 12.5., 13.5., 20.5., 26.5., 27.5., 27.5., 9.6.,10.6., 24.6., 1.7., 7.7., 8.7., 14.7., Übung Wann? Wo? ca. jeden 2. Freitag, 10:15-11:45 Uhr Sand 13, A104 Übungstermine: 5.5., 19.5., 3.6., 30.6., Hier werden die Folien und aktuelle News zur Vorlesung bereitgestellt. 6

4 Organisatorisches Voraussetzungen Mindestvoraussetzung: Datenbanken I Relationenmodell ER-Modellierung SQL Von Vorteil: Datenbanken II Anfrageübersetzung von Joins Grundzüge der Anfrageoptimierung 7 Organisatorisches Leistungserfassung Klausur / Prüfung Je nach Teilnehmerzahl am 22. Juli 2011 Übung Klausur 90 minütige Klausur, die um 10:15 Uhr beginnt Es sind keine Hilfsmittel erlaubt. Mündliche Prüfung: 30 Minuten, Termin nach Vereinbarung Die Übung besteht aus fünf Übungsblättern. Sie dürfen und sollten die Aufgaben in Zweier-Gruppen bearbeiten. Spätester Abgabetermin (nur schriftliche Abgabe!) ist jeweils der Tag vor dem Besprechungstermin, 13 Uhr 8

5 Zu diesen Folien... Quizzies Definition Hier lohnt es sich, mitzuschreiben! Beispiel Code snippet 9 Literatur Andreas Bauer und Holger Günzel. Data Warehouse Systeme. dpunkt Verlag. Wolfgang Lehner. Datenbanktechnologie für Data-Warehouse-Systeme Christian S. Jensen, Torben Bach Pedersen und Christian Thomsen. Multidimensional Databases and Data Warehousing. Synthesis Lecture on Data Management, Morgan & Claypool. Jeweils Literaturhinweise in der Vorlesung 10

6 Fragen & Feedback Fragen bitte jederzeit! Während der Vorlesung , Telephon Feedback und Anregungen sind Willkommen! Folien Informationen im Web... Sprechstunde nach Vereinbarung 11 Lehrstuhl für Datenbansysteme, Uni Tübingen Ferry Nautilus Pathfinder Habitat 12

7 Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 13 Credit: Michael Marcol Data Warehouse Einsatzgebiete Risikomanagement bei Versicherungen Marktforschung bei WalMart und Co. über alle Filialen Konzernmonitoring von ERP-Prozessen in Pharma-Unternehmen Customer Relationship Management bei Amazon und Partnershops Weltweite Logistik bei DHL Analyse weltweit gewonnener wissenschaftlicher Daten... Wesentliche Eigenschaften! Integration mehrerer Datenquellen, um eine globale Sicht zu erhalten.! Analyse großer Datenmengen 14

8 Definition eines Data Warehouse Definition eines Data Warehouse nach William H. Inmon A data warehouse is a subject oriented, integrated, time variant, non-volatile collection of data in support of management s decision making process. [Inmon92] subject oriented: für bestimmte Entitätentypen zugeschnitten, z.b. Verkäufe, Produkte, Läden. integrated: die Daten im Data Warehouse stammen i.d.r. aus verschiedenen Quelldatenbanken, z.b., aus mehreren Verlagskatalogen, Lagerbeständen einzelner Lager, Einnahmen einzelner Läden, usw. time-variant: Data Warehouse zeigt die zeitliche Evolution der betrachteten Entitäten. non-volatile: Daten werden nicht gelöscht oder nachträglich geändert, Änderungen im Datenbestand sind allein auf das Laden neuer Daten zurückzuführen. support decision making: nur wichtige Daten für solche Entscheidungen speichern. 15 Motivation für ein Data Warehouse Anwendungsfall! Eine oder mehrere (ähnliche) Datenbanken mit Bücherverkaufsinformationen! Daten werden oft aktualisiert! Jede Bestellung einzeln! Katalogupdates täglich! Management benötigt Entscheidungshilfen (decision support)! Komplexe Anfragen 16

9 Motivation für ein Data Warehouse Anwendungsfall - Bücher im Internet bestellen Backup Durchsatz Loadbalancing Zielkonflikt Portfolio Umsatz Werbung SQL 17 Motivation für ein Data Warehouse Anwendungsfall - Die Datenbank dazu Year id year Month Id Month year_id Day Id day month_id Order Order_id book_id amount single_price Orders Id Day_id Customer_id Total_amt Bookgroup id name Book id Book_group_id Customer id name 18

10 Motivation für ein Data Warehouse Anwendungsfall - Fragen eines Marketingleiters Wie viele abgeschlossene Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach Produktgruppen? Year id year Month Id Month year_id Day Id day month_id Order Order_id book_id amount single_price Orders Id Day_id Customer_id Total_amt Bookgroup id name Book id Book_group_id Customer id name 19 Motivation für ein Data Warehouse Anwendungsfall - Technisch SQL Anfrage des Marketingleiters SELECT! Y.year, BG.name, count(b.id) FROM year Y, month M, day D, order O, orders OS, book B, bookgroup BG WHERE! M.year = Y.id and! M.id = D.month and! O.day_id = D.id and! OS.order_id = O.id and! B.id = O.book_id and! B.book_group_id = BG.id and! day < 24 and month = 12 GROUP BY Y.year, PG.product_name ORDER BY Y.year 6 Joins Year:! 10 Records Month:! 120 Records Day:! 3650 Records Orders:! Order:! Books:! Bookgroups:! 100 Problem! Schwierig zu optimieren (Join-Reihenfolge) Je nach Ausführungsplan riesige Zwischenergebnisse Ähnliche Anfragen ähnlich riesige Zwischenergebnisse 20

11 Motivation für ein Data Warehouse Anwendungsfall - In Wahrheit... Es gibt noch:! Amazon.de! Amazon.fr! Amazon.it!... Verteilte Ausführung! Count über Union mehrerer gleicher Anfragen in unterschiedlichen Datenbanken? 21 Motivation für ein Data Warehouse Anwendungsfall - In Wahrheit... 22

12 Motivation für ein Data Warehouse Anwendungsfall - Technisch eine Sicht (View) Sichtdefinition CREATE VIEW christmas AS! SELECT! Y.year, PG.name, count(b.id) FROM!! DE.year Y, DE.month M, DE.day D, DE.order O,... WHERE! M.year = Y.id and... GROUP BY!Y.year, PG.product_name ORDER BY! Y.year UNION! SELECT! Y.year, PG.name, count(b.id) FROM! EN.year Y, EN.month M, EN.day D, DE.order O,... WHERE! M.year = Y.id and... Verwendung der Sicht in einer SQL Anfrage SELECT! year, name, count(b.id) FROM!! christmas GROUP BY! year, name ORDER BY! year! 23 Motivation für ein Data Warehouse Anwendungsfall - Probleme Frage 1: Count über Union über verteilte Datenbanken?! Heterogenitätsproblem Quellen werden Schemata verändern Länderspezifischer Eigenheiten (MWST, Versandkosten, Sonderaktionen,...) Oftmals verborgene Änderungen in der Semantik der Daten Frage 2: Berechnung riesiger Zwischenergebnisse bei jeder Anfrage?! Datenmengenproblem Transport großer Datenmengen durchs Netz Historische Sicht -Datenmengen wachsen immer weiter Operative Systeme brauchen die historischen Daten nicht " Ziel: Frühes löschen (abgeschlossene Bestellungen) Manager brauchen viele der operativen Daten nicht " Ziel: Alles aufheben 24

13 Motivation für ein Data Warehouse Anwendungsfall - Lösung Heterogenitätsproblem? Probleme:! Zweigstellen schreiben übers Netz! Lange Antwortzeiten im operativen Betrieb! Datenmengenproblem bleibt Zentrale Datenbank 25 Motivation für ein Data Warehouse Anwendungsfall - Lösung Anfragezeit? UK FR DE Probleme:! Schnelle lokale Anfragen! Lange Antwortzeiten für strategische Anfragen! Heterogenitätsproblem bleibt 26

14 Motivation für ein Data Warehouse Anwendungsfall - Lösung Datenmengenproblem? A Replikation A Replikation A Probleme:! Lokale Anfrage arbeiten auf riesigen Tabellen! Verzögerung im operativen Betrieb! Lange Antwortzeiten für strategische Anfragen 27 Motivation für ein Data Warehouse Anwendungsfall - Tatsächliche Lösung Aufbau eines Data Warehouse! Redundante Datenhaltung! Transformierte und Selektierte Daten! Spezielle Modellierung! Asynchrone Aktualisierung 28

15 Operative Datenbanken vs. Data Warehouses Perspektive der Anwendung Anwendertyp Interaktionsdauer und -typ Anfragestruktur Bereich einer Anfrage Anzahl gleichzeitiger Zugriffe Anwenderzahl Operative Datenbank Sachbearbeiter kurze Transaktionen (echtzeit bis wenige Sekunden) Insert, Update, Delete einfach strukturiert wenige Datensätze (überwiegend Einzeltupelzugriffe) sehr viele (Tausende) sehr viele Data Warehouse Manager, Controller, Analyst Analyse-Anfragen (Minuten) Lesen, periodisches Hinzufügen komplex, jedoch überwiegend bestimmten Mustern folgend viele Datensätze (überwiegend Bereichsanfragen) wenige (Hunderte) wenige, bis einige hundert 29 Operative Datenbanken vs. Data Warehouses Perspektive der Datenhaltung Datenquellen Schemaentwurf Eigenschaften des Datenbestands Datenvolumen Typische Antwortzeit Verfügbarkeit Operative Datenbank zentraler Datenbestand anfrageneutrale Datenmodellierung (3NF) originär zeitaktuell autonom dynamisch Megabyte - Gigabyte ms - s Hochverfügbar (Ausfall kostet Millionen!) Data Warehouse mehrere unabhängige Datenquellen analysebezogene Datenmodellierung abgeleitet/ konsolidiert historisiert integriert stabil teilweise (vor-) aggregiert Gigabyte - Terabyte s - min Ausfall ärgerlich, aber nicht kritisch 30

16 Operative Datenbanken vs. Data Warehouses Technische Sicht Architektur Operative Datenbank ANSI-SPARC 3-Schichtenarchitektur Geeignet für Daten aus einer Datenquelle! keine Heterogenität Data Warehouse Data Warehouse integriert Daten aus mehreren Datenquellen. Datenquellen üblicherweise heterogen (im Schema, z.b. Name vs. Nachname, in den Daten, z.b vs. 01/06,...) Architketur zur Integration verschiedener Datenquellen Details siehe Kapitel 2 31 Operative Datenbanken vs. Data Warehouses Technische Sicht Schema Operative Datenbank Vermeidung von Redundanz / Anomalien Schema in 3NF Schema unabhängig von der Art der Anfragen entworfen Data Warehouse Modellierung von Dimensionen und Fakten, basierend auf geplante analytische Anfragen Redundanz möglich bzw. erwünscht Multidimensionales Modell (Star-Schema, Snowflake-Schema) Details siehe Kapitel 3 Jahr Books CDs DVDs... Region... North America Asia Europe Produktgruppe 32

17 Operative Datenbanken vs. Data Warehouses Technische Sicht Anfragen Operative Datenbank Transaktionale Anfragen Insert, Update, Delete, Select Anfragen über einzelne / wenige Tupel Anfrageoptimierung siehe VL Datenbanken II UPDATE Order SET amount = amount + 1 WHERE OrderID = 1 AND BookID = 204 Data Warehouse Analytische Anfragen Bulk-Insert und Select Typische Anfragetypen (drill down, slice, dice,...) Spezialisierte Optimierungsverfahren Details siehe Kapitel 3 und 4 Jahr Books CDs DVDs... Region... North America Asia Europe Produktgruppe 33 Extract-Transform-Load (ETL) Prozess Datenübertragung in das Data Warehouse?! Extrahiere relevante Daten aus den Quellen.! Transformiere die extrahierten Daten in das Schema des Data Warehouse.! Lade die transformierten Daten in das Data Warehouse.! Siehe Kapitel 5 (Hauptfokus auf Datenqualität, die während der Transformationsphase gewährleistet wird). 34

18 Data Warehouse Systeme und Tools! Diverse Data Warehouse Lösungen auf dem Markt! Siehe Kapitel 6! Gastvortrag Dr. Jens Bleihoder, OPITZ Consulting GmbH 35 Entwicklungsprozess eines Data Warhouse! Integration mehrerer, oft autonomer Datenquellen erfordert folgende Maßnahmen:! Einbindung / Mitwirkung der Fachabteilungen! Durchsetzen eines Qualitätsanspruchs! Gemeinsames Sprachverständnis! Nachvollziehbarkeit! Vom Produkt- zum Prozess-Gedanken 36

19 Kapitel 1 Einführung Vorstellung Organisatorisches Data Warehouses Ausblick auf das Semester 37 Credit: Michael Marcol Inhalte der Vorlesung Einführung Definition Data Warehouse Motivation für ein Data Warehouse Unterschied zu einer operativen Datenbank Architektur von Data Warehouse Systemen Bestandteile eines Data Warehouse Systems Konfigurationen Ermöglichung der Integration Datenmodellierung Multidimensionale Modellierung (Dimensionen, Fakten, Datenwürfel) Umsetzung des Datenmodells (relationale Abbildung, Star-Schema, SQL Operatoren,...) 38

20 Inhalte der Vorlesung Anfrageverarbeitung und Optimierung Indexstrukturen Optimierung von Star-Joins Materialisierte Sichten Partitionierung Datenreinigung ETL und Datenreinigung Typische Datenfehler Beheben von Datenfehlern durch Data Scrubbing, Dublettenerkennung, Datenfusion ETL-Werkzeuge und Anwendungsfälle 39 Fragen? Zum Inhalt der Vorlesung? Zur Leistungserfassung? Zum Ablauf?... 40

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Datenintegration & Datenherkunft Verteilung, Autonomie und Heterogenität

Datenintegration & Datenherkunft Verteilung, Autonomie und Heterogenität Datenintegration & Datenherkunft Verteilung, Autonomie und Heterogenität Wintersemester 2010/11 Melanie Herschel melanie.herschel@uni-tuebingen.de Lehrstuhl für Datenbanksysteme, Universität Tübingen 1

Mehr

Data Warehousing. Einleitung und Motivation. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Einleitung und Motivation. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Einleitung und Motivation Ulf Leser Wissensmanagement in der Bioinformatik Bücher im Internet bestellen Backup Durchsatz Loadbalancing Portfolio Umsatz Werbung Daten bank Ulf Leser: Data

Mehr

Überblick. Informationsintegration Materialisierte vs. Virtuelle Integration. 1.11.2005 Felix Naumann. Ankündigungen

Überblick. Informationsintegration Materialisierte vs. Virtuelle Integration. 1.11.2005 Felix Naumann. Ankündigungen Informationsintegration Materialisierte vs. Virtuelle Integration 1.11.2005 Felix Naumann Ankündigungen Überblick 2 Szenarien der Informationsintegration Data Warehouse Föderierte Datenbanken Einführung

Mehr

Datenbanksysteme II Architektur und Implementierung von Datenbanksystemen

Datenbanksysteme II Architektur und Implementierung von Datenbanksystemen Datenbanksysteme II Architektur und Implementierung von Datenbanksystemen Winter 2009/10 Melanie Herschel Willhelm-Schickard-Institut für Informatik Kapitel 1 Einführung Vorstellung Überblick Organisatorisches

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining 2 Data Warehousing und Data Mining Kapitel 1: Data-Warehousing-Architektur von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich zum letzten Jahr? In welchen Regionen

Mehr

Data Warehousing. Einleitung und Motivation. Wissensmanagement in der. Bioinformatik. Ulf Leser

Data Warehousing. Einleitung und Motivation. Wissensmanagement in der. Bioinformatik. Ulf Leser Data Warehousing Einleitung und Motivation Ulf Leser Wissensmanagement in der Bioinformatik Backup Durchsatz Loadbalancing Bücher im Internet bestellen Portfolio Umsatz Werbung Daten bank Ulf Leser: Data

Mehr

OLAP und Data Warehouses

OLAP und Data Warehouses OLP und Data Warehouses Überblick Monitoring & dministration Externe Quellen Operative Datenbanken Extraktion Transformation Laden Metadaten- Repository Data Warehouse OLP-Server nalyse Query/Reporting

Mehr

Informationssysteme: Neuere Konzepte Teil II

Informationssysteme: Neuere Konzepte Teil II Informationssysteme: Neuere Konzepte Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Wintersemester 2011 / 2012 Ulf Leser Wissensmanagement in der Bioinformatik Datenbanken und Datenanalyse... Der typische Wal-Mart Kaufagent verwendet täglich mächtige Data

Mehr

Kapitel 2 Terminologie und Definition

Kapitel 2 Terminologie und Definition Kapitel 2 Terminologie und Definition In zahlreichen Publikationen und Fachzeitschriften tauchen die Begriffe Data Warehouse, Data Warehousing, Data-Warehouse-System, Metadaten, Dimension, multidimensionale

Mehr

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel

Data Warehousing. Kapitel 1: Data-Warehousing-Architektur. Folien teilweise übernommen von Matthias Gimbel Data Warehousing Kapitel 1: Data-Warehousing-Architektur Folien teilweise übernommen von Matthias Gimbel 2 Analyse von Geschäftsprozessen Mögliche Fragestellungen Wie entwickelt sich unser Umsatz im Vergleich

Mehr

Datenbanktechnologie für Data-Warehouse-Systeme

Datenbanktechnologie für Data-Warehouse-Systeme Wolfgang Lehner Datenbanktechnologie für Data-Warehouse-Systeme Konzepte und Methoden dpunkt.verlag 1 1.1 1.2 1.3 1.4 1. 5 2 2.1 2.2 2.3 Einleitung 1 Betriebswirtschaftlicher Ursprung des Data Warehousing...

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Data-Warehouse-Systeme

Data-Warehouse-Systeme Vorlesung im Wintersemester 2008/09 Data-Warehouse-Systeme Dr. Stefanie Rinderle-Ma Institut für Datenbanken und Informationssysteme Universität Ulm stefanie.rinderle@uni-ulm.de Übersicht 1) Einführung

Mehr

Integration, Migration und Evolution

Integration, Migration und Evolution 14. Mai 2013 Programm für heute 1 2 Quelle Das Material zu diesem Kapitel stammt aus der Vorlesung Datenintegration & Datenherkunft der Universität Tübingen gehalten von Melanie Herschel im WS 2010/11.

Mehr

Data Warehouse Technologien

Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis vii 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...............

Mehr

Data Warehousing: Anwendungsbeispiel

Data Warehousing: Anwendungsbeispiel Frühjahrsemester 2012 cs242 Data Warehousing / cs243 Datenbanken Kapitel 1: Einführung H. Schuldt Data Warehousing: Anwendungsbeispiel Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale

Mehr

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien

Veit Köppen Gunter Saake Kai-Uwe Sattler. 2. Auflage. Data Warehouse Technologien Veit Köppen Gunter Saake Kai-Uwe Sattler 2. Auflage Data Warehouse Technologien Inhaltsverzeichnis Inhaltsverzeichnis ix 1 Einführung in Data-Warehouse-Systeme 1 1.1 Anwendungsszenario Getränkemarkt...

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling 30. Juni 2006 - Technische Universität Kaiserslautern Paul R. Schilling ! " #$% & '( ( ) *+, - '. / 0 1 2("$ DATEN SIND ALLGEGENWÄRTIG Bill Inmon, father of data warehousing Unternehmen In einer vollkommenen

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014

Datenbanksysteme 2 Frühjahr-/Sommersemester 2014 28. Mai 2014 Lehrstuhl für Praktische Informatik III Prof. Dr. Guido Moerkotte Email: moer@db.informatik.uni-mannheim.de Marius Eich Email: marius.eich@uni-mannheim.de Datenbanksysteme 2 8. Übungsblatt Frühjahr-/Sommersemester

Mehr

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery

Kapitel II. Datenbereitstellung 2004 AIFB / FZI 1. Vorlesung Knowledge Discovery Kapitel II Datenbereitstellung 2004 AIFB / FZI 1 II. Datenbereitstellung 2004 AIFB / FZI 2 II. Datenbereitstellung Collect Initial Data identify relevant attributes identify inconsistencies between sources

Mehr

Business Intelligence Data Warehouse. Jan Weinschenker

Business Intelligence Data Warehouse. Jan Weinschenker Business Intelligence Data Warehouse Jan Weinschenker 28.06.2005 Inhaltsverzeichnis Einleitung eines Data Warehouse Data Warehouse im Zusammenfassung Fragen 3 Einleitung Definition: Data Warehouse A data

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Datenbanken (WS 2015/2016)

Datenbanken (WS 2015/2016) Datenbanken (WS 2015/2016) Klaus Berberich (klaus.berberich@htwsaar.de) Wolfgang Braun (wolfgang.braun@htwsaar.de) 0. Organisatorisches Dozenten Klaus Berberich (klaus.berberich@htwsaar.de) Sprechstunde

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien

fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Einführung Gegenstand der Vorlesung fi Data Warehouse: Sammlung von Technologien zur Unterstützung von Entscheidungsprozessen fi Herausforderung an Datenbanktechnologien Datenvolumen (effiziente Speicherung

Mehr

Objektorientierte Datenbanken

Objektorientierte Datenbanken OODB 11 Slide 1 Objektorientierte Datenbanken Vorlesung 11 vom 01.07.2004 Dr. Sebastian Iwanowski FH Wedel OODB 11 Slide 2 Inhalt heute: Datenbanken in betriebswirtschaftlichen Anwendungen OTLP (SAP) Data

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 11 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Kapitel 3: Eigenschaften von Integrationssystemen. Einordnung von Integrationssystemen bzgl. Kriterien zur Beschreibung von Integrationssystemen

Kapitel 3: Eigenschaften von Integrationssystemen. Einordnung von Integrationssystemen bzgl. Kriterien zur Beschreibung von Integrationssystemen Datenintegration Datenintegration Kapitel 3: Eigenschaften von Integrationssystemen Andreas Thor Sommersemester 2008 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de 1 Inhalt Einordnung

Mehr

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten.

Datenbanksysteme I. Klausur zum Praktikum. Mehrere Professoren prüfen mit genau einem Beisitzer genau einen Studenten. Lehrstuhl für Datenbanken und Informationssysteme Wintersemester 1999/2000 Universität Augsburg, Institut für Informatik 25. Februar 2000 Prof. Dr. Werner Kießling A. Leubner, M. Wagner Datenbanksysteme

Mehr

Informationsintegration

Informationsintegration Informationsintegration Grundlegende Architekturen Ulf Leser Inhalt diese Vorlesung Klassifikation verteilter, autonomer, heterogener Systeme Weitere Klassifikationskriterien Schichtenaufbau integrierter

Mehr

DBS 1 DBS1. Prof. Dr. E. Rahm. Lehrveranstaltungen zu Datenbanken (WS 09/10) Wintersemester 2009/2010. Universität Leipzig Institut für Informatik

DBS 1 DBS1. Prof. Dr. E. Rahm. Lehrveranstaltungen zu Datenbanken (WS 09/10) Wintersemester 2009/2010. Universität Leipzig Institut für Informatik Datenbanksysteme I Prof. Dr. E. Rahm Wintersemester 2009/2010 DBS 1 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de WS0910, Prof. Dr. E. Rahm 0-1 Lehrveranstaltungen zu Datenbanken

Mehr

Data Warehousing. Architektur Komponenten Prozesse. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Architektur Komponenten Prozesse. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Architektur Komponenten Prozesse Ulf Leser Wissensmanagement in der Bioinformatik Zusammenfassung letzte Vorlesung Aufbau eines Data Warehouse Redundante, transformierte Datenhaltung Asynchrone

Mehr

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung "Informa=onssysteme" Sommersemester 2015

6. Sichten, Integrität und Zugriffskontrolle. Vorlesung Informa=onssysteme Sommersemester 2015 6. Sichten, Integrität und Zugriffskontrolle Vorlesung "Informa=onssysteme" Sommersemester 2015 Überblick Sichten Integritätsbedingungen Zugriffsrechte SQL- Schema und SQL- Katalog Das Informa=onsschema

Mehr

Einführungsveranstaltung: Data Warehouse

Einführungsveranstaltung: Data Warehouse Einführungsveranstaltung: 1 Anwendungsbeispiele Berichtswesen Analyse Planung Forecasting/Prognose Darstellung/Analyse von Zeitreihen Performancevergleiche (z.b. zwischen Organisationseinheiten) Monitoring

Mehr

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45 Vorwort 15 Teil I Grundlagen 19 i Einführung In das Thema Datenbanken 21 I.I Warum ist Datenbankdesign wichtig? 26 i.2 Dateisystem und Datenbanken 28 1.2.1 Historische Wurzeln 29 1.2.2 Probleme bei der

Mehr

Ausgangspunkt. Datenintegration. Ziel. Konflikte. Architekturen. Transparenz

Ausgangspunkt. Datenintegration. Ziel. Konflikte. Architekturen. Transparenz Ausgangspunkt Datenintegration Web Informationssysteme Wintersemester 2002/2003 Donald Kossmann Daten liegen in verschiedenen Datenquellen (Extremfall: jede URL eigene Datenquelle) Mietautos bei www.hertz.com

Mehr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr

Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Copyright 2007 Infor. Alle Rechte vorbehalten. Innovatives Reporting mit PM10: Analysen und Berichte mit Single Point of Truth 11.00 11.45 Uhr Hubertus Thoma Presales Consultant PM Schalten Sie bitte während

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 29. April 2013 - MySQL 2 Sebastian Cuy sebastian.cuy@uni-koeln.de Aufgaben Anmerkungen Best practice: SQL Befehle

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Datenbanken und Informationssysteme

Datenbanken und Informationssysteme Datenbanken und Informationssysteme Lehrangebot Stefan Conrad Heinrich-Heine-Universität Düsseldorf Institut für Informatik April 2012 Stefan Conrad (HHU) Datenbanken und Informationssysteme April 2012

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

Data Warehousing 0-1. DBS-Module

Data Warehousing 0-1. DBS-Module Data Warehousing Sommersemester 2014 Prof. Dr. E. Rahm Universität Leipzig Institut für Informatik y y y http://dbs.uni-leipzig.de 0-1 DBS-Module Master-Studium Informatik 10-202-2215 Moderne Datenbanktechnologien

Mehr

Das Multidimensionale Datenmodell

Das Multidimensionale Datenmodell Das Multidimensionale Datenmodell Konzeptuelle Modellierung Umsetzung des Modells Beispiel ER-Modell 2 / 36 Probleme ER-Modellierung Keine Unterscheidung Klassifikation, Attribute, Kenngrößen Dimension

Mehr

Multidimensionale Datenbanksysteme

Multidimensionale Datenbanksysteme Multidimensionale Datenbanksysteme Modellierung und Verarbeitung Von Dr.-Ing. Wolfgang Lehner IBM Almaden Research Center, San Jose, USA Technische Universität Darrr:ctadi FACHBEREICH INFORMATIK BIBLIOTHEK

Mehr

Lehrgebiet Informationssysteme

Lehrgebiet Informationssysteme Lehrgebiet AG Datenbanken und (Prof. Michel, Prof. Härder) AG Heterogene (Prof. Deßloch) http://wwwlgis.informatik.uni-kl.de/ Was sind? Computergestützte Programmsysteme, die Informationen erfassen, dauerhaft

Mehr

Aufgabe 1: [Logische Modellierung]

Aufgabe 1: [Logische Modellierung] Aufgabe 1: [Logische Modellierung] a) Entwerfen Sie für das von Ihnen entworfene Modell aus Aufgabe 2 des 1. Übungsblattes ein Star-Schema. b) Entwerfen Sie für das vorangegangene Modell einen Teil eines

Mehr

Data Warehouse Technologien

Data Warehouse Technologien mitp Professional Data Warehouse Technologien von Veit Köppen, Gunter Saake, Kai-Uwe Sattler 2. Auflage 2014 Data Warehouse Technologien Köppen / Saake / Sattler schnell und portofrei erhältlich bei beck-shop.de

Mehr

Deduktive Datenbanken

Deduktive Datenbanken Deduktive Datenbanken SS 2003 Prof. Dr. Rainer Manthey Institut für Informatik III Universität Bonn Deduktive Datenbanken 1 "Deductive databases in a nutshell" Deduktion (von lat. "deducere": wegführen,

Mehr

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH

Einführung in OLAP und Business Analysis. Gunther Popp dc soft GmbH Einführung in OLAP und Business Analysis Gunther Popp dc soft GmbH Überblick Wozu Business Analysis mit OLAP? OLAP Grundlagen Endlich... Technischer Background Microsoft SQL 7 & OLAP Services Folie 2 -

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II.

Kapitel II. Datenbereitstellung. II. Datenbereitstellung. II.1 Grundlagen. II. Datenbereitstellung. Collect Initial Data. II. II. bereitstellung Kapitel II bereitstellung 1 2 II. bereitstellung II.1 Grundlagen Collect Initial Data identify relevant attributes identify inconsistencies between sources Describe Data characterize

Mehr

Data Warehouse Grundlagen

Data Warehouse Grundlagen Seminarunterlage Version: 2.10 Version 2.10 vom 24. Juli 2015 Dieses Dokument wird durch die veröffentlicht.. Alle Rechte vorbehalten. Alle Produkt- und Dienstleistungs-Bezeichnungen sind Warenzeichen

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining 2 Cognos Report Net (CRN) Ermöglicht Erstellen von Ad-hoc-Anfragen (Query Studio) Berichten (Report Studio) Backend Data Cube Relationale Daten Übung: Cognos Report Net

Mehr

DW Data Warehousing Funktionsweise, Einsatz- und Problemfelder

DW Data Warehousing Funktionsweise, Einsatz- und Problemfelder DW Data Warehousing Funktionsweise, Einsatz- und Problemfelder Andreas Meier, Universität Fribourg Folie 1 DW Cartoon Quelle: Knoll M., Meier A. (Hrsg): Web & Data Mining. Praxis der Wirtschaftsinformatik,

Mehr

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL

XAMPP-Systeme. Teil 3: My SQL. PGP II/05 MySQL XAMPP-Systeme Teil 3: My SQL Daten Eine Wesenseigenschaft von Menschen ist es, Informationen, in welcher Form sie auch immer auftreten, zu ordnen, zu klassifizieren und in strukturierter Form abzulegen.

Mehr

Datenbanksysteme für Business, Technologie und Web. Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S

Datenbanksysteme für Business, Technologie und Web. Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S Datenbanksysteme für Business, Technologie und Web Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S Christoph Gollmick gollmick@informatik.uni-jena.de Friedrich-Schiller-Universität

Mehr

Data Warehousing. Komponenten Prozesse. Architektur. Wissensmanagement in der. Bioinformatik. Ulf Leser

Data Warehousing. Komponenten Prozesse. Architektur. Wissensmanagement in der. Bioinformatik. Ulf Leser Data Warehousing Architektur Komponenten Prozesse Ulf Leser Wissensmanagement in der Bioinformatik Zusammenfassung letzte Vorlesung 1 Aufbau eines Data Warehouse Redundante, transformierte Datenhaltung

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Christian Kurze BI-Praktikum IBM WS 2008/09

Christian Kurze BI-Praktikum IBM WS 2008/09 Einführung in die multidimensionale Datenmodellierung e mit ADAPT BI-Praktikum IBM WS 2008/09 1 Gliederung Einführung multidimensionale Datenmodellierung 1. Multidimensionales Modell BI-Praktikum IBM WS

Mehr

Intelligence (BI): Von der. Nürnberg, 29. November 2011

Intelligence (BI): Von der. Nürnberg, 29. November 2011 Modelle für Business Intelligence (BI): Von der Anforderung zum Würfel Nürnberg, 29. November 2011 Warum Modelle für Business Intelligence (BI)? Warum Modelle für Business Intelligence (BI)? Bis zur Auswertung

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

Verteilungsmechanismen in verschiedenen RDBMS

Verteilungsmechanismen in verschiedenen RDBMS Verteilungsmechanismen in verschiedenen RDBMS Vorlesung im Wintersemester 2013 (Analyse verschiedener RDBMS-Produkte hinsichtlich angebotener Verteilmechanismen) Prof. Dr. Andreas Schmietendorf 1 Zielstellung

Mehr

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen

Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen Christoph Arnold (B. Sc.) Prof. Dr. Harald Ritz Eignung unterschiedlicher Faktenmodellierungen in Data Warehouse-Systemen AKWI-Tagung, 17.09.2012, Hochschule Pforzheim Christoph Arnold, Prof. Dr. Harald

Mehr

Einführung in Hauptspeicherdatenbanken

Einführung in Hauptspeicherdatenbanken Einführung in Hauptspeicherdatenbanken Harald Zankl Probevorlesung 13. 01., 13:15 14:00, HS C Inhaltsverzeichnis Organisation Überblick Konklusion Harald Zankl (LFU) Hauptspeicherdatenbanken 2/16 Organisation

Mehr

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses

Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Vergleich von Open-Source und kommerziellen Programmen zur Durchführung eines ETL-Prozesses Exposé zur Diplomarbeit Humboldt-Universität zu Berlin Mathematisch-Naturwissenschaftliche Fakultät II Institut

Mehr

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung

Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung 6. Datenintegrität Motivation Semantische Integrität (auch: Konsistenz) der in einer Datenbank gespeicherten Daten als wichtige Anforderung nur sinnvolle Attributwerte (z.b. keine negativen Semester) Abhängigkeiten

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Logische Optimierung Ulf Leser Wissensmanagement in der Bioinformatik Inhaltsübersicht Vorlesung Einleitung & Motivation Architektur Modellierung von Daten im DWH Umsetzung

Mehr

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse

Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Data Warehouse Definition (1) http://de.wikipedia.org/wiki/data-warehouse Ein Data-Warehouse bzw. Datenlager ist eine zentrale Datensammlung (meist eine Datenbank), deren Inhalt sich aus Daten unterschiedlicher

Mehr

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks . Einführung Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks Sattler / Saake Data-Warehouse-Technologien Szenario: Getränkemarkt Umsatz, Portfolio SSaufland

Mehr

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP

Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Datenbanktechnologie mit praktischen Übungen in MySQL und PHP Übung, Sommersemester 2013 22. April 2013 - MySQL Sebastian Cuy sebastian.cuy@uni-koeln.de Datenbanken Was sind eigentlich Datenbanken? Eine

Mehr

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil

Frühjahrsemester 2011. Data Warehousing Kapitel 5: Data Warehousing. H. Schuldt. 5.1 Einführung. Filiale Allschwil Frühjahrsemester Data Warehousing Kapitel 5: Data Warehousing H. Schuldt Wiederholung aus Kapitel 5. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen: Welches

Mehr

Event Stream Processing & Complex Event Processing. Dirk Bade

Event Stream Processing & Complex Event Processing. Dirk Bade Event Stream Processing & Complex Event Processing Dirk Bade Die Folien sind angelehnt an eine Präsentation der Orientation in Objects GmbH, 2009 Motivation Business Activity Monitoring Sammlung, Analyse

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 08. Exkurs: Datenbanken 1 Motivation Datenbanksysteme

Mehr

Grundlagen von Datenbanken

Grundlagen von Datenbanken Grundlagen von Datenbanken Aufgabenzettel 1 Grundlagen Datenbanken: Kurzer historischer Überblick (1) Anwendung 1 Anwendung 2 Datei 1 Datei 2 Datei 3 Zugriff auf Dateien ohne spezielle Verwaltung 2 Exkurs:

Mehr

Komponenten und Architekturen von Analytischen Informationssystemen (AIS)

Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Komponenten und Architekturen von Analytischen Informationssystemen (AIS) Melanie Pfoh Konsultation 27. Juni 2013 Hinweis Diese Folien ersetzen keinesfalls den Übungsstoff des zugehörigen e-learning-kurses.

Mehr

Datenbanksysteme (5 LP) Softwaretechnik (5 LP) Kommunikationssysteme (5 LP) Automaten und Sprachen. Diskrete Strukturen (5 LP)

Datenbanksysteme (5 LP) Softwaretechnik (5 LP) Kommunikationssysteme (5 LP) Automaten und Sprachen. Diskrete Strukturen (5 LP) Datenbanksysteme I Prof. Dr. E. Rahm Wintersemester 2015/2016 DBS 1 Universität Leipzig Institut für Informatik http://dbs.uni-leipzig.de 15/16, Prof. Dr. E. Rahm 0-1 BACHELOR Informatik Algorithmen und

Mehr

Einführung in SQL Datenbanken bearbeiten

Einführung in SQL Datenbanken bearbeiten Einführung in SQL Datenbanken bearbeiten Jürgen Thomas Entstanden als Wiki-Buch Bibliografische Information Diese Publikation ist bei der Deutschen Nationalbibliothek registriert. Detaillierte Angaben

Mehr

Datenbanken. Dateien und Datenbanken:

Datenbanken. Dateien und Datenbanken: Dateien und Datenbanken: Professionelle Anwendungen benötigen dauerhaft verfügbare, persistent gespeicherte Daten. Datenbank-Systeme bieten die Möglichkeit, Daten persistent zu speichern. Wesentliche Aspekte

Mehr

OLTP: Online Transaction Processing

OLTP: Online Transaction Processing Moderne Betriebliche Anwendungen von Datenbanksystemen Online Transaction Processing (bisheriger Fokus) Data Warehouse-Anwendungen Data Mining OLTP: Online Transaction Processing Beispiele Flugbuchungssystem

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

RTAS - Realtime analytics System

RTAS - Realtime analytics System RTAS - Realtime analytics System 1 Inhaltsverzeichnis Konzept... 2 Einführung... 2 Prinzip der Doppik... 2... 2 Buchung... 3 Beispiel 1. Ein Warenkonto... 3 Beispiel 2. Lieferantenkonto... 4 Beispiel 3.

Mehr

Oracle 9i Einführung. Performance Tuning. Kurs. Teil 12 Materialized Views. Universität Hannover. Praxisbeispiel. Migration.

Oracle 9i Einführung. Performance Tuning. Kurs. Teil 12 Materialized Views. Universität Hannover. Praxisbeispiel. Migration. Kurs Oracle 9i Einführung Performance Tuning Teil 12 Materialized Views Timo Meyer Wintersemester 2005 / 2006 Seite 1 von 9 Seite 1 von 9 Agenda 1. Einführung Materialized Views 2. 3. Materialized View

Mehr

Definition Informationssystem

Definition Informationssystem Definition Informationssystem Informationssysteme (IS) sind soziotechnische Systeme, die menschliche und maschinelle Komponenten umfassen. Sie unterstützen die Sammlung, Verarbeitung, Bereitstellung, Kommunikation

Mehr

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt Andreas Heuer Gunter Saake Kai-Uwe Sattler Datenbanken kompakt Inhaltsverzeichnis Vorwort v 1 Was sind Datenbanken 1 1.1 Warum Datenbanken 1 1.2 Datenbanksysteme 4 1.3 Anforderungen: Die Codd'schen Regeln

Mehr

RE.one. Self Service Information Management für die Fachabteilung

RE.one. Self Service Information Management für die Fachabteilung RE.one Self Service Information Management für die Fachabteilung Das Ziel Verwertbare Informationen aus Daten gewinnen Unsere Vision Daten Info Data Warehousing radikal vereinfachen in einem Tool Die Aufgabe

Mehr