5.4 Benchmarks für Data Warehouses

Größe: px
Ab Seite anzeigen:

Download "5.4 Benchmarks für Data Warehouses"

Transkript

1 5.4 Benchmarks für Data Warehouses Benchmark ( Massstab ) zum Vergleich der Leistungsfähigkeit von Systemen Für Datenbanken: Serie von Benchmarks des Transaction Processing Performance Council (www.tpc.org) TPC-C: klassischer OLTP Benchmark TPC-E: ecommerce Benchmark (ebenfalls mit OLTP-Charakteristik) TPC-H: Ad-hoc Decision Support (Data Warehousing) Vorgegeben sind jeweils Schemata Schema-, Query- und Datengeneratoren Messungen erfolgen mit unterschiedlichen Datenbank-Grössen 5-77 TPC-C Benchmark System-Performanz mit OLTP-Workload Simultane Ausführung einer Mischung aus lese- und schreibintensiven Transaktionen Viele konkurrierende Benutzer On-line und asynchrone Ausführungen ormale CPU-Last, aber starke Disk-I/O ACID Eigenschaften Metrik: transactions-per-minute-c (tpmc) Anzahl der orders bearbeitet pro Minute business throughput 5-78

2 TPC-C-Schema Remote-W W * 0 Warehouse W District W * 0 Die Zahlen in den Entitätstypen geben die Kardinalitäten der einzelnen Tabellen (# Tupel) an Stock History W * 30k+ Customer W * 30k + bedeutet variable Grösse (Tupel werden während des TPC-C Durchlaufs neu erzeugt) W * 00k Skalierung de gesamten Datenbank erfolgt über die Anzahl Entitäten im Entitätstyp Warehouse (W) Item OrderLine W*2700k+ Order W*90k+ 00k eworder W*9k TPC-C Transaktionen 0/23 0/23 /23 Customer-Inquiry Customer-Inquiry Customer-Inquiry ew-order Payment Order-Info. Select txn from menu:. ew-order n/a 2. Payment 43% 3. Order-Status 4 % 4. Delivery 4 % 5. Stock-Level 4 % /23 Customer-Inquiry 2 /23 Stock-Info. 3 Input screen Emulierter Benutzer wählt zufällig eine Transaktion aus Delivery-Transaktion läuft asynchron (als Batch) Vorgegebene Verteilung 80:20 read-write Output screen Go back to

3 TPC-C Benchmark-Resultate nach Performance Stand: 05/200, Quelle: Transaction Processing Performance Council, 5-8 TPC-H: Schema Der TPC-H-Benchmark bildet eine Data Warehousing-Umgebung nach Messungen in TPC-H erfolgen mit den folgenden Grössen: 00 GB 300 GB TB 3 TB 0 TB 30 TB PART REGIO ATIO SUPPLIER PARTSUPP REGIO ATIO CUSTOMER ORDERS LIEITEM

4 SELECT FROM WHERE AD AD GROUP BY ORDER BY TPC-H: Beispiel einer Anfrage c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice, SUM(l_quantity) customer, orders, lineitem o_orderkey I (SELECT l_orderkey FROM lineitem GROUP BY l_orderkey HAVIG SUM(l_quantity) > :) c_custkey = o_custkey o_orderkey = l_orderkey c_name, c_custkey, o_orderkey, o_orderdate, o_totalprice o_totalprice desc, o_orderdate; 5-83 TPC-H: Benchmark-Resultate (3 TB) Stand: 05/200, Quelle: Transaction Processing Performance Council,

5 TPC-H: Benchmark-Resultate (0 & 30 TB) Stand: 05/200, Quelle: Transaction Processing Performance Council, Column Stores für Data Warehousing Klassische relationale Datenbanken verwenden 'Row Stores' Speicherung kompletter Tupel auf Datenbankseiten Optimiert für OLTP-Anwendungen Kurzlebige ACID-Transaktionen Schreiben / Ändern gesamter Tupel / g p Kunden Kr ame Stadt Saldo Rabatt 0 Legrand Genf - 080, Marty Basel -8 00, Frei Basel 0,00 0,0 04 Janvier Genf 0,00 0,0 05 Rossi Lugano 0,00 0,05 06 Meier Zürich ,00 0,05 07 Hürlimann St. Gallen -00,00 0,05 08 Schmid Luzern ,00 0,0 09 Müller-Lüdenscheid Zürich -550,00 0,00 0 Schumacher Genf ,00 0,20 Datenseiten

6 Column Store Column Store-Datenbanksysteme Wenige Änderungen Optimiert für (langlebige) Leseanwendungen (OLAP), nur bedingt geeignet für Updates Kunden Kr ame Stadt Saldo Rabatt 0 Legrand Genf - 080, Marty Basel -8 00, Frei Basel 0,00 0,0 04 Janvier Genf 0,00 0,0 05 Rossi Lugano 0,00 0,05 06 Meier Zürich ,00 0,05 07 Hürlimann St. Gallen -00,00 0,05 08 Schmid Luzern ,00 0,0 09 Müller-Lüdenscheid Zürich -550,00 0,00 0 Schumacher Genf ,00 0,20 FS 200 Datenseiten Data Warehousing (CS242) Data Warehousing 5-87 C-Store C-Store: Beispiel eines Column Store-Systems Writeable Store: erlaubt beliebige Insert und Update-Operationen Read-Optimized Store: Einzige erlaubte Schreiboperation ist Batch-Update aus Writeable store (= lazy replication) Tuple Mover: führt Batch-Update durch Relationenmodell als logisches Datenmodell, SQL an der Schnittstelle Physische Speicherung: Projektionen einzelner (oder mehrerer) Attribute Writeable Store (WS) Tuple Mover Read-optimized Store (RS)

7 C-Store: Read-Optimized Store Einzelne Attribute können (in unterschiedlichen Projektionen) mehrfach im Readoptimized Store gespeichert werden Für jede Projektion wird ein Sort Key angegeben (das Attribut, nach dem die Projektion sortiert wird) Jede Projektion wird horizontal partitioniert in mehrere Segmente. Jedes Segment ist durch einen Segment Identifier (Sid) gekennzeichnet. Also enthält jedes Segment einer Projektion ein Intervall des Sort Keys Tabelle ame Age Dept Salary Projektion P Sort key SID ame 2 Dept Key range Segmente 3 P2 ame Sort key Salary Sort key P3 Age Salary Logische Repräsentation 5-89 C-Store: Read-Optimized Store Die einzelnen Attribute jedes Segments sind durch einen Storage Key (SK) gekennzeichnet Die Verknüpfung zu weiteren Attributen desselben Tupels erfolgt über spezielle Join-Indexe Annahme: P (M Segmente) und P2 ( Segmente) sind Projektionen derselben Relation Join-Index besteht aus M Tabellen (eine pro Segment von P) Eintrag im Join-Index für P-Segment S P enthält für jeden Eintrag von S P einen Verweis auf die zugehörigen Einträge in der Projektion P2 Dieser Verweis besteht aus dem Segment Identifier Sid und dem Storage Key (SK) innerhalb des Segments Join-Indexe stellen also nur eine unidirektionale Verbindung zwischen Projektionen her

8 C-Store Join-Index Segment S P,i : i-tes Segment von Projektion P S P,i ame SK Dept ame Salary S P2,j S P2,j+2 Join-Index für Segment S P,i ame Salary SID SK S P2, j 3 S P2, j Weitere Column Store-Systeme Google s Bigtable Verwendet Projektion und Segmentierung Verteilung der Segmente auf mehrere Rechner Basiert auf GFS (Google File System) Vertica Kommerzielle Implementierung der C-Stores MonetDB Forschungsprototyp, CWI Amsterdam Sybase IQ Erstes kommerzielles Column Store-System und viele weitere mehr (Open Source & kommerziell)

9 Literatur [BG 09] A. Bauer, H. Günzel (Hrg.): Data Warehouse Architektur, Entwicklung, Anwendung; dpunkt.verlag, 3. Auflage, [GCB + 97] J. Gray et al.: Data Cube: A relational aggregation operator generalizing group-by, cross-tab, and sub-totals. In: Data Mining and Knowlegde Discovery, 29-53, 997. [Inm 96] W. Inmon: Building the Data Warehouse, John Wiley & Sons, 996 [Leh 03] W. Lehner: Datenbanktechnologie für Data-Warehouse-Systeme, dpunkt.verlag,

MV-Serialisierungsgraph

MV-Serialisierungsgraph MV-Serialisierungsgraph Unter der Versionenordnung eines Objektes x œ DB wird eine totale Ordnung aller in S über und DB erzeugten Versionen von x verstanden. Die Vereinigung aller Versionenordnungen der

Mehr

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 7: Data Warehousing-Anfragen. H. Schuldt. 7.1 Einführung. Filiale Allschwil

Frühjahrsemester 2013. CS243 Datenbanken Kapitel 7: Data Warehousing-Anfragen. H. Schuldt. 7.1 Einführung. Filiale Allschwil Frühjahrsemester 3 CS43 Datenbanken Kapitel 7: Data Warehousing-Anfragen H. Schuldt Wiederholung aus Kapitel 7. Einführung Tresgros Tresgros Tresgros Filiale Muttenz Filiale Allschwil Filiale Liestal Anfragen:

Mehr

Kap. 7: DB/TP Benchmarks

Kap. 7: DB/TP Benchmarks Kap. 7: DB/TP Benchmarks Einleitung Anforderungen an Benchmarks TPC-Benchmarks TPC-C TPC-W TPC-H 7-1 Benchmarks Leistungsbewertung eines DBMS bzw. Transaktionssystems für standardisierte Last und Ausführungsbedingungen

Mehr

8. Datenbank-Benchmarks Benchmark-Anforderungen TPC-Benchmarks OLTP-Benchmarks

8. Datenbank-Benchmarks Benchmark-Anforderungen TPC-Benchmarks OLTP-Benchmarks 8. Datenbank-Benchmarks Benchmark-Anforderungen TPC-Benchmarks OLTP-Benchmarks TPC-C TPC-E Decision Support Benchmark: TPC-H WS10/11, Prof. Dr. E. Rahm 8-1 Anforderungen an geeignete Benchmarks* Domain-spezifische

Mehr

Kap. 7: DB/TP Benchmarks

Kap. 7: DB/TP Benchmarks Kap. 7: DB/TP Benchmarks Einleitung Anforderungen an Benchmarks TPC-Benchmarks OLTP: TPC-C und TPC-E OLAP: TPC-H und TPC-DS Big Data Benchmarks BigBench 7-1 Benchmarks Leistungsbewertung eines DBMS / Transaktionssystems

Mehr

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken

Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken Datenbanken Unit 9: OLAP, OLTP und objektrelationale Datenbanken 31. V. 2016 Outline 1 Organisatorisches 2 SQL 3 OLTP, OLAP, SAP, and Data Warehouse OLTP and OLAP SAP 4 Objekt-relationale Datenbanken Beispiel

Mehr

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks

1. Einführung. Szenario: Getränkemarkt. DB-Schema. Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks . Einführung Motivation Überblick Anwendungen Abgrenzung Begriff Data Warehouse DW-Architektur Benchmarks Sattler / Saake Data-Warehouse-Technologien Szenario: Getränkemarkt Umsatz, Portfolio SSaufland

Mehr

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo.

Mengenvergleiche: Alle Konten außer das, mit dem größten Saldo. Mengenvergleiche: Mehr Möglichkeiten als der in-operator bietet der θany und der θall-operator, also der Vergleich mit irgendeinem oder jedem Tupel der Unteranfrage. Alle Konten außer das, mit dem größten

Mehr

Teil XI Spalten-orientierte DBMSs

Teil XI Spalten-orientierte DBMSs Teil XI Spalten-orientierte DBMSs Spalten-orientierte Datenbankmanagementsysteme 1 Motivation 2 Funktionsweise 3 Erweiterungen 4 Literatur c Sattler / Saake / Köppen Data-Warehouse-Technologien Letzte

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 Dr. Veit Köppen 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische

Mehr

PostgreSQL in großen Installationen

PostgreSQL in großen Installationen PostgreSQL in großen Installationen Cybertec Schönig & Schönig GmbH Hans-Jürgen Schönig Wieso PostgreSQL? - Die fortschrittlichste Open Source Database - Lizenzpolitik: wirkliche Freiheit - Stabilität,

Mehr

Kap. 7 IS-Infrastruktur: Zusammenfassung

Kap. 7 IS-Infrastruktur: Zusammenfassung Kap. 7 IS-Infrastruktur: Zusammenfassung In Teil I haben wir verschiedene Middleware-Lösungen zur Entwicklung (komplexer), verteilter Informationssysteme kennengelernt Wir haben Middleware eingeführt als

Mehr

Herbstsemester 2009. Datenbanken mit Übungen Kapitel 4: SQL. H. Schuldt. Inhalt

Herbstsemester 2009. Datenbanken mit Übungen Kapitel 4: SQL. H. Schuldt. Inhalt Herbstsemester 2009 Datenbanken mit Übungen Kapitel 4: SQL H. Schuldt Inhalt Datenmanipulationssprache SQL: SQL (Structured Query Language) ist die Standardsprache für die Datendefinition und Datenmanipulation

Mehr

Ausarbeitung im Fach Datenbanken II

Ausarbeitung im Fach Datenbanken II Ausarbeitung im Fach Datenbanken II Datenbanken Benchmarks Michael Heinrich 02.07.2008 IN05 Inhalt OLTP... 3 OLAP / Decision Support... 4 Decision Support System... 4 Online Analytical Processing... 4

Mehr

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem.

Einführung relationale Datenbanken. Themenblock: Erstellung eines Cube. Schlüssel. Relationenmodell Relationenname Attribut. Problem. Themenblock: Erstellung eines Cube Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Praktikum: Data Warehousing und Data Mining Idee Speicherung der Daten in Form von Tabellen

Mehr

Themenblock: Erstellung eines Cube

Themenblock: Erstellung eines Cube Themenblock: Erstellung eines Cube Praktikum: Data Warehousing und Data Mining Einführung relationale Datenbanken Problem Verwaltung großer Mengen von Daten Idee Speicherung der Daten in Form von Tabellen

Mehr

Abschluss Einblick und Ausblick

Abschluss Einblick und Ausblick Abschluss Einblick und Ausblick Prof. Dr. T. Kudraß 1 Benutzer Komponenten eines DBMS (Überblick) I/O-Prozessor Output-Generierung Parser für selbst. oder eingebettete Kommandos Precompiler Autorisierungs-Kontrolle

Mehr

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing

Seminar in der Seminarreihe Business Intelligence 1. OLAP und Datawarehousing Seminar in der Seminarreihe Business Intelligence 1 OLAP und Datawarehousing OLAP & Warehousing Die wichtigsten Produkte Die Gliederung Produkt Bewertung & Vergleiche Die Marktentwicklung Der aktuelle

Mehr

Data Warehousing Grundbegriffe und Problemstellung

Data Warehousing Grundbegriffe und Problemstellung Data Warehousing Grundbegriffe und Problemstellung Dr. Andrea Kennel, Trivadis AG, Glattbrugg, Schweiz Andrea.Kennel@trivadis.com Schlüsselworte Data Warehouse, Cube, Data Mart, Bitmap Index, Star Queries,

Mehr

REAL-TIME DATA WAREHOUSING

REAL-TIME DATA WAREHOUSING REAL-TIME DATA WAREHOUSING Lisa Wenige Seminarvortrag Data Warehousing und Analytische Datenbanken Friedrich-Schiller-Universität Jena - 19.01.12 Lisa Wenige 19.01.2012 2 Agenda 1. Motivation 2. Begriffsbestimmung

Mehr

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter

bersicht Datenbanken und Datawarehouses Datenbank Datenbanksysteme Niels Schršter bersicht Niels Schršter EinfŸhrung GROUP BY Roll UpÔs Kreuztabellen Cubes Datenbank Ansammlung von Tabellen, die einen ãausschnitt der WeltÒ fÿr eine Benutzergruppe beschreiben. Sie beschreiben die funktionalen

Mehr

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Sommersemester 2005. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Sommersemester 2005 Ulf Leser Wissensmanagement in der Bioinformatik ... Der typische Walmart Kaufagent verwendet täglich mächtige Data Mining Werkzeuge, um die Daten der 300 Terabyte

Mehr

Hauptspeicher- Datenbanksysteme. Hardware-Entwicklungen Column- versus Row-Store...

Hauptspeicher- Datenbanksysteme. Hardware-Entwicklungen Column- versus Row-Store... Hauptspeicher- Datenbanksysteme Hardware-Entwicklungen Column- versus Row-Store... Hauptspeicher-Datenbanksysteme Disk is Tape, Tape is dead Jim Gray Die Zeit ist reif für ein Re-engineering der Datenbanksysteme

Mehr

Unterabfragen (Subqueries)

Unterabfragen (Subqueries) Unterabfragen (Subqueries) Die kürzeste Formulierung ist folgende: SELECT Felderliste FROM Tabelle1 WHERE Tabelle1.Feldname Operator (SELECT Feldname FROM Tabelle2 WHERE Bedingung); wobei Tabelle1 und

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

Vorwort zur 5. Auflage... 15 Über den Autor... 16

Vorwort zur 5. Auflage... 15 Über den Autor... 16 Vorwort zur 5. Auflage...................................... 15 Über den Autor............................................ 16 Teil I Grundlagen.............................................. 17 1 Einführung

Mehr

SQL und MySQL. Kristian Köhntopp

SQL und MySQL. Kristian Köhntopp SQL und MySQL Kristian Köhntopp Wieso SQL? Datenbanken seit den frühen 1950er Jahren: Hierarchische Datenbanken Netzwerkdatenbanken Relationale Datenbanken = SQL Relational? 10 9 8 7 6 f(y) := y = x r(y)

Mehr

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 17. Abbildung 17.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 17 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining opera- tionale DB opera- tionale DB opera- tionale DB Data Warehouse

Mehr

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik

Data Warehousing. Ausführung von OLAP Operationen. Ulf Leser Wissensmanagement in der Bioinformatik Data Warehousing Ausführung von OLAP Operationen Ulf Leser Wissensmanagement in der Bioinformatik Variante 1 - Snowflake Year id year Productgroup id pg_name Month Id Month year_id Day Id day month_id

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

Data-Warehouse-Technologien

Data-Warehouse-Technologien Data-Warehouse-Technologien Prof. Dr.-Ing. Kai-Uwe Sattler 1 Prof. Dr. Gunter Saake 2 1 TU Ilmenau FG Datenbanken & Informationssysteme 2 Universität Magdeburg Institut für Technische und Betriebliche

Mehr

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language:

SQL. strukturierte Datenbankabfragesprache eine Datenbanksprache zur. Structured Query Language: SQL Structured Query Language: strukturierte Datenbankabfragesprache eine Datenbanksprache zur Definition, Abfrage und Manipulation von Daten in relationalen Datenbanken In der SQL-Ansicht arbeiten In

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence SS 2014 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 07.05.2014 Business Intelligence Praktikum

Mehr

DB2 SQL, der Systemkatalog & Aktive Datenbanken

DB2 SQL, der Systemkatalog & Aktive Datenbanken DB2 SQL, der Systemkatalog & Aktive Datenbanken Lehr- und Forschungseinheit Datenbanken und Informationssysteme 1 Ziele Auf DB2 Datenbanken zugreifen DB2 Datenbanken benutzen Abfragen ausführen Den Systemkatalog

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube

Data Warehousing. Fragen des Marketingleiters. Beispiel: : Amazon. Technisch... Amazon weltweit... Datenbank. Aufbau eines DWH OLAP <-> OLTP Datacube Fragen des Marketingleiters Data Warehousing Wie viele Bestellungen haben wir jeweils im Monat vor Weihnachten, aufgeschlüsselt nach? Aufbau eines DWH OLAP OLTP Datacube Beispiel: : Amazon Technisch

Mehr

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis

Anfragebearbeitung. Anfrage. Übersetzer. Ausführungsplan. Laufzeitsystem. Ergebnis Anfragebearbeitung Anfrage Übersetzer Ausführungsplan Laufzeitsystem Ergebnis Übersetzung SQL ist deklarativ, Übersetzung für Laufzeitsystem in etwas prozedurales DBMS übersetzt SQL in eine interne Darstellung

Mehr

Softwaretechnik AI7. Wesentliche Inhalte der Vorlesung

Softwaretechnik AI7. Wesentliche Inhalte der Vorlesung Softwaretechnik AI7 schiefer@informatik.fh-kl.de http://www.informatik.fh-kl.de/~schiefer Einleitung-1 Wesentliche Inhalte der Vorlesung Softwarequalität Profiling Leistungsmessung, -bewertung Kennzahlen

Mehr

Kapitel 3: Datenbanksysteme

Kapitel 3: Datenbanksysteme LUDWIG- MAXIMILIANS- UNIVERSITY MUNICH DEPARTMENT INSTITUTE FOR INFORMATICS Skript zur Vorlesung: Einführung in die Informatik: Systeme und Anwendungen Sommersemester 2015 Kapitel 3: Datenbanksysteme Vorlesung:

Mehr

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5

Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Universität Augsburg, Institut für Informatik WS 2006/2007 Dr. W.-T. Balke 27. Nov. 2006 M. Endres, A. Huhn, T. Preisinger Lösungsblatt 5 Aufgabe 1: Projektion Datenbanksysteme I π A1,...,A n (π B1,...,B

Mehr

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH

Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Data Warehouse schnell gemacht Performanceaspekte im Oracle DWH Dani Schnider Principal Consultant Business Intelligence BI Trilogie, Zürich/Basel 25./26. November 2009 Basel Baden Bern Lausanne Zürich

Mehr

Fachbereich Informatik Praktikum 1

Fachbereich Informatik Praktikum 1 Hochschule Darmstadt DATA WAREHOUSE SS2015 Fachbereich Informatik Praktikum 1 Prof. Dr. S. Karczewski Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.April.2015 1. Kurzbeschreibung In diesem Praktikum geht

Mehr

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen

Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen Data Warehouses und Moderne Betriebliche Anwendungen von Datenbanksystemen (Folien von A. Kemper zum Buch 'Datenbanksysteme') Online Transaction Processing Betriebswirtschaftliche Standard- Software (SAP

Mehr

Mala Bachmann September 2000

Mala Bachmann September 2000 Mala Bachmann September 2000 Wein-Shop (1) Umsatz pro Zeit und Produkt Umsatz Jan Feb Mrz Q1 Apr 2000 Merlot 33 55 56 144 18 760 Cabernet-S. 72 136 117 325 74 1338 Shiraz 85 128 99 312 92 1662 Rotweine

Mehr

Datenbank-Tuning & Administration MS SQL SERVER 2005 EXPRESS

Datenbank-Tuning & Administration MS SQL SERVER 2005 EXPRESS Datenbank-Tuning & Administration MS SQL SERVER 2005 EXPRESS SS 07 Anwendungs-Seminar Database Tuning & Administration, University of Konstanz Lehrstuhl: Database & Information Systems Group Prof. Dr.

Mehr

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur

Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Datenbanken: Architektur & Komponenten 3-Ebenen-Architektur Moderne Datenbanksysteme sind nach der 3-Ebenen-Architektur gebaut: Anwendung 1 Web-Anwendung Anwendung 2 Java-Programm... Anwendung n Applikation

Mehr

Es geht also im die SQL Data Manipulation Language.

Es geht also im die SQL Data Manipulation Language. 1 In diesem Abschnitt wollen wir uns mit den SQL Befehlen beschäftigen, mit denen wir Inhalte in Tabellen ( Zeilen) einfügen nach Tabelleninhalten suchen die Inhalte ändern und ggf. auch löschen können.

Mehr

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Bei der Klausur sind keine Hilfsmittel (Skripten,

Mehr

10.1 Überblick. 10 Data Warehousing. klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des (

10.1 Überblick. 10 Data Warehousing. klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des ( 10 Data Warehousing 10.1 Überblick In klassischen Datenbankanwendungen werden Datenbanken im wesentlichen zur Abwicklung des ( operativen ) Tagesgeschäfts verwendet (z.b.: Buchungen, Einkauf/Verkauf, Personal,...)

Mehr

Vorlesung Wissensentdeckung in Datenbanken

Vorlesung Wissensentdeckung in Datenbanken Vorlesung Wissensentdeckung in Datenbanken Data Cube Katharina Morik, Uwe Ligges Informatik LS 8 22.04.2010 1 von 26 Gliederung 1 Einführung 2 Aggregation in SQL, GROUP BY 3 Probleme mit GROUP BY 4 Der

Mehr

Wiederholung VU Datenmodellierung

Wiederholung VU Datenmodellierung Wiederholung VU Datenmodellierung VU Datenbanksysteme Reinhard Pichler Arbeitsbereich Datenbanken und Artificial Intelligence Institut für Informationssysteme Technische Universität Wien Wintersemester

Mehr

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH)

Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Seminar im Sommersemester 2004 an der Universität Karlsruhe (TH) Verteilung und Integration von Informationen im Verkehrsbereich Thema: OLAP in verteilten Data-Warehouse- Umgebungen Vortrag: Christian

Mehr

SQL - Datenbankdesign - Aufbau

SQL - Datenbankdesign - Aufbau SQL - Datenbankdesign - Aufbau Kompakt-Intensiv-Training Unsere fünftägige ANSI SQL Schulung vermittelt Ihnen alle nötigen Kenntnisse zur Erstellung von Datenauswertungen und Programmierung wiederkehrender

Mehr

Datenbanken. Zusammenfassung. Datenbanksysteme

Datenbanken. Zusammenfassung. Datenbanksysteme Zusammenfassung Datenbanksysteme Christian Moser Seite 1 vom 7 12.09.2002 Wichtige Begriffe Attribut Assoziation API Atomares Attribut Datenbasis DBMS Datenunabhängigkeit Datenbankmodell DDL DML DCL ER-Diagramm

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

Vorlesung Datenbankmanagementsysteme

Vorlesung Datenbankmanagementsysteme Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse & Einführung Online Analytical Processing (OLAP) (auf Basis von Oracle) Vorlesung Datenbankmanagementsysteme SQL zur Datenanalyse M. Lange, S.

Mehr

Einführung. Informationssystem als Abbild der realen Welt

Einführung. Informationssystem als Abbild der realen Welt Was ist ein Datenbanksystem? Anwendungsgrundsätze Betrieb von Datenbanksystemen Entwicklung von Datenbanksystemen Seite 1 Informationssystem als Abbild der realen Welt Modellierung (Abstraktion) Sachverhalte

Mehr

Developing SQL Data Models MOC 20768

Developing SQL Data Models MOC 20768 Developing SQL Data Models MOC 20768 In diesem Kurs lernen Sie das Implementieren von multidimensionale Datenbanken mithilfe der SQL Server Analysis Services (SSAS) und durch das Erstellen von tabellarische

Mehr

Informatik 12 Datenbanken SQL-Einführung

Informatik 12 Datenbanken SQL-Einführung Informatik 12 Datenbanken SQL-Einführung Gierhardt Vorbemerkungen Bisher haben wir Datenbanken nur über einzelne Tabellen kennen gelernt. Stehen mehrere Tabellen in gewissen Beziehungen zur Beschreibung

Mehr

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P

Index- und Zugriffsstrukturen für. Holger Brämer, 05IND-P Index- und Zugriffsstrukturen für Data Warehousing Holger Brämer, 05IND-P Index- und Zugriffstrukturen für Data Warehousing Materialisierte Sichten Bitmap-Indexe Verbundindexe Materialisierte Sichten gehören

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

Die Grundbegriffe Die Daten Die Informationen

Die Grundbegriffe Die Daten Die Informationen Die Grundbegriffe Die Daten sind diejenigen Elemente, die vom Computer verarbeitet werden. Die Informationen sind Wissenselemente, welche durch die Analyse von Daten erhalten werden können. Die Daten haben

Mehr

GROUP BY, HAVING und Sichten

GROUP BY, HAVING und Sichten GROUP BY, HAVING und Sichten Tutorübungen 09/33 zu Grundlagen: Datenbanken (WS 14/15) Michael Schwarz Technische Universität München 11.11 / 12.11.2014 1/12 GROUP BY HAVING Sichten Eine Tabelle studenten

Mehr

Aktuelle Entwicklungen

Aktuelle Entwicklungen PostgreSQL Aktuelle Entwicklungen (Hans-Jürgen Schönig), [HACKERS] Are we losing momentum? Bruce Momjian: August 2003 Momjian Blog: Postgres Is Hot Bruche Momjian Blog: June 7, 2008 I have attended or

Mehr

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45

2 Datenbanksysteme, Datenbankanwendungen und Middleware... 45 Vorwort 15 Teil I Grundlagen 19 i Einführung In das Thema Datenbanken 21 I.I Warum ist Datenbankdesign wichtig? 26 i.2 Dateisystem und Datenbanken 28 1.2.1 Historische Wurzeln 29 1.2.2 Probleme bei der

Mehr

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL

Agenda. Themenblock: Data Warehousing (I) Referenzarchitektur. Eigenschaften eines Data Warehouse. Einführung Data Warehouse Data Access mit SQL Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining 2 Eigenschaften eines Data Warehouse Referenzarchitektur Integrierte Sicht auf beliebige Daten aus verschieden Datenbanken

Mehr

Themenblock: Data Warehousing (I)

Themenblock: Data Warehousing (I) Themenblock: Data Warehousing (I) Praktikum: Data Warehousing und Data Mining Agenda Einführung Data Warehouses Online Transactional Processing (OLTP) Datenmanipulation mit SQL Anfragen mit SQL Online

Mehr

Kap. 6 Data Warehouse

Kap. 6 Data Warehouse 1 Kap. 6 Data Warehouse 6.1 Was ist ein Data Warehouse, Motivation? 6.2 Data Cube und Cube-Operationen 6.3 Workshop: MS SQL Server, Cube Operationen 6.4 Physischer Entwurf, Implementierung von Cubes 6.5

Mehr

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen:

Data Warehouse. Kapitel 16. Abbildung 16.1: Zusammenspiel zwischen OLTP und OLAP. Man unterscheidet zwei Arten von Datenbankanwendungen: Kapitel 16 Data Warehouse OLTP Online Transaction Processing OLAP Online Analytical Processing Decision Support-Anfragen Data Mining operationale DB operationale DB operationale DB Data Warehouse operationale

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

SQL structured query language

SQL structured query language Umfangreiche Datenmengen werden üblicherweise in relationalen Datenbank-Systemen (RDBMS) gespeichert Logische Struktur der Datenbank wird mittels Entity/Realtionship-Diagrammen dargestellt structured query

Mehr

Event Stream Processing & Complex Event Processing. Dirk Bade

Event Stream Processing & Complex Event Processing. Dirk Bade Event Stream Processing & Complex Event Processing Dirk Bade Die Folien sind angelehnt an eine Präsentation der Orientation in Objects GmbH, 2009 Motivation Business Activity Monitoring Sammlung, Analyse

Mehr

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04.

Data Vault. Modellierungsmethode für agile Data Warehouse Systeme. Dr. Bodo Hüsemann Informationsfabrik GmbH. DOAG BI, München, 17.04. Data Vault Modellierungsmethode für agile Data Warehouse Systeme Dr. Bodo Hüsemann Informationsfabrik GmbH DOAG BI, München, 17.04.2013 Die Informationsfabrik Die Informationsfabrik macht erfolgreiche

Mehr

10. Vorlesung: Datenorganisation SS 2007

10. Vorlesung: Datenorganisation SS 2007 10. Vorlesung: Datenorganisation SS 2007 8 Parallele Transaktionen 9 9.1 Drei-Ebenen Ebenen-Architektur 9.2 Verteilte Datenbanken 9.3 Client-Server Server-Datenbanken 9.4 Föderierte Datenbanken 9.5 Das

Mehr

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten

Einführung in SQL. Sprachumfang: Indizes. Datensätzen. Zugriffsrechten Einführung in SQL Die Sprache SQL (Structured Query Language) ist eine Programmiersprache für relationale Datenbanksysteme, die auf dem ANSI-SQL-Standard beruht. SQL wird heute von fast jedem Datenbanksystem

Mehr

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann

TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann TU München, Fakultät für Informatik Lehrstuhl III: Datenbanksysteme Prof. Dr. Thomas Neumann Blatt Nr. 11 Übung zur Vorlesung Einsatz und Realisierung von Datenbanksystemen im SoSe15 Moritz Kaufmann (moritz.kaufmann@tum.de)

Mehr

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221

Oracle 10g und SQL Server 2005 ein Vergleich. Thomas Wächtler 39221 Oracle 10g und SQL Server 2005 ein Vergleich Thomas Wächtler 39221 Inhalt 1. Einführung 2. Architektur SQL Server 2005 1. SQLOS 2. Relational Engine 3. Protocol Layer 3. Services 1. Replication 2. Reporting

Mehr

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt

Andreas Heuer Gunter Saake Kai-Uwe Sattler. Datenbanken. kompakt Andreas Heuer Gunter Saake Kai-Uwe Sattler Datenbanken kompakt Inhaltsverzeichnis Vorwort v 1 Was sind Datenbanken 1 1.1 Warum Datenbanken 1 1.2 Datenbanksysteme 4 1.3 Anforderungen: Die Codd'schen Regeln

Mehr

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Datenbanksysteme I

SQL SQL. SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R. Grundlagen der Datenbanksysteme I SQL SQL = Structured Query Language (SEQUEL) IBM San Jose Research Laboratory SYSTEM R VII-1 Beispielrelationen Filiale ( Name Leiter Stadt Einlagen ) Konto ( KontoNr KundenNr FilialName Saldo ) Kredit

Mehr

Betriebliche Anwendungen

Betriebliche Anwendungen Betriebliche nwendungen SP R/3: Enterprise Resource Modelling (ERP-System) OLTP Data Warehouse Data Mining WN (Internet) LN Kapitel 17 1 Relationales DBMS als Backend-Server (Oracle, Informix, DB2, MS

Mehr

Vorlesung 30.03.2009 1) Einführung

Vorlesung 30.03.2009 1) Einführung Vorlesung 30.03.2009 1) Einführung Was versteht man unter dem Begriff Datenbank? - Eine Datenbank ist eine Struktur zur Speicherung von Daten mit lesendem und schreibendem Zugriff - Allgemein meint man

Mehr

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY

Data Cube. Aggregation in SQL. Beispiel: Autoverkäufe. On-line Analytical Processing (OLAP) 1. Einführung. 2. Aggregation in SQL, GROUP BY Data Cube On-line Analytical Processing (OLAP). Einführung Ziel: Auffinden interessanter Muster in großen Datenmengen 2. Aggregation in SQL, GROUP BY 3. Probleme mit GROUP BY 4. Der Cube-Operator! Formulierung

Mehr

Inhalt. 1. Indextypen B*Baum-Index Reversed Key Index Bitmap Index Funktionsbasierter Index

Inhalt. 1. Indextypen B*Baum-Index Reversed Key Index Bitmap Index Funktionsbasierter Index Inhalt 1. Indextypen B*Baum-Index Reversed Key Index Bitmap Index Funktionsbasierter Index 2. Indexverwendung Vergleich von B*Baum und Bitmap Steuerung der Indexverwendung Richtlinien für die Indizierung

Mehr

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs])

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Hochschule für Technik, Wirtschaft und Kultur Leipzig 06.06.2008 Datenbanken II,Speicherung und Verarbeitung großer Objekte

Mehr

Views in SQL. 2 Anlegen und Verwenden von Views 2

Views in SQL. 2 Anlegen und Verwenden von Views 2 Views in SQL Holger Jakobs bibjah@bg.bib.de, holger@jakobs.com 2010-07-15 Inhaltsverzeichnis 1 Wozu dienen Views? 1 2 Anlegen und Verwenden von Views 2 3 Schreibfähigkeit von Views 3 3.1 Views schreibfähig

Mehr

Business Intelligence Praktikum 1

Business Intelligence Praktikum 1 Hochschule Darmstadt Business Intelligence WS 2013-14 Fachbereich Informatik Praktikumsversuch 1 Prof. Dr. C. Wentzel Dipl. Inf. Dipl. Math. Y. Orkunoglu Datum: 14.10.2013 Business Intelligence Praktikum

Mehr

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling

30. Juni 2006 - Technische Universität Kaiserslautern. Paul R. Schilling 30. Juni 2006 - Technische Universität Kaiserslautern Paul R. Schilling ! " #$% & '( ( ) *+, - '. / 0 1 2("$ DATEN SIND ALLGEGENWÄRTIG Bill Inmon, father of data warehousing Unternehmen In einer vollkommenen

Mehr

Wirtschaftsinformatik 2. Tutorium im WS 11/12

Wirtschaftsinformatik 2. Tutorium im WS 11/12 Wirtschaftsinformatik 2. Tutorium im WS 11/12 Entity/Relationship-Modell SQL Statements Tutorium Wirtschaftsinformatik WS 11/12 2.1 Datenmodellierung mit ERM (1) Datenmodellierung zur Erarbeitung des konzeptionellen

Mehr

SQL: statische Integrität

SQL: statische Integrität SQL: statische Integrität.1 SQL: statische Integrität Im allgemeinen sind nur solche Instanzen einer Datenbank erlaubt, deren Relationen die der Datenbank bekannten Integritätsbedingungen erfüllen. Integritätsbedingungen

Mehr

Datenbanksysteme für Business, Technologie und Web. Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S

Datenbanksysteme für Business, Technologie und Web. Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S Datenbanksysteme für Business, Technologie und Web Nutzerdefinierte Replikation zur Realisierung neuer mobiler Datenbankanwendungen DB I S Christoph Gollmick gollmick@informatik.uni-jena.de Friedrich-Schiller-Universität

Mehr

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join

Einleitung Projektion Selektion Join Mengenop. Vollst.keit. Einleitung Projektion. Selektion Join. Vollst.keit. Einleitung Projektion Selektion Join Parsen der Anfrage (SQL) Transformation in eine Standardform (Relationenalgebra) Logische Optimierung Transformation in alternative Zugriffspläne, Physische Optimierung Ausführung des gewählten Zugriffsplans

Mehr

Datenbanken zur Entscheidungsunterstützung - Data Warehousing

Datenbanken zur Entscheidungsunterstützung - Data Warehousing Datenbanken zur Entscheidungsunterstützung - Data Warehousing Prof. Dr. T. Kudraß 1 Einführung Zunehmender Bedarf nach Analyse aktueller und historischer Daten Identifizierung interessanter Patterns Entscheidungsfindung

Mehr

SQL als Zugriffssprache

SQL als Zugriffssprache SQL als Zugriffssprache Der Select Befehl: Aufbau Select- und From-Klausel Where-Klausel Group-By- und Having-Klausel Union Join-Verbindung Order-By-Klausel Der Update-Befehl Der Delete-Befehl Der Insert-Befehl

Mehr

Logische Modellierung von Data Warehouses

Logische Modellierung von Data Warehouses Logische Modellierung von Data Warehouses Vertiefungsarbeit von Karin Schäuble Gliederung. Einführung. Abgrenzung und Grundlagen. Anforderungen. Logische Modellierung. Methoden.. Star Schema.. Galaxy-Schema..

Mehr

Objektrelationale und erweiterbare Datenbanksysteme

Objektrelationale und erweiterbare Datenbanksysteme Objektrelationale und erweiterbare Datenbanksysteme Erweiterbarkeit SQL:1999 (Objekt-relationale Modellierung) In der Vorlesung werden nur die Folien 1-12 behandelt. Kapitel 14 1 Konzepte objekt-relationaler

Mehr

3.17 Zugriffskontrolle

3.17 Zugriffskontrolle 3. Der SQL-Standard 3.17. Zugriffskontrolle Seite 1 3.17 Zugriffskontrolle Datenbanken enthalten häufig vertrauliche Informationen, die nicht jedem Anwender zur Verfügung stehen dürfen. Außerdem wird man

Mehr

Oracle Datenbank / Ubuntu

Oracle Datenbank / Ubuntu Oracle Datenbank / Ubuntu Sebastian Gath & Hannes Schwarz Seminar Database Tuning & Administration Universität Konstanz - SS 2007 Administration Vorbereitung Zeitmessung Erste Zeitmessung 2 Ausgangssituation

Mehr

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software

SQL Tutorial. SQL - Tutorial SS 06. Hubert Baumgartner. INSO - Industrial Software SQL Tutorial SQL - Tutorial SS 06 Hubert Baumgartner INSO - Industrial Software Institut für Rechnergestützte Automation Fakultät für Informatik Technische Universität Wien Inhalt des Tutorials 1 2 3 4

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr