17. Kapitel: Die Investitionsplanung

Größe: px
Ab Seite anzeigen:

Download "17. Kapitel: Die Investitionsplanung"

Transkript

1 ABWL 17. Kapiel: Die Ivesiiosplaug Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus eier Reihe vo Ivesiiosmöglichkeie die güsigse herausgefude werde? Wa is für eie Maschie der opimale Ersazzeipuk erreich? Wie ka das Problem der Usicherhei i der Ivesiiosplaug berücksichig werde?

2 ABWL 17. Kapiel: Die Ivesiiosplaug 2 Begriff der Ivesiio: Uer eier Ivesiio verseh ma die Alage eies vorhadee oder och zu eleihede Geldberages. Charakerisierug der Ivesiio durch die mi ihr verbudee Zahlugsreihe: A 0: Aschaffugsauszahlug a : laufede jährliche Auszahluge im -e Jahr e : laufede jährliche Auszahluge im -e Jahr R: Liquidaioserlös (Reswer) : Azahl der Nuzugsjahre Zei i Jahre A 0 -a 1 +e 1 -a 2 +e 2 -a -1 +e -1 -a +e +R

3 ABWL 17. Kapiel: Die Ivesiiosplaug 3 Ivesiiosare: Sachivesiio (Geldalage i Gebäude, Grudsücke, Maschie, Bilder usw.) Fiazivesiio (Werpapiere, Sparbücher usw.) Immaerielle Ivesiio (Forschug ud Ewicklug, Aus- ud Weierbildug usw.) Sachivesiioe glieder sich i o Ersazivesiioe o Erweierugsivesiioe Bruoivesiioe = Ersaz- ud Erweierugsivesiioe Neoivesiioe = Erweierugsivesiioe

4 ABWL 17. Kapiel: Die Ivesiiosplaug 4 Dyamische Ivesiiosplaugsverfahre: Ausgagspuk: Wer 1 heue Wer 1 i eiem Jahr K 0 : heue verfügbarer Berag K : i Jahre verfügbarer Berag i: zu Grude geleger Zissaz je Jahr K = K 0 (1+i) Aufzisug K 0 K (1 + i) = Abzisug Frisigkeissrukur der Zissäze: Abhägigkei des Zissazes vo der vereibare Laufzei Fälle: Zissäze für lagfrisige Egagemes höher als Zissäze für kurze Laufzeie (ormale Zissrukur) Zissäze für lage Laufzeie geriger als bei kurze Laufzeie (iverse Zissrukur) Zissaz uabhägig vo der Laufzei (flache Zissrukur) wird i. A. bei der Kapialwermehode uersell

5 ABWL 17. Kapiel: Die Ivesiiosplaug 5 Voreilhafigkei eies eizele Ivesiiosobjeks: Die Kapialwermehode I i: Kalkulaioszissaz: als owedig agesehee Midesverzisug Beispiel: Zahlugsreihe eies Ivesiiosobjeks: Kalkulaioszissaz: i=0,08 (8%) Erragswer E = (1 + 0,08) (1 + 0,08) = + = = ,08 1,1664 Kapialwer K = = 420 K > 0 => Ivesiio is voreilhaf Allgemeie Darsellug: E = e1 (1 + a i) e2 (1 + a i) e (1 + a i) R + (1 + i) K = E A 0

6 ABWL 17. Kapiel: Die Ivesiiosplaug 6 Voreilhafigkei eies eizele Ivesiiosobjeks: Die Kapialwermehode II Neoeizahluge am Ede jede Jahres gleich groß: e a = c Vereifachug is möglich c c E = (1 + i) (1 + i) mi q = (1+i) : 2 E = cq + cq cq Eq = qc(q + + c (1 + i) q q = c(q + q ) = c(1 + q q + + q ) ) Eq E = c(1 q E(q 1) = c(1 q ) ) 1 q E = c q 1 1 (1 + i) = c 1+ i 1 1 (1 + i) = c i (1 + i) 1 = c d. h. c * Reebarwerfakor i(1 + i) (1 + i) 1 R => E = c + i(1 + i) (1 + i) K = E A 0

7 ABWL 17. Kapiel: Die Ivesiiosplaug 7 Voreilhafigkei eies eizele Ivesiiosobjeks: Die Kapialwermehode III ewige Ree vo c c E = i K = E A 0 Schrie bei der Awedug der Kapialwermehode: a) Besimmug des subjekive Kalkulaioszissazes des Ivesors b) Ermilug des Erragsweres: Abzisug der Zahluge auf de Ivesiioszeipuk bei Awedug des Kalkulaioszissazes c) Ermilug des Kapialweres: Erragswer Aschaffugsauszahlug d) Prüfug der Voreilhafigkei des Ivesiiosobjeks: Posiiver Kapialwer bedeue Voreilhafigkei Negaiver Kapialwer bedeue Uvoreilhafigkei

8 ABWL 17. Kapiel: Die Ivesiiosplaug 8 Voreilhafigkei eies eizele Ivesiiosobjeks: Die Mehode des iere Zissazes Ierer Zissaz: effekive Verzisug eies Ivesiiosobjeks Ierer Zissaz > Kalkulaioszis des Ivesors Ivesiio voreilhaf Ierer Zissaz < Kalkulaioszissaz des Ivesors Ivesiio uvoreilhaf Ierer Zissaz = Kalkulaioszis, bei dem Kapialwer der Ivesiio geau Null wird. Beispiel: Zahlugsreihe eies Ivesiiosobjeks: Abzisug der Eizahluge zu 8 %: = + = = (1 + 0,08) (1 + 0,08) E 2 K = = 0 ierer Zissaz = 8 %

9 ABWL 17. Kapiel: Die Ivesiiosplaug 9 Voreilhafigkei eies eizele Ivesiiosobjeks: Die Auiäemehode I Wie beka gil für de Kapialwer eier Ivesiio ohe Reswer (R=0) mi kosae jährliche Neoeizahluge: (1 + i) 1 K = c A 0 i(1 + i) Mi K = 0 folg: i(1 + i) c = A0 (1 + i) 1 c Auiä: Neoeizahlug, die im Durchschi jedes Jahr erziel werde muss, dami exak die Aschaffugsauszahlug A 0 ud eie Verzisug i i de Nuzugsjahre verdie wird. i(1 + i) Auiäefakor, Kapialwiedergewiugsfakor (1 + i) 1 Beispiel: Die Kose eies Wohhauses berage 1,5 Mio.. Wie hoch müsse im Durchschi die jährliche Neo-Mieeiahme sei, dami bei eiem Kalkulaioszissaz vo 5 % die Aschaffugsauszahlug i 30 Jahre verdie werde ka? 30 0,05(1 + 0,05) c = = ,06505 = (1 + 0,05) 1 Tilgugspla: Ede des Zise Tilgug Auiä Reswer Jahres (5 %)

10 ABWL 17. Kapiel: Die Ivesiiosplaug 10 Voreilhafigkei eies eizele Ivesiiosobjeks: Die Auiäemehode II Aselle der exake Mehode wird gelegelich eie vereifache Praxis -Mehode verwede: A A = 0 + i = + 0, = = ĉ 0 Auiä < erwaree jährliche Neoeizahlug Ivesiio voreilhaf Auiä > erwaree jährliche Neoeizahlug Ivesiio uvoreilhaf Die Höhe der Auiä wird weselich vom Kalkulaioszis des Ivesors mibesimm: Eie Erhöhug des Zissazes vergrößer die Auiä.

11 ABWL 17. Kapiel: Die Ivesiiosplaug 11 Voreilhafigkei eies eizele Ivesiiosobjeks: Die Amorisaiosdauer (Pay-off-Mehode) Awedugsfall: Probleme bei der Schäzug der Zahluge aus dem Ivesiiosobjek i de späere Periode Amorisaiosdauer: Zeidauer, i der ei Ivesiiosobjek seie Aschaffugsauszahlug verdie Is-Amorisaiosdauer < Soll-Amorisaiosdauer (als agemesse berachee Zeispae) => Ivesiio wird durchgeführ Is-Amorisaiosdauer > Soll-Amorisaiosdauer => Ivesiio wird ich durchgeführ Beispiel: Zahlugsreihe eies Ivesiiosobjeks: Is-Amorisaiosdauer = 5 Jahre Kriik: o Erfass ich de Gesamwer eier Ivesiio o Daeusicherhei köe mi Hilfe vo Sesiiviäsaalyse berücksichig werde

12 ABWL 17. Kapiel: Die Ivesiiosplaug 12 Voreilhafigkeisvergleich mehrerer Ivesiiosobjeke: Die Horizowermehode I Beispiel: Zahlugsreihe zweier Ivesiiosobjeke, die sich i der Höhe der Aschaffugsauszahlug ud der Läge der Laufzei uerscheide: I 1 : I 2 : Aahme: Ivesor ha 10 zur Verfügug ud will bis =4 alege! Alagezis bei der Bak: i=0,08 Ergäzug der Zahlugsreihe der Aleraive, um die Aleraive vergleichbar zu mache. I 1 : I 2 : X X = 5 (1,08) (1,08) 3 = 19,40 Falls X > 20 => I 2 is voreilhafer (relaive Voreilhafigkei) Falls X < 20 => I 1 is voreilhafer (relaive Voreilhafigkei) Zusäzlich: Überprüfug der absolue Voreilhafigkei der bese Aleraive durch Kapialwer-Mehode oder iere Zissaz- Mehode.

13 ABWL 17. Kapiel: Die Ivesiiosplaug 13 Voreilhafigkeisvergleich mehrerer Ivesiiosobjeke: Die Horizowermehode II Beispiel: Zwei Ivesiiosobjeke I 1 : I 2 : Sollzis = 8 %, Habezis = 6 % Eigekapial des Ivesors = 50, Alagezeiraum = 2 Jahre, subjekiver Kalkulaioszissaz = 10 % Lösug: I 1 : X 1 I 2 : X X 1 = 80 (1,06) = 84,80 X 2 = [70-50*1,08] 1,06 = 16,96 84,80 versus ,96 => Ivesiiosobjek I 1 is voreilhafer. Absolue Voreilhafigkei: 84,80 E = = 70,08 K = 70,08 50 = 20,08 > 0 2 1,1

14 ABWL 17. Kapiel: Die Ivesiiosplaug 14 Voreilhafigkeisvergleich mehrerer Ivesiiosobjeke: Die Problemaik des Kapialwervergleichs Beispiel: Zwei Ivesiiosobjeke I 1 : I 2 : Kalkulaioszissaz = 10 % K K = 4 1,1 10 = 3,66 10 = 5 = 4,09 1,1 Jedoch: - Uerschiedlicher Alageberag - Uerschiedliche Laufzei Ergäzug erforderlich (Horizowermehode) Ergäzugsivesiio ur da Kapialwer-eural, we Sollzis = Habezis = (subjekiver) Kalkulaioszis Prakisch sehr gerige Awedbarkei

15 ABWL 17. Kapiel: Die Ivesiiosplaug 15 Voreilhafigkeisvergleich mehrerer Ivesiiosobjeke: Die Umöglichkei des Vergleichs der iere Zissäze Beispiel: Zwei Ivesiiosobjeke I 1 : I 2 : K = 0 => E = A = ; r = 18,9 % für I 4 1 (1 + r) 10 5 = ; r = 100 % für I 1 2 (1 + r) Kriik: Verachlässigug uerschiedlicher Alageberäge ud uerschiedlicher Laufzeie Ergebis ur da richig, we Ierer Zissaz = Sollzis = Habezis

16 ABWL 17. Kapiel: Die Ivesiiosplaug 16 Voreilhafigkeisvergleich mehrerer Ivesiiosobjeke: Die Kosevergleichsmehode Küpf a Kose, ich a (Ei- ud Aus-)Zahlugsreihe a! Fixe Kose: Esehe uabhägig vo der Produkiosmege Variable Kose: Umso höher, je mehr produzier wird Kose M 1 Kapaziäsgreze M 2 0 X* Produkiosmege X I Abhägigkei vo der Produkiosmege köe Verfahresempfehluge gegebe werde Kriik: - Mögliche Veräderuge der Koseverläufe i de Folgeperiode - Mögliche Veräderuge der Absazmege i de Folgeperiode - Allgemei: saisches Verfahre, d. h. keie Veräderug der Rahmebediguge

17 ABWL 17. Kapiel: Die Ivesiiosplaug 17 Voreilhafigkeisvergleich mehrerer Ivesiiosobjeke: Die Reabiliäsrechug Berechug der jährliche Reabiliä: R = Jahresgewi ivesiereskapial Aleraiveauswahl: Wähle die Ivesiio, die die größe Reabiliäskeziffer ha! Kriik: - Aahme eies gleichbleibede Jahresgewis - Zuordug des Jahresgewis zu besimme Ivesiiosobjeke schwierig - Bei kosaem Ivesiiosberag A 0 esprich R ur da dem iere Zissaz, we der Jahresgewi als ewige Ree ageomme werde ka

18 ABWL 17. Kapiel: Die Ivesiiosplaug 18 Die Besimmug der wirschafliche Nuzugsdauer ud des opimale Ersazzeipuks I Die wirschafliche Nuzugsdauer is och ich erreich, we es sich loh, eie Alage ei weieres Jahr (+1) zu uze: Verkauf ach Jahre: Reswer R wird ageleg am Ede des Jahres +1 : R (1+i) Nuzug über +1 Jahre Neoeizahluge c +1 + Reswer R +1 zeilicher Grezgewi G +1 = c +1 + R +1 R (1+i) G +1 > 0: Weierverwedug i Periode +1 G +1 < 0: Liquidaio am Ede der Periode Ivesiioskee: Abfolge ideischer Alageivesiioe mi eier jeweilige Nuzugsdauer vo Jahre -A 0 -A 0 -A 0 c c c c c c c c c c c c

19 ABWL 17. Kapiel: Die Ivesiiosplaug 19 Die Besimmug der wirschafliche Nuzugsdauer ud des opimale Ersazzeipuks II Umrechug des Kapialwers eier Ivesiioskee i eie ewige Ree (zeilicher Durchschisgewi) Kˆ = K * Kapialwiedergewiugsfakor i (1 + i) 1 mi K = c A 0 i(1 + i) (1 + i) 1 K *KWF = [c A0] KWF i(1 + i) = c A0KWF = c c gleichmäßige jährliche Neoeizahlug wiederkehrede Aschaffugsauszahluge Opimaler Ersazzeipuk: G +1 > K * KWF => Weieruzug sivoll G +1 < K * KWF => Sar der eue Ivesiioskee (zeilicher Grezgewi vs. zeilicher Durchschisgewi)

20 ABWL 17. Kapiel: Die Ivesiiosplaug 20 Die Besimmug der wirschafliche Nuzugsdauer ud des opimale Ersazzeipuks III Beispiel: Taxiuerehmer: Weieruzug des ale Taxis oder Aschaffug eies eue? c +1 = R = R +1 =10000 A 0 = ND = 6 Jahre R = 0 c +1 * = i = 10 % = 0,1 Zeilicher Grezgewi: G +1 = * 1,1 = Zeilicher Durchschisgewi: K*KWF = * 0,2296 = => Es is sivoll, das ale Taxi durch ei eues zu erseze.

21 ABWL 17. Kapiel: Die Ivesiiosplaug 21 Zum Problem der Usicherhei i der Ivesiiosplaug I Problem: magelhafe Schäzbarkei weier i der Zukuf liegeder Zahluge Korrekur der Eiflussgröße durch Risikozu- ud abschläge ( Sesiiviäsaalyse ): - Erhöhug des Kalkulaioszissazes - Verrigerug der jährliche Neoeizahluge - Verrigerug der Azahl der Nuzugsjahre Dem Ivesiiosobjek ihärees Risiko versus Risiko durch wirschafliche Rahmebediguge. Beispiel: Usichere kojukurelle Ewicklug Gegebe: Wahrscheilichkeisvereilug der Horizowere Eiriswahrscheilichkei w 1 =0,2 w 2 =0,6 w 3 =0,2 I I Erwarugswer-Krierium (μ -Krierium): μ 1 = 400 * 0, * 0, * 0,2 = 500 μ 2 = 0 * 0, * 0, * 0,2 = 500 Beide Ivesiiosobjeke gleich voreilhaf.

22 ABWL 17. Kapiel: Die Ivesiiosplaug 22 Zum Problem der Usicherhei i der Ivesiiosplaug II Erwarugswer/Sreuugs-Kriierium (μ σ -Krierium): σ 1 2 = ( ) 2 *0,2 + ( ) 2 *0,6 + ( ) 2 *0,2 = 4000 (Variaz) σ 1 = 63 (Sadardabweichug) σ 2 2 = (0-500) 2 *0,2 + ( ) 2 *0,6 + ( ) 2 *0,2 = (Variaz) σ 2 = 316 (Sadardabweichug) Risikoeuraler Ivesor: Idifferez zwische I 1 ud I 2 Risikoscheuer Ivesor: Vorzug für I 1 Risikofreudiger Ivesor: Vorzug für I 2 Veraschaulichug durch Idifferezkurve (N 1 < N 2 < N 3 ): Sreuug (σ) N 1 N 2 N 3 risikoeuraler Ivesor Erwarugswer (μ) Sreuug (σ) N 1 N 2 N 3 risikoscheuer Ivesor Erwarugswer (μ) Sreuug (σ) N 1 N 2 N 3 risikofreudiger Ivesor Erwarugswer (μ)

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Investitionsrechnung - Vorbemerkung

Investitionsrechnung - Vorbemerkung Ivesiiosrechug - Vorbemerkug Es gib ich ur eie Rechugsmehode, soder viele. Was bedeue das für Sie? Uerschiedliche heoreische Asäze kee lere Für ud Wider abwäge Eigee Sadpuk beziehe Eigee Sadpuk argumeaiv

Mehr

Formelsammlung für Investition und Finanzierung

Formelsammlung für Investition und Finanzierung Formelsammlug für Ivesiio ud Fiazierug (Sad: 3.2.22) Seie vo 8 Formelsammlug für Ivesiio ud Fiazierug INHALSVERZEICHNIS. Mahemaische Grudlage...3 a) Auflösug quadraischer Gleichuge mi der pq-formel...3

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung Fakulä Iformaik, Professur Wirschafsiformaik, isb. Mulimedia Markeig Kapiel Grudbegriffe der Orgaisaorisches Doze: Prof. Dr. rer. pol. Thomas Urba Professur Wirschafsiformaik, isb. Mulimedia Markeig www.muli-media-markeig.org

Mehr

Investitionsarten. Sachinvestition Finanzinvestition immatrielle Investition (z.b. Ausbildung von Mitarbeitern) Erst-/ Einrichtungsinvestition

Investitionsarten. Sachinvestition Finanzinvestition immatrielle Investition (z.b. Ausbildung von Mitarbeitern) Erst-/ Einrichtungsinvestition Domiik Sei Ivesiiosrechug SS97 - Fiazwirschaf - Seie Fiazwirschaf Sache zum Auswedig-lere: Ivesiiosbegriff: Ivesiio is Fiazierug is - Täigkei des Ivesieres - Gegesad der Ivesiio jede akuelle Auszahlug

Mehr

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung

Investitionsrechnung und Finanzierung. Kapitel 1. Grundbegriffe der Investitionsrechnung Fakulä Iformaik, Professur Wirschafsiformaik, isb. Mulimedia Markeig ud Fiazierug Kapiel Grudbegriffe der Orgaisaorisches Doze: Prof. Dr. rer. pol. Thomas Urba Professur Wirschafsiformaik, isb. Mulimedia

Mehr

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t 6. Tilggsrechg 6.. Eiführg Gegesad der Tilggsrechg is die Feslegg der Rückzahlge für eimalig asgezahle Kredie eischließlich der Kredizise d -gebühre eweder a) am Fälligkeisag i eier mme (sog. gesamfällige

Mehr

Teil 3 und Teil 4. Einbeziehung von Steuern in Investitionsund Finanzierungsentscheidungen. Inhalt:

Teil 3 und Teil 4. Einbeziehung von Steuern in Investitionsund Finanzierungsentscheidungen. Inhalt: Teil 3 ud Teil 4 Eibeziehug vo Seuer i Ivesiiosud Fiazierugsescheiduge Ihal: Vergleichsrechuge ud Seuerbelasugsvergleiche... 2. Rechsformwahl i eiem saische Vergleich... 2.2 Veralagugssimulaio versus Teilseuerrechug...

Mehr

Prof. Dr. R. Elschen Aufgabenkompendium Antworten Villaverde Seite 1 von 25

Prof. Dr. R. Elschen Aufgabenkompendium Antworten Villaverde Seite 1 von 25 Ivesiio & Fiazierug Prof. Dr. R. Elsche Aufgabekompedium Awore Villaverde Seie vo 25. Welche primäre Aufgabe ha die Uerehmesführug ud welche Bedeuug ha die Ivesiosrechug für die Erfüllug dieser Aufgabe?

Mehr

Simulationsbasierte stochastisch dynamische Programmierung

Simulationsbasierte stochastisch dynamische Programmierung Simulaiobaiere ochaich dyamiche Programmierug OLIVER MUßHOFF, BERLIN NORBERT HIRSCHAUER, BERLIN Abrac Deciio ree, repreeig he backward recurive dyamic programmig approach, are ofe o flexible eough o aalyze

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Formelblatt Finanzmanagement

Formelblatt Finanzmanagement www.bwl-olie.ch hema Dokumear heorie im uch "Iegrale eriebswirschafslehre" Formel Fiazmaageme Checklise eil: D Fiazmaageme Kapiel: verschiedee Formelbla Fiazmaageme ilazsrukur Eigekapial E igefiazierugsgrad(equiy

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Zur Integration von Private Equity in die Portfoliosteuerung Ein Vorschlag

Zur Integration von Private Equity in die Portfoliosteuerung Ein Vorschlag Zur Iegraio vo Privae Equiy i die Porfolioseuerug Ei Vorschlag Prof. Dr. Chrisoph Kaserer, TU Müche Dipl.-Kfm. Axel Bucher, TU Müche Ivesiioe i Privae Equiy uerscheide sich zumides i eiem weseliche Puk

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

4 DIGITAL-ANALOG UMSETZUNG, ANALOG-DIGITAL UMSETZUNG

4 DIGITAL-ANALOG UMSETZUNG, ANALOG-DIGITAL UMSETZUNG Prof. Dr.. Schwelleberg, Vorlesug: Messechik 4 4 DIGITALAALOG MSETZG, AALOGDIGITAL MSETZG 4. ALLGEMEIES Im Zeialer der echer werde heuzuage die gemessee ichelekrische oder elekrische Größe i viele Fälle

Mehr

Formelblatt Finanzmanagement

Formelblatt Finanzmanagement www.bwl-olie.ch Thema Dokumear Theorie im Buch "Iegrale Beriebswirschafslehre" Formel Fiazmaageme Checklise Teil: D Fiazmaageme Kapiel: verschiedee Formelbla Fiazmaageme Bilazsrukur Eigekapial Eigefia

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Zum systematischen Vergleich von Lebensversicherungs- und Investmentprodukten unter Performance- und Risikoaspekten

Zum systematischen Vergleich von Lebensversicherungs- und Investmentprodukten unter Performance- und Risikoaspekten Tras 27 h ICA Peer Albrech (Germay) Zum sysemaische Vergleich vo Lebesversicherugs- ud Ivesmeproduke uer Performace- ud Risikoaspeke Peer Albrech Germay Zusammefassug I der vorliegede Uersuchug wird zuächs

Mehr

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 131

Mannheimer Manuskripte zu Risikotheorie, Portfolio Management und Versicherungswirtschaft. Nr. 131 Maheimer Mauskripe zu Risikoheorie, Porfolio Maageme ud Versicherugswirschaf Nr. 131 Zum sysemaische Vergleich vo Lebesversicherugs- ud Ivesmeproduke uer Performace- ud Risikoaspeke vo PETER ALBRECHT Maheim

Mehr

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Messug 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Ziel der Meßübug: Besimmug des Bresoffverbrauchs, des spezifische Bresoffverbrauchs, Aggregawirkugsgrades,

Mehr

3 Leistungsbarwerte und Prämien

3 Leistungsbarwerte und Prämien Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK Progoseverfahre. Eiführug....................................... 8.. Wisseschafliche Progose.................... 8.. Daebasis ud saisische Progosemodelle......... Beispiel: Umsazprogose........................

Mehr

KUNDENPROFIL FÜR GELDANLAGEN

KUNDENPROFIL FÜR GELDANLAGEN KUNDENPROFIL FÜR GELDANLAGEN Geldalage ist icht ur eie Frage des Vertraues, soder auch das Ergebis eier eigehede Aalyse der Fiazsituatio! Um Ihre optimale Beratug zu gewährleiste, dokumetiere wir gemeisam

Mehr

Statistik im Bachelor-Studium der BWL und VWL

Statistik im Bachelor-Studium der BWL und VWL Max C. Wewel Saisik im Bachelor-Sudium der BWL ud VWL Mehode, Awedug, Ierpreaio Mi herausehmbarer Formelsammlug ei Impri vo Pearso Educaio Müche Boso Sa Fracisco Harlow, Eglad Do Mills, Oario Sydey Mexico

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrstuhl für Fiazwirtschaft Lösuge zu Kotrollfrage Fiazwirtschaft Prof. Dr. Thorste Poddig Fachbereich 7: Wirtschaftswisseschaft 2 Forme der Fremdfiazierug (Kapitel 6) Allgemeier Überblick 89. Ma ka die

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler Iflaio, Wachsum ud erehmesbewerug Guher Friedl ud Berhard Schwezler Versio v. 4.4..28 Prof. Dr. Guher Friedl Techische iversiä Müche Fakulä für Wirschafswisseschafe Lehrsuhl für Beriebswirschafslehre -

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Arbeitsplätze in SAP R/3 Modul PP

Arbeitsplätze in SAP R/3 Modul PP Arbeitsplätze i SAP R/3 Modul PP Was ist ei Arbeitsplatz? Der Stadort eier Aktioseiheit, sowie dere kokrete räumliche Gestaltug Was ist eie Aktioseiheit? kleiste produktive Eiheit i eiem Produktiosprozess,

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Value at Risk-Konzepte für Marktrisiken

Value at Risk-Konzepte für Marktrisiken r. 7 Value a isk-kozee für Markrisike Heiz Cremers Augus 999 ISS 436-9753 Auor: Prof. Dr. Heiz Cremers Quaiaive Mehode ud Sezielle Bakberiebslehre Hochschule für Bakwirschaf, Frakfur am Mai email: cremers@hfb.de

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008

BINOMIALKOEFFIZIENTEN. Stochastik und ihre Didaktik Referentin: Iris Winkler 10.11.2008 Stochasti ud ihre Didati Refereti: Iris Wiler 10.11.2008 Aufgabe: Führe Sie i der Seudarstufe II die Biomialoeffiziete als ombiatorisches Azahlproblem ei. Erarbeite Sie mit de Schülerie ud Schüler mithilfe

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v

Tao De / Pan JiaWei. Ihrig/Pflaumer Finanzmathematik Oldenburg Verlag 1999 =7.173,55 DM. ges: A m, A v Tao De / Pa JiaWei Ihrig/Pflaumer Fiazmathematik Oldeburg Verlag 1999 1..Ei Darlehe vo. DM soll moatlich mit 1% verzist ud i Jahre durch kostate Auitäte getilgt werde. Wie hoch sid a) die Moatsrate? b)

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt

Evaluierung einer Schulungsmaßnahme: Punktezahl vor der Schulung Punktezahl nach der Schulung. Autoritarismusscore vor/nach Projekt 2.4.5 Gauss-Test ud t-test für verbudee Stichprobe 2.4.5.8 Zum Begriff der verbudee Stichprobe Verbudee Stichprobe: Vergleich zweier Merkmale X ud Y, die jetzt a deselbe Persoe erhobe werde. Vorsicht:

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils Physikalische Aalyse der Dimesioierugsgrudlage zur Ewicklug eier ehode zur Kozipierug ud Opimierug eies Elekromobils Auore: K. Brikma, W. Köhler Lehrgebie Elekrische Eergieechik Feihsraße 140, Philipp-eis-Gebäude,

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Versicherungstechnik

Versicherungstechnik Operatios Research ud Wirtschaftsiformati Prof. Dr. P. Recht // Dipl.-Math. Rolf Wedt DOOR Versicherugstechi Übugsblatt 3 Abgabe bis zum Diestag, dem 03..205 um 0 Uhr im Kaste 9 Lösugsvorschlag: Vorbereituge

Mehr

Wiederkehrende XML-Inhalte in Adobe InDesign importieren

Wiederkehrende XML-Inhalte in Adobe InDesign importieren Wiederkehrede XML-Ihalte i Adobe IDesig importiere Dieses Tutorial soll als Quick & Dirty -Kurzaleitug demostriere, wie wiederkehrede XML-Ihalte (z. B. aus Datebake) i Adobe IDesig importiert ud formatiert

Mehr

Herzlich willkommen zum Informationsabend «Frau und Finanz»

Herzlich willkommen zum Informationsabend «Frau und Finanz» Herzlich willkomme zum Iformatiosabed «Frau ud Fiaz» Frau ud Fiaz Fiazielle Sicherheit: Müsse Fraue aders vorsorge? Stefaia Cerfeda-Salvi Ageda Allgemeier Teil 3-Säule-System der Schweiz Aktuelles aus

Mehr

1 Legende zum Dokument: (= Gl. 4.9/M1) ist die Gl. 4.9 aus dem Buch Mechatronik 1(M1) (=Bild 4.12/M1) ist Bild 4.12 aus Mechatronik 1 (M1)

1 Legende zum Dokument: (= Gl. 4.9/M1) ist die Gl. 4.9 aus dem Buch Mechatronik 1(M1) (=Bild 4.12/M1) ist Bild 4.12 aus Mechatronik 1 (M1) Legede zum Dokume: (= Gl. 4.9/M) is die Gl. 4.9 aus dem Buch Mecharoik (M) (=Bild 4./M) is Bild 4. aus Mecharoik (M).7 Messechische Eigeschafe vo Sesore ud Messmiel Bisher wurde die Messabweichuge, die

Mehr

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben

Höhere Finanzmathematik. Sehr ausführliches Themenheft (d. h. mit Theorie) Aber auch mit vielen Trainingsaufgaben Expoetielles Wachstum Höhere Fiazmathematik Sehr ausführliches Themeheft (d. h. mit Theorie) Aber auch mit viele Traiigsaufgabe Es hadelt sich um eie Awedug vo Expoetialfuktioe (Wachstumsfuktioe) Datei

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert Physikalisches Prakikum II Bachelor Physikalische Techik: Laserechik Prof. Dr. H.-Ch. Meris, MSc. M. Gilber AK1 Schallüberragug & Fourierzerlegug (Pr_PhII_AK1_Schall_7, 29.9.215) 1. Name Mar. Nr. Gruppe

Mehr

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z)

e) ( 4a + 8b + 9a + 18b ) : a + 2b f) 2 log (x) + 3 log (2y) 0.5 log (z) Mathematik 1 Test SELBSTTEST MATHEMATIK 1. Forme Sie die folgede Terme um: a) y y y y + y : ( ) ( ) b) ( 9 ) 18 c) 5 3 3 3 d) 6 5 4 ( 7 y ) 3 4 5 ( 14 y ) e) ( 4a + 8b + 9a + 18b ) : a + b f) log () +

Mehr

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist.

Satz Ein Boolescher Term t ist eine Tautologie genau dann, wenn t unerfüllbar ist. Erfüllbarkeit, Uerfüllbarkeit, Allgemeigültigkeit Defiitio Eie Belegug β ist passed zu eiem Boolesche Term t, falls β für alle atomare Terme i t defiiert ist. (Wird ab jetzt ageomme.) Ist β(t) = true,

Mehr

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht.

4. Auf welchen Betrag würde ein Kapital von 100,- anwachsen, wenn es bei jährlicher Verzinsung zu 6 % 30 Jahre lang auf Zinseszinsen steht. Ziseszisechug. Auf welche Betag wächst ei Kapital vo K 0 bei jähliche Vezisug zu p % i Jahe a. a. K 0 5.200,- p 4 ½ % 6 Jahe b. K 0 3.250,- p 6 % 7 Jahe c. K 0 7.500,- p 5 ½ % 5 Jahe d. K 0 8.320,- p 5

Mehr

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler

Inflation, Wachstum und Unternehmensbewertung. Gunther Friedl und Bernhard Schwetzler Iflaio, Wachsum ud erehmesbewerug Guher Friedl ud Berhard Schwezler Versio v. 9.3.28 Prof. Dr. Guher Friedl Techische iversiä Müche Fakulä für Wirschafswisseschafe Lehrsuhl für Beriebswirschafslehre -

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Leitfaden zu den Strategieindizes der Deutsche Börse AG

Leitfaden zu den Strategieindizes der Deutsche Börse AG Leifade zu de Sraegieidizes der Deusche Börse AG Versio 2.22 Sraegieidizes der Deusche Börse AG Seie 2 Allgemeie Iformaio Um die hohe Qualiä der vo der Deusche Börse AG berechee Idizes sicherzuselle, wird

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgabesammlug Um sich schell ierhalb der ca. 35. Mathematikaufgabe zu orietiere, beutze Sie ubedigt das Lesezeiche Ihres Acrobat Readers: Das Ico fide Sie i der liks stehede

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrsuhl für Finanzwirschaf Lösungen zu Konrollfragen Finanzwirschaf Prof. Dr. Thorsen Poddig Fachbereich 7: Wirschafswissenschaf Einführung (Kapiel ) Sichweisen in der Finanzwirschaf. bilanzorieniere

Mehr

Dynamische Investitionsrechnung

Dynamische Investitionsrechnung Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Dyamische Ivestitiosrechug - berücksichtigt mehrere oder alle Ivestitioe eier Periode (bei statisch wird ur mit eier Periode gerechet,

Mehr

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB

AVANTI Neuerungen. Inhalt. I. Neuerungen Version 16. 1. Pin Funktion. 2. Status für Nachtragspositionen. 3. DBD Baupreise EFB Neueruge Software Techologie GmbH 67433 Neustadt / Weistraße Ihalt I. Neueruge Versio 16 3 1. Pi Fuktio 3 2. Status für Nachtragspositioe 5 3. DBD Baupreise EFB 6 4. Programm Eistiegs Assistet 8 5. Voreistellugs-Assistet

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Kapitel 6: Statistische Qualitätskontrolle

Kapitel 6: Statistische Qualitätskontrolle Kapitel 6: Statistische Qualitätskotrolle 6. Allgemeies Für die Qualitätskotrolle i eiem Uterehme (produzieredes Gewerbe, Diestleistugsuterehme, ) gibt es verschiedee Möglichkeite. Statistische Prozesskotrolle

Mehr

Einführung. Menschen unterscheiden sich

Einführung. Menschen unterscheiden sich Ers-Moriz-Ard-Uiversiä Greifswald Eikomme ud Vereilug Mesche uerscheide sich Eiführug bezüglich ihrer fiazielle Möglichkeie: Eikomme Vermöge bezüglich ihrer Gesudhei: Gesudheiszusad Lebeserwarug gaz allgemei

Mehr

Gestagenpille. Pille. (nur Gestagenhormon, kein Östrogen) (kombiniert)

Gestagenpille. Pille. (nur Gestagenhormon, kein Östrogen) (kombiniert) Pille (kombiier) 9 Gesgepille (ur Gesgehormo, kei Ösroge) 10 - der Eisprug wird uerdrück - der Schleim im Gebärmuerhls wird verdick dmi die Spermie ich eidrige köe - der Aufbu der Gebärmuerschleimhu wird

Mehr

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor.

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor. - 12 - Aufgabe 3: (50 Pukte) Dyamische Ivestitiosrechug 1. Ivestitiosrechug 1.1 Kalkulatioszissatz: Gewichteter Mittelwert vo Fremd- ud Eigekapitalkoste: Für das Eigekapital würde der Ivestor als alterative

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung.

Grundgesamtheit handelt, stellt sich die Frage nach der Unsicherheit dieser Schatzung. R Lösug zu Aufgabe 4: Kofideziervall a) Abschäzug vo Erwarugswer ud adardabweichug: Wie bereis i Übugsaufgabe eigeführ, selle der Mielwer ud die reuug eier ichprobe die bese chäzwere für de Erwarugswer

Mehr

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern

HARDWARE-PRAKTIKUM. Versuch L-4. Komplexe Schaltwerke. Fachbereich Informatik. Universität Kaiserslautern HARDWARE-PRAKTIKUM Versuch L-4 Komplexe Schaltwerke Fachbereich Iformatik Uiversität Kaiserslauter Seite 2 Versuch L-4 Versuch L-4 I diesem Versuch soll ei Rechewerk zur Multiplikatio vo zwei vorzeichelose

Mehr

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen?

Warum ist die Frage, wem ein Leasingobjekt zugerechnet wird, wichtig? Welche Vorteile kann ein Leasinggeber (eine Leasinggesellschaft) ggf. erzielen? 1) Boschafen von Kapiel 7 Welche Eigenschafen ha ein Finanzierungs-Leasing-Verrag? Warum is die Frage, wem ein Leasingobjek zugerechne wird, wichig? FLV, vollkommener Kapialmark und Gewinnseuer Welche

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index

Leitfaden zu den Zertifikate-Indizes. Discount-Index Outperformance-Index Bonus-Index Kapitalschutz-Index Aktienanleihen-Index Leitfade zu de Zertifikate-Idizes Discout-Idex Outerformace-Idex Bous-Idex Kaitalschutz-Idex Aktiealeihe-Idex Fassug vom 22.02.2011 Versiosübersicht Versios- ID 1.00 1.10 1.20 1.30 Datum 28.02.2009 28.04.2009

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Bau- und Wohncenter Stephansplatz

Bau- und Wohncenter Stephansplatz Viele gute Grüde, auf us zu baue Bau- ud Wohceter Stephasplatz Parter der Bak Austria Silvia Nahler Tel.: 050505 47287 Mobil: 0664 20 22 354 Silvia.ahler@cityfiace.at Fiazservice GmbH Ralph Decker Tel.:

Mehr

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum)

Kennzeichen: Die Berechnungsbasis bleibt während der gesamten Verzinsungsdauer unverändert (lineares Wachstum) 5. Fiazmathematik 5.1. Zis- ud Ziseszisrechug 5.1.1. Eifache Verzisug Kezeiche: Die Berechugsbasis bleibt währed der gesamte Verzisugsdauer uverädert (lieares Wachstum) Die Verzisug wird ach dem Zeitpukt

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung

Grundgesamtheitsanaylsen und Stichproben. Betrachtungen zur Stichprobenfindung MaMaEuSch Maagemet Mathematics for Europea Schools http://www.mathematik.uikl.de/ mamaeusch Grudgesamtheitsaaylse ud Stichprobe. Betrachtuge zur Stichprobefidug Paula Lagares Justo Puerto 1 MaMaEuSch 2

Mehr

Gebraucht, aber sicher!

Gebraucht, aber sicher! Gebraucht, aber sicher! Die Gebrauchtwage-Services: Fiazprodukte Lagzeit-Garatie Versicheruge Fiazprodukte Gaz ach meiem Geschmack. Die FLEXIBLEN Fiazprodukte der PEUGEOT Bak. Hier dreht sich alles ur

Mehr

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen.

Variiert man zusätzlich noch die Saatstärke (z.b. 3 Stärkearten), würde man von einer zweifaktoriellen Varianzanalyse sprechen. 3. Variazaalyse Die Variazaalyse mit eier quatitative abhägige Variable ud eier oder mehrerer qualitativer uabhägiger Variable wird auch als ANOVA (Aalysis of Variace) bezeichet. Mit eier Variazaalyse

Mehr

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110

Betriebswirtschaft Wirtschaftsmathematik Studienleistung BW-WMT-S12 011110 Name, Vorame Matrikel-Nr. Studiezetrum Studiegag Fach Art der Leistug Klausur-Kz. Betriebswirtschaft Wirtschaftsmathematik Studieleistug Datum 10.11.2001 BW-WMT-S12 011110 Verwede Sie ausschließlich das

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

LV "Grundlagen der Informatik" Programmierung in C (Teil 2)

LV Grundlagen der Informatik Programmierung in C (Teil 2) Aufgabekomplex: Programmiere i C (Teil vo ) (Strukturierte Datetype: Felder, Strukture, Zeiger; Fuktioe mit Parameterübergabe; Dateiarbeit) Hiweis: Alle mit * gekezeichete Aufgabe sid zum zusätzliche Übe

Mehr