4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)

Größe: px
Ab Seite anzeigen:

Download "4. Ratenmonotones Scheduling Rate-Monotonic Scheduling (LIU/LAYLAND 1973)"

Transkript

1 4. Raenmonoones Schedulng Rae-Monoonc Schedulng (LIU/LAYLAND 973) 4.. Tasbeschrebung Tas Planungsenhe. Perodsche Folge von Jobs. T = {,..., n } Tasparameer Anforderungsze, Bereze (release me) Bearbeungs-, Ausführungsze (compuaon me) Zeschrane, Frs (deadlne, due dae) Perodendauer Phasenverschebung (phase) Prorä r c d p Bewerungsgrößen und Bewerungsmaße Beendgungszepun (compleon me) C max(c ) Mn! Anworze (flow me) F = C r F Mn! Deadlne-Abwechung (laeness) L = C d L 0 Deadlne-Überschreung (ardness) T = max(l, 0) = 0 T Perodenanf. bere engeplan beende Deadlne Perodenende Bearbeungsze c r C d Phase Anworze F Abw. L Schedulngheore 03 Raenmonoones Schedulng 4- Hamann, TU Dresden

2 4.. Defnonen und Egenschafen Modellannahmen () Anforderungen an Tass snd perodsch m onsaner Perodendauer, d.h. m onsaner Anforderungsrae a = -. () s bere zu Perodenbegnn, Ausführungsze c s onsan (und höchsens glech ). (3) De Deadlne ener Tas s glech deren Perodenende. (4) De Tass snd vonenander unabhängg. (5) Das Sysem-Schedulng erfolg auf der Bass feser Proräen. Ene Tas höherer Prorä verdräng ene Tas nedrgerer Prorä sofor, Overhead wrd vernachlässg. Tasbeschrebung : (, c, p ) =,...,n Krscher Momen ener Tas (crcal nsan) Zepun, zu dem de Anforderung ener Tas zu deren größmöglcher Anworze führ (falls Ausführung ses n derselben Perode beende). Krsche Ze ener Tas (rsches Inervall): Ze zwschen rschem Momen und Beendgung der Tas. Bespel 4.. =, = 3, 3 = 4, c =, c = c 3 = ; p p p 3. Prorä Schedulngheore 03 Raenmonoones Schedulng 4- Hamann, TU Dresden

3 Saz 4.. Für ene Tas r dann en rscher Momen en, wenn de Tas glechzeg m allen Tass höherer Prorä angeforder wrd. Bewes (n = ). Se p p. Zur Ze T erfolge ene Anforderung an, und für erfolge ene Anforderung zu den Zeen T = T, T +, T +,... c Dann erhöh sch de Anworze von um c. c Weer: En Vergrößern (oder Verlenern) von T läß de Anworze von onsan oder verrnger se. Prorä T T + T + T + 3 T T + T T + T T + T T + T Schedulngheore 03 Raenmonoones Schedulng 4-3 Hamann, TU Dresden

4 Formal: Analyse des Bedarfs an Prozessorze (me demand) c W Annahmen: * = 0 be mn( ) c, W : Anworze von * bs en Prozessor-Leerlauf * Berachung der Anworze W des. Jobs von Tas. W Dann s zur Beendgung von. de Anzahl der Averungen von ( < ) bs Dam s W de lense Lösung der Glechung W W W = c c. W wrd maxmal für = 0 < und som auch für = 0. Weer folg: De maxmale Anworze von s de lense Lösung [0, ] der Glechung c c. Schedulngheore 03 Raenmonoones Schedulng 4-4 Hamann, TU Dresden

5 Folgerung 4.. Für de Exsenz enes Ablaufplans s es hnrechend (und nowendg), daß alle Tass, de n rschen Momenen angeforder werden, hre Deadlne enhalen. Dam genüg es be der Unersuchung der Ausführbare enes Ablaufplans, de glechzege Anforderung von Tass zu berachen. Bespel 4.. : (,, p ), : (5,, p ). a) p p : b) p p : Prorä Prorä 5 5 c) Modfaon: Prorä c = (max.) 5 0 Schedulngheore 03 Raenmonoones Schedulng 4-5 Hamann, TU Dresden

6 Lemma 4.3 (LIU/LAYLAND). Se T = {, } m <. Gb es enen ausführbaren Ablaufplan be p p, so gb es enen solchen Plan auch be p p. Bewes. Nowendg (aber nch hnrechend) für de Exsenz enes Ablaufplans be p p s m m de Bedngung (man beache Folg. 4.) mc + c. (*) Prorä -mal 0 c c c c 3 0 c ' c ' + c " = c c " c ' Se nun p p. Dann muß offenbar gelen: c + c. Dese Bedngung mplzer wegen m Bedngung (*): mc + c mc + mc m. Schedulngheore 03 Raenmonoones Schedulng 4-6 Hamann, TU Dresden

7 Lemma 4.3. Für T = {,..., n } se ene sasche Proräszuordnung p gegeben; o.b.d.a. se p( ) =, =,...,n (: höchse Prorä). Weer gebe es en {,...,n } m > +, und T se uner desen Bedngungen enplanbar. Dann s T auch enplanbar, wenn de Proräen von und + verausch werden. Bewes. Se und m * c c, 0 Nowendg für de Enplanbare von T be p s c 0 + c + mc + m +. Prorä * c : Gesamausführungsze aller höher prorseren n [0, m + ] Daraus folg unmelbar + c m( + c + ) c 0, was (uner Beachung von Folg. 4.) hnrechend für de Enplanbare von T nach Verauschen der Proräen von und + s. Prorä m + 0 Schedulngheore 03 Raenmonoones Schedulng 4-7 Hamann, TU Dresden

8 Raenmonoone Proräszuordnung RMS Den Tass ener Tasmenge T wrd enendeug ene Prorä n der Rehenfolge hrer Anforderungsraen zugeordne (höchse Rae ensprch höchser Prorä; be glecher Rae werden unerschedlche, aber aufenanderfolgende Proräen fesgeleg). Saz 4.4. (Opmaläsegenschaf von RMS) Se T ene Tasmenge, und se S(T) de Gesamhe aller saschen Proräszuordnungen für T. Dann gl: Gb es rgendene Zuordnung aus S(T), de zu enem ausführbaren Ablaufplan führ, so erzeug auch RMS enen solchen Plan. Bewes. Se p: T {,..., n} enendeug (: höchse Prorä), so daß es enen Ablaufplan für T gebe. Weer exsere en {,...,n } m > +, p( ) p( + ), und T se uner desen Bedngungen enplanbar. Dann s nach Lemma 4.3 T auch enplanbar, wenn de Proräen von und + verausch werden. RMS s ene Permuaon der ursprünglchen Proräszuordnung, jede Permuaon läß sch als Produ von Transposonen darsellen. Schedulngheore 03 Raenmonoones Schedulng 4-8 Hamann, TU Dresden

9 4.3. Prozessorauslasung und Exsenz von Ablaufplänen Admsson-Kreren für RMS Gegeben se ene Tasmenge T = {,..., n }, : (, c, p ), =,...,n. Begrffe Prozessorauslasung von T n c U p0 p 0 : Sllsandswahrschenlche Ene Tasmenge T heß gerade noch enplanbar (fully ulzng he processor, dffcul-o-schedule), wenn es für T be der gegebenen Proräszuordnung enen ausführbaren Ablaufplan gb, der jedoch be Vergrößerung der Bearbeungsze ener Tas nch mehr ausführbar s. Aufgabe: Besmmung enes Weres U g, so daß es für alle Tasmengen m U U g ses enen Ablaufplan gb. Da RMS opmal, genüg es, U g bzgl. RMS zu besmmen. Grenzauslasung, obere Grenze U g der Prozessorauslasung (maxmum schedulable ulzaon, ulzaon bound) Mnmum von U über alle Tasmengen (über alle möglchen Were von und c ), de be RMS den Prozessor voll auslasen. Bespel. 4.. c) U = 4.. d) = c = 0,9 = 5 c =,5 U = Prorä 0 5 Schedulngheore 03 Raenmonoones Schedulng 4-9 Hamann, TU Dresden

10 Lemma 4.5. Für zwe Tass s de obere Grenze U g der Prozessorauslasung uner RMS U g Bewes. ( ). Se T = {, } ene Menge von zwe Tass m <, mhn p p. Dann s I := [0, ) das rsche Inervall für. In I reen l : Anforderungen an auf. Weer se :. Fall a): Alle n I aufreenden Anforderungen an werden vollsändg n I erfüll. Das bedeue (s. Abb.) c. (*) Prorä (*) Dann lase T den Prozessor genau dann voll aus, wenn c = lc, und dam s c c U l l c, (a) Schedulngheore 03 Raenmonoones Schedulng 4-0 Hamann, TU Dresden

11 und wegen l folg l und dam s (a) monoon fallend n c. Fall b): Be c lase T den Prozessor genau dann voll aus, wenn so daß c = ( c ), c U c c. (b) Dabe s wegen x x der Faor von c nchnegav und som U monoon segend n c. Also: U g r be c = auf, und dann gl U g l. Schedulngheore 03 Raenmonoones Schedulng 4- Hamann, TU Dresden

12 Se r 0. Dann s = + r, l = + und mhn U g ( r) r r r( r) f (, r) Mn.! r Da U g monoon n seg und N + gl, bedeue des r r U g ( ) r Mn.! Daraus resuler r und schleßlch U g ( ). q.e.d. Schedulngheore 03 Raenmonoones Schedulng 4- Hamann, TU Dresden

13 Saz 4.6 (LIU/LAYLAND, 973). Für ene Menge von n Tass m der Auslasung U gb es enen Ablaufplan gemäß RMS, wenn U U g gl m ( ) n U U n n g g ( obere Grenze der Prozessorauslasung ). n = : U g 0,88 n = 3: U g 0,780 n : U g 0, 693. Folgerung 4.7. Is j N für alle, j m j,, j =,,n, so gb es genau dann enen Ablaufplan, wenn Prorä n c. (3, ) (6, ) 5 Schedulngheore 03 Raenmonoones Schedulng 4-3 Hamann, TU Dresden

14 Sruur des Beweses für n 0. Es werden ausschleßlch Tasmengen T berache, de gerade noch enplanbar snd (de den Prozessor voll auslasen, schwer enplanbar snd). Für dese Tasmengen wrd de lensmöglche Auslasung besmm. o.b.d.a. se T nach Perodenlängen geordne, d.h. < <... < n.. Se n. Be gegebenen wrd ene (spezelle) Tasmenge onsruer, de gerade noch enplanbar s. Be glechen ha jede andere Tasmenge ene höhere Auslasung.. De Auslasung der n. onsrueren Tasmenge s abhängg von den Perodenlängen, genauer von den Perodenverhälnssen. Für dese Tasmengen s der lensmöglche Auslasungswer U n( ). n n 3. T se ene Tasmenge m n >. Konsruon ener Tasmenge T : ( ', c ) für < n, ( n, c n' ) m n n: = ( n / ), c n : Summe aller reslchen Bearbeungszeen. De Auslasung von T s nach. mndesens U n. De Auslasung der ursprünglchen Tasmenge T s (ech) größer als de Auslasung von T. Bespel 4.3. n = Schedulngheore 03 Raenmonoones Schedulng 4-4 Hamann, TU Dresden

15 Verallgemenerungen und Ergänzungen d < : RMS s nch mehr opmal. Aber: Zuordnung - Prorä ~ d s opmal: Deadlne-monoones Schedulng DMS. Enplanbare: Saz 4.8, (0, d ). d > : weder raen- noch deadlne-monoones Schedulng snd opmal. Mulframe ass: : (, n, e pea, e normal ) modfzeres Krerum z. Bsp. = (5, 3, 4, ): Ausführungszeen 4 4 Saz 4.8 (LEHOCZKY, 989). Se T = {,, n } geordne nach aufsegender Perode. Dann gl: Für T gb es genau dann enen Ablaufplan gemäß RMS, wenn max n mn f ( ) m f ( ) 0, j c j j f () Schedulngheore 03 Raenmonoones Schedulng 4-5 Hamann, TU Dresden

16 Analyse des Zebedarfs (me-demand analyss)?,..., n 0 : w ( ) c c j j j Bespel 4.4. T = {(; ), (4; 0,5), (5; 0,5), (6;,5)} r() w() Schedulngheore 03 Raenmonoones Schedulng 4-6 Hamann, TU Dresden

17 4.4. Blocerzeen Nch-Unerbrechbare (Nonpreempbly) = (0,; 4; ) = (0,; 5;,5) 3 = (9; ) b (nu): Blocerze von Tas aufgrund von Nch-Unerbrechbare (nu): längse Dauer der nchunerbrechbaren Abschne von Job b ( nu) max (nu) n Schedulngheore 03 Raenmonoones Schedulng 4-7 Hamann, TU Dresden

18 Selbsunerbrechung (Self-Suspenson) = (4;,5 [,5]) = (7; ) b (su): Blocerze von Tas aufgrund von Selbsunerbrechung (su): längse Selbsunerbrechungsze enes Jobs von b ( su) ( su) mn( c, ( su)) Admsson Enbezehung der Gesam-Blocerze b enes Jobs von : b = b (su) + ( + )b (nu) : maxmale Anzahl von Selbsunerbrechungen der Jobs von Dam LIU/LAYLAND-Krerum: j c j j b U g ( ) =,,n Analyse des Zebedarfs: c ersezen durch c + b Konexwechsel (Conex Swches) (w): Dauer enes Konexwechsels c ersezen durch c + (w) c ersezen durch c + ( + )(w) ohne Selbsunerbrechung m Selbsunerbrechung Schedulngheore 03 Raenmonoones Schedulng 4-8 Hamann, TU Dresden

Glossar: Determiniertheit: nter zeitlichem Determinisumus ist die Berechenbarkeit des Zeitverhaltens des Rechensystems zu verstehen.

Glossar: Determiniertheit: nter zeitlichem Determinisumus ist die Berechenbarkeit des Zeitverhaltens des Rechensystems zu verstehen. Eregns aufgereen 5 8 Reaonsze mn max Re aonsberech mn Re aon max Anforderungsfunon E E E E E p _mn = T 5 7 8 9 5 7 p _max p = T T + T = = T Gesamauslasung u = = e p Proräenvergabe Tass m urzer Ausführungsze

Mehr

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt

Nachtrag Nr. 72 a. gemäß 10 Verkaufsprospektgesetz (in der vor dem 1. Juli 2005 geltenden Fassung) Unvollständigen Verkaufsprospekt London Branch Nachrag Nr. 72 a gemäß 10 Verkaufsprospekgesez (n der vor dem 1. Jul 2005 gelenden Fassung) vom 6. November 2006 zum Unvollsändgen Verkaufsprospek vom 31. März 2005 über Zerfkae auf * über

Mehr

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung

I, U : Momentanwerte für Strom und Spannung I 0, U 0 : Scheitelwerte für Strom und Spannung Wechselsrom B r A B sn( sn( Wrd de eerschlefe über enen Wdersand kurzgeschlossen fleß en Srom: sn( sn(, : Momenanwere für Srom und Spannung, : Scheelwere für Srom und Spannung ~ sn( sn( Effekvwere für

Mehr

Vorlesung: "Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA)"

Vorlesung: Grundlagen ingenieurwissenschaftlichen Arbeitens (GIA) 6 Zuverlägke und Produklebenzyklu 6. Genaugke und Fehlerverhalen 6.2 Technche Zuverlägke 6.2. Klafkaon von Aufällen 6.2.2 Aufall- und Überlebenwahrchenlchke 6.2.3 Fehlerrae 6.3 Zuverlägke von Hardware-Funkonen

Mehr

MC Datenexport und Übernahme in Excel

MC Datenexport und Übernahme in Excel MC Daenexpor und Übernahme n Excel Schr-für-Schr-Anleung zur Daenübernahme aus der MC- Applkaon und Überführung der Daen n en lokales Excel-Fle. Tel A: Daenübernahme aus MC (Wndows XP):. See 1 Tel B: Daenkonverson

Mehr

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit

1.6 Energie 1.6.1 Arbeit und Leistung Wird ein Körper unter Wirkung der Kraft F längs eines Weges s verschoben, so wird dabei die Arbeit 3.6 Energe.6. Arbe und Lesung Wrd en Körper uner Wrkung der Kraf F längs enes Weges s verschoben, so wrd dabe de Arbe W = F s Arbe = Kraf Weg verrche. In deser enfachen Form gülg, wenn folgende Voraussezungen

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

Methoden der innerbetrieblichen Leistungsverrechnung

Methoden der innerbetrieblichen Leistungsverrechnung Methoden der nnerbetreblchen Lestungsverrechnung In der nnerbetreblchen Lestungsverrechnung werden de Gemenosten der Hlfsostenstellen auf de Hauptostenstellen übertragen. Grundlage dafür snd de von den

Mehr

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung

Energieeffizienz-Betrachtung einer Anlage durch Energiemessung Applcaon Noe DK9221-1109-0007 Messechnk Keywords Energemessung Lesungsfakor Energeanalyse EherCAT-Klemme Busklemme KL3403 EL3403 Energeeffzenz-Berachung ener Anlage durch Energemessung Deses Applcaon Example

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich

Für jeden reinen, ideal kristallisierten Stoff ist die Entropie am absoluten Nullpunkt gleich Drtter Hauptsatz der Thermodynamk Rückblck auf vorherge Vorlesung Methoden zur Erzeugung tefer Temperaturen: - umgekehrt laufende WKM (Wärmepumpe) - Joule-Thomson Effekt bs 4 K - Verdampfen von flüssgem

Mehr

Nernstscher Verteilungssatz

Nernstscher Verteilungssatz Insttut für Physkalsche Cheme Grundpraktkum 7. NERNSTSCHER VERTEILUNGSSATZ Stand 03/11/2006 Nernstscher Vertelungssatz 1. Versuchsplatz Komponenten: - Schedetrchter - Büretten - Rührer - Bechergläser 2.

Mehr

Kapitel 5: Koordination der Personalführung im Führungssystem

Kapitel 5: Koordination der Personalführung im Führungssystem Kapel 5: Koordnaon der Personalführung m Führungssysem 5.1 Bezehungen zwschen Conrollng und Personalführung Kapel 5 5.2 Koordnaon der Personalführung m dem Informaonssysem 5.3 Koordnaon der Personalführung

Mehr

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt:

binäre Suchbäume Informatik I 6. Kapitel binäre Suchbäume binäre Suchbäume Rainer Schrader 4. Juni 2008 O(n) im worst-case Wir haben bisher behandelt: Informatk I 6. Kaptel Raner Schrader Zentrum für Angewandte Informatk Köln 4. Jun 008 Wr haben bsher behandelt: Suchen n Lsten (lnear und verkettet) Suchen mttels Hashfunktonen jewels unter der Annahme,

Mehr

Beraterì. Bewe Bege stern.

Beraterì. Bewe Bege stern. / c Prvaumzüge Schndlauer,l ;l ü[ o] Êl. Sffñ DMS Beraerì. Bewe Begesern. gen. Lokal verrau und global verbunden. Se 1968 s de Deusche Möbelspedon deuschlandwe enes der führenden melsändschen Transporunernehmen

Mehr

Simulationsbasierte Ermittlung von Kapazitätsbelastungsfaktoren zur Produktionsprogrammplanung

Simulationsbasierte Ermittlung von Kapazitätsbelastungsfaktoren zur Produktionsprogrammplanung Smulaon n Produkon und Logsk Enschedungsunersüzung von der Planung bs zur Seuerung Wlhelm Dangelmaer, Chrsoph Laroque & Alexander Klaas (Hrsg.) Paderborn, HNI-Verlagsschrenrehe 3 Smulaonsbasere Ermlung

Mehr

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung

Zinseszinsformel (Abschnitt 1.2) Begriffe und Symbole der Zinsrechnung. Die vier Fragestellungen der Zinseszinsrechnung 4. Investition & Finanzierung Znsesznsformel (Abschntt 1.2) 3 Investton & Fnanzerung 1. Fnanzmathematk Unv.-Prof. Dr. Dr. Andreas Löffler (AL@wacc.de) t Z t K t Znsesznsformel 0 1.000 K 0 1 100 1.100 K 1 = K 0 + K 0 = K 0 (1 + ) 2

Mehr

Online Algorithmen. k-server randomisiert Teil II

Online Algorithmen. k-server randomisiert Teil II Onlne Algorthmen k-server randomsert Tel II Ausarbetung für das Semnar Onlne Algorthmen Prof. Dr. Ro. Klen Anette Ebbers-Baumann Ansgar Grüne Insttut für Informatk Theorethsche Informatk und formale Methoden

Mehr

1 BWL 4 Tutorium V vom 15.05.02

1 BWL 4 Tutorium V vom 15.05.02 1 BWL 4 Tutorum V vom 15.05.02 1.1 Der Tlgungsfaktor Der Tlgungsfaktor st der Kehrwert des Endwertfaktors (EWF). EW F (n; ) = (1 + )n 1 T F (n; ) = 1 BWL 4 TUTORIUM V VOM 15.05.02 (1 ) n 1 Mt dem Tlgungsfaktor(TF)

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t + " I ) = 0 $ " I

Wechselstrom. Dr. F. Raemy Wechselspannung und Wechselstrom können stets wie folgt dargestellt werden : U t. cos (! t +  I ) = 0 $  I Wechselstrom Dr. F. Raemy Wechselspannung und Wechselstrom können stets we folgt dargestellt werden : U t = U 0 cos (! t + " U ) ; I ( t) = I 0 cos (! t + " I ) Wderstand m Wechselstromkres Phasenverschebung:!"

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Die Kapitalkosten von Unternehmen mit wertorientierter Finanzierungspolitik

Die Kapitalkosten von Unternehmen mit wertorientierter Finanzierungspolitik De Kapalkosen von nernehmen m werorenerer Fnanzerungspolk Manuskrpe zur Bereswrschalehre des Facherechs Wrscha der Fachhochschule Trer r. 6 Pro. Dr. Felx Sreerd Okoer 2008 Manuskrpe zur Bereswrschaslehre

Mehr

Die relevanten Cash Flows in der Unternehmensbewertung aus der Sicht des Rechnungswesens

Die relevanten Cash Flows in der Unternehmensbewertung aus der Sicht des Rechnungswesens De relevnen Csh Flows n der Unernehmensbewerun us der Sch des Rechnunswesens Edwn O Fscher rl-frnzens-unversä rz Oober 26 DCF-Bssmodelle Percen of Sles-Mehode Fllsude Übersch o onsner Verschuldunsrd o

Mehr

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung

Standortplanung. Positionierung von einem Notfallhubschrauber in Südtirol. Feuerwehrhaus Zentrallagerpositionierung Standortplanung Postonerung von enem Notfallhubschrauber n Südtrol Postonerung von enem Feuerwehrhaus Zentrallagerpostonerung 1 2 Postonerung von enem Notfallhubschrauber n Südtrol Zu bekannten Ensatzorten

Mehr

Einführung in die Finanzmathematik

Einführung in die Finanzmathematik 1 Themen Enführung n de Fnanzmathematk 1. Znsen- und Znsesznsrechnung 2. Rentenrechnung 3. Schuldentlgung 2 Defntonen Kaptal Betrag n ener bestmmten Währungsenhet, der zu enem gegebenen Zetpunkt fällg

Mehr

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale

3.2 Die Kennzeichnung von Partikeln 3.2.1 Partikelmerkmale 3. De Kennzechnung von Patkeln 3..1 Patkelmekmale De Kennzechnung von Patkeln efolgt duch bestmmte, an dem Patkel mess bae und deses endeutg beschebende physka lsche Gößen (z.b. Masse, Volumen, chaaktestsche

Mehr

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft

VU Quantitative BWL. 1.Teil: Produktion und Logistik [Stefan Rath] 2.Teil: Finanzwirtschaft [Tomáš Sedliačik] Quantitative BWL: Finanzwirtschaft VU Quanave BWL.Tel: odukon und Logsk [Sefan Rah] 2.Tel: Fnanzwschaf [Tomáš Sedlačk] Quanave BWL: Fnanzwschaf Ogansaosches De LV beseh aus zwe Telen:. Tel: odukon und Logsk [4.0.203 22..203] Sefan Rah Insu

Mehr

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen

nonparametrische Tests werden auch verteilungsfreie Tests genannt, da sie keine spezielle Verteilung der Daten in der Population voraussetzen arametrsche vs. nonparametrsche Testverfahren Verfahren zur Analyse nomnalskalerten Daten Thomas Schäfer SS 009 1 arametrsche vs. nonparametrsche Testverfahren nonparametrsche Tests werden auch vertelungsfree

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 6 Praktkum Physkalsche Cheme I (C-2) Versuch Nr. 6 Konduktometrsche Ttratonen von Säuren und Basen sowe Fällungsttratonen Praktkumsaufgaben 1. Ttreren Se konduktometrsch Schwefelsäure mt Natronlauge und

Mehr

1 EINLEITUNG. Leitstation. Automatisierungstechnik. Sensor- System. Aktor- System. Antriebstechnik. Messtechnik. Anlage (Prozess) Energie, Produkt

1 EINLEITUNG. Leitstation. Automatisierungstechnik. Sensor- System. Aktor- System. Antriebstechnik. Messtechnik. Anlage (Prozess) Energie, Produkt Prof. r. U. Schwellenberg, Vorlesung Messechnk - INLITUNG Lernzel: Vermlung von grundlegenden Kennnssen n a den wchgsen Messprnzpen für de elekrsche Messung nchelekrscher Größen, b Aufbau von Messenrchungen

Mehr

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e

Funktionsgleichungen folgende Funktionsgleichungen aus der Vorlesung erhält. = e Andere Darstellungsformen für de Ausfall- bzw. Überlebens-Wahrschenlchket der Webull-Vertelung snd we folgt: Ausfallwahrschenlchket: F ( t ) Überlebenswahrschenlchket: ( t ) = R = e e t t Dabe haben de

Mehr

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny

Franzis Verlag, 85586 Poing ISBN 978-3-7723-4046-8 Autor des Buches: Leonhard Stiny eseproben aus dem Buch "n mt en zur Elektrotechnk" Franzs Verlag, 85586 Pong ISBN 978--77-4046-8 Autor des Buches: eonhard Stny Autor deser eseprobe: eonhard Stny 005/08, alle echte vorbehalten. De Formaterung

Mehr

Statistik und Wahrscheinlichkeit

Statistik und Wahrscheinlichkeit Regeln der Wahrschenlchketsrechnung tatstk und Wahrschenlchket Regeln der Wahrschenlchketsrechnung Relatve Häufgket n nt := Eregnsalgebra Eregnsraum oder scheres Eregns und n := 00 Wahrschenlchket Eregnsse

Mehr

Free Riding in Joint Audits A Game-Theoretic Analysis

Free Riding in Joint Audits A Game-Theoretic Analysis . wp Wssenschatsorum, Wen,8. Aprl 04 Free Rdng n Jont Audts A Game-Theoretc Analyss Erch Pummerer (erch.pummerer@ubk.ac.at) Marcel Steller (marcel.steller@ubk.ac.at) Insttut ür Rechnungswesen, Steuerlehre

Mehr

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt -

Flußnetzwerke - Strukturbildung in der natürlichen Umwelt - Flußnetzwerke - Strukturbldung n der natürlchen Umwelt - Volkhard Nordmeer, Claus Zeger und Hans Joachm Schlchtng Unverstät - Gesamthochschule Essen Das wohl bekannteste und größte exsterende natürlche

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

Beispiele: Scheduling 6.1EinfŸhrung. Beispiel: Gang Scheduling. Ein Klassisches Scheduling-Problem

Beispiele: Scheduling 6.1EinfŸhrung. Beispiel: Gang Scheduling. Ein Klassisches Scheduling-Problem Schedulng 6.EnfŸhrung Schedulng (zu deutsch etwa ãablaufplanungò) bedeutet de Zuordnung von AktvtŠten zu Instanzen, welche dese AktvtŠten durchfÿhren kšnnen, n Raum und Zet. In der Systemprogrammerung

Mehr

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5

H I HEIZUNG I 1 GRUNDLAGEN 1.1 ANFORDERUNGEN. 1 GRUNDLAGEN 1.1 Anforderungen H 5 1 GRUNDLAGEN 1.1 Anforderungen 1.1.1 Raumklma und Behaglchket Snn der Wärmeversorgung von Gebäuden st es, de Raumtemperatur n der kälteren Jahreszet, das snd n unseren Breten etwa 250 bs 0 Tage m Jahr,

Mehr

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com.

Polygonalisierung einer Kugel. Verfahren für die Polygonalisierung einer Kugel. Eldar Sultanow, Universität Potsdam, sultanow@gmail.com. Verfahren für de Polygonalserung ener Kugel Eldar Sultanow, Unverstät Potsdam, sultanow@gmal.com Abstract Ene Kugel kann durch mathematsche Funktonen beschreben werden. Man sprcht n desem Falle von ener

Mehr

FORMELSAMMLUNG STATISTIK (I)

FORMELSAMMLUNG STATISTIK (I) Statst I / B. Zegler Formelsammlng FORMELSAMMLUG STATISTIK (I) Statstsche Formeln, Defntonen nd Erläterngen A a X n qaltatves Mermal Mermalsasprägng qanttatves Mermal Mermalswert Anzahl der statstschen

Mehr

3. Echtzeit-Scheduling Grundlagen

3. Echtzeit-Scheduling Grundlagen 3. Echzei-Scheduling Grundlagen 3.1. Grundbegriffe, Klassifikaion und Bewerung Grundbegriffe Job Planungseinhei für Scheduling e wce r d Ausführungszei, Bearbeiungszei (execuion ime) maximale Ausführungszei

Mehr

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt

Wir betrachten in diesem Abschnitt Matrixspiele in der Maximierungsform, also endliche 2 Personen Nullsummenspiele der Gestalt Kaptel 3 Zwe Personen Spele 3.1 Matrxspele 3.2 Matrxspele n gemschten Strategen 3.3 B Matrxspele und quadratsche Programme 3.4 B Matrxspele und lneare Komplementartätsprobleme 3.1 Matrxspele Wr betrachten

Mehr

Berechnung der Kriech- und Schwindwerte

Berechnung der Kriech- und Schwindwerte Berehnung der Kreh- und Shwndwere Grundlagen Beon zeg bere uner üblhen Gebrauhbedngungen en augepräge zeabhängge Verhalen wodurh Dehnungen aufreen können de en Mehrfahe der elahen Dehnung beragen: laabhängge

Mehr

Nomenklatur - Übersicht

Nomenklatur - Übersicht Nomenklatur - Überscht Name der synthetschen Varable Wert der synthetschen Varable durch synth. Varable erklärte Gesamt- Streuung durch synth. Varable erkl. Streuung der enzelnen Varablen Korrelaton zwschen

Mehr

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm):

Beim Wiegen von 50 Reispaketen ergaben sich folgende Gewichte X(in Gramm): Aufgabe 1 (4 + 2 + 3 Punkte) Bem Wegen von 0 Respaketen ergaben sch folgende Gewchte X(n Gramm): 1 2 3 4 K = (x u, x o ] (98,99] (99, 1000] (1000,100] (100,1020] n 1 20 10 a) Erstellen Se das Hstogramm.

Mehr

Netzwerkstrukturen. Entfernung in Kilometer:

Netzwerkstrukturen. Entfernung in Kilometer: Netzwerkstrukturen 1) Nehmen wr an, n enem Neubaugebet soll für 10.000 Haushalte en Telefonnetz nstallert werden. Herzu muss von jedem Haushalt en Kabel zur nächstgelegenen Vermttlungsstelle gezogen werden.

Mehr

Auswertung univariater Datenmengen - deskriptiv

Auswertung univariater Datenmengen - deskriptiv Auswertung unvarater Datenmengen - desrptv Bblografe Prof. Dr. Küc; Statst, Vorlesungssrpt Abschntt 6.. Bleymüller/Gehlert/Gülcher; Statst für Wrtschaftswssenschaftler Verlag Vahlen Bleymüller/Gehlert;

Mehr

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT

SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT Smulaton von Hybrdfahrzeugantreben mt optmerter Synchronmaschne 1 SIMULATION VON HYBRIDFAHRZEUGANTRIEBEN MIT OPTIMIERTER SYNCHRONMASCHINE H. Wöhl-Bruhn 1 EINLEITUNG Ene Velzahl von Untersuchungen hat sch

Mehr

Ionenselektive Elektroden (Potentiometrie)

Ionenselektive Elektroden (Potentiometrie) III.4.1 Ionenselektve Elektroden (otentometre) Zelstellung des Versuches Ionenselektve Elektroden gestatten ene verhältnsmäßg enfache und schnelle Bestmmung von Ionenkonzentratonen n verschedenen Meden,

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1

Finanzwirtschaft. Kapitel 3: Simultane Investitions- und Finanzplanung. Lehrstuhl für Finanzwirtschaft - Universität Bremen 1 Fnanzwrtschaft Kaptel 3: Smultane Investtons- und Fnanzplanung Prof. Dr. Thorsten Poddg Lehrstuhl für Allgemene Betrebswrtschaftslehre, nsbes. Fnanzwrtschaft Unverstät Bremen Hochschulrng 4 / WW-Gebäude

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

Boost-Schaltwandler für Blitzgeräte

Boost-Schaltwandler für Blitzgeräte jean-claude.feltes@educaton.lu 1 Boost-Schaltwandler für Bltzgeräte In Bltzgeräten wrd en Schaltwandler benutzt um den Bltzkondensator auf ene Spannung von engen 100V zu laden. Oft werden dazu Sperrwandler

Mehr

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik)

Kreditpunkte-Klausur zur Lehrveranstaltung Projektmanagement (inkl. Netzplantechnik) Kredtpunkte-Klausur zur Lehrveranstaltung Projektmanagement (nkl. Netzplantechnk) Themensteller: Unv.-Prof. Dr. St. Zelewsk m Haupttermn des Wntersemesters 010/11 Btte kreuzen Se das gewählte Thema an:

Mehr

6. Modelle mit binären abhängigen Variablen

6. Modelle mit binären abhängigen Variablen 6. Modelle mt bnären abhänggen Varablen 6.1 Lneare Wahrschenlchketsmodelle Qualtatve Varablen: Bnäre Varablen: Dese Varablen haben genau zwe möglche Kategoren und nehmen deshalb genau zwe Werte an, nämlch

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

Controlling (Nebenfach) Wintersemester 2012/2013

Controlling (Nebenfach) Wintersemester 2012/2013 echnsche Unversä München Conrollng (Nebenfach) Wnersemeser 22/23 Mschrf der orlesung vom 3..22 Dr. Markus Brunner Lehrsuhl für Berebswrschafslehre Conrollng echnsche Unversä München Conrollng WS 22/3 2

Mehr

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006

Seminar über Algorithmen. Load Balancing. Slawa Belousow Freie Universität Berlin, Institut für Informatik SS 2006 Semna übe Algothmen Load Balancng Slawa Belousow Fee Unvestät Beln, Insttut fü Infomatk SS 2006 1. Load Balancng was st das? Mt Load Balancng ode Lastvetelung weden Vefahen bescheben, um be de Specheung,

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Emprsche Wrtschaftsforschung und Ökonometre Dr Roland Füss Statstk II: Schleßende Statstk SS 007 5 Mehrdmensonale Zufallsvarablen Be velen Problemstellungen st ene solerte Betrachtung enzelnen

Mehr

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE

VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE VERGLEICH VON TESTVERFAHREN FÜR DIE DEFORMATIONSANALYSE Karl Rudolf KOCH Knut RIESMEIER In: WELSCH, Walter (Hrsg.) [1983]: Deformatonsanalysen 83 Geometrsche Analyse und Interpretaton von Deformatonen

Mehr

Operations Research II (Netzplantechnik und Projektmanagement)

Operations Research II (Netzplantechnik und Projektmanagement) Operatons Research II (Netzplantechnk und Projektmanagement). Aprl Frank Köller,, Hans-Jörg von Mettenhem & Mchael H. Bretner.. # // ::: Gute Vorlesung:-) Danke! Feedback.. # Netzplantechnk: Überblck Wchtges

Mehr

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl

1 = Gl.(12.7) Der Vergleich mit Gl. (12.3) zeigt, dass für die laminare Rohrströmung die Rohrreibungszahl 0. STRÖMUNG INKOMPRESSIBLER FLUIDE IN ROHRLEITUNGEN Enführung Vorlesung Strömungslehre Prof. Dr.-Ing. Chrstan Olver Pascheret C. O. Pascheret Insttute of Flud Mechancs and Acoustcs olver.pascheret@tu-berln.de

Mehr

Aerodynamik des Flugzeugs Numerische Strömungssimulation

Aerodynamik des Flugzeugs Numerische Strömungssimulation Aerodnamk des Flgzegs Nmersche Srömngssmlaon Enleng Srömngssmlaon n Wndkanälen 3 Nmersche Srömngssmlaon 4 Poenalsrömngen 5 Tragflügel nendlcher Sreckng n nkompressbler Srömng 6 Tragflügel endlcher Sreckng

Mehr

Logik die Grundlagen. g A E H M K. d b f. Logik Grundlagen 1

Logik die Grundlagen. g A E H M K. d b f. Logik Grundlagen 1 Lok Grunlaen 1 Lok e Grunlaen De Lok s ene sehr ale Wssenschaf. Se s e Lehre vom rchen Denken un beschäf sch m en Reeln un echansmen es Schlussfolerns (loos = as Wor). 'rfunen' wure se beres m anken Grechenlan,

Mehr

ANSÄTZE ZUR (AUF-)LÖSUNG EINES ALTEN METHODENSTREITS: ÖKONOMETRISCHE SPEZIFIKATION VON PROGRAMMIERUNGSMODELLEN ZUR AGRARANGEBOTSANALYSE

ANSÄTZE ZUR (AUF-)LÖSUNG EINES ALTEN METHODENSTREITS: ÖKONOMETRISCHE SPEZIFIKATION VON PROGRAMMIERUNGSMODELLEN ZUR AGRARANGEBOTSANALYSE ASÄTZE ZUR (AUF-)LÖSUG EIES ALTE METHODESTREITS: ÖKOOMETRISCHE SPEZIFIKATIO VO PROGRAMMIERUGSMODELLE ZUR AGRARAGEBOTSAALYSE Refera von Thomas Heckele und Hendrk Wolff * * Insu für Agrarpolk, Markforschung

Mehr

Transformation in der Gesichtserkennung

Transformation in der Gesichtserkennung Transformaon n der Geschserkennung en Proek m Rahmen des Proekkurses Bldanalse und Obekerkennung Seffen Mankecz Mchael Rommel Rober Sen Sebasan Thebes. Enleung De Erkennung von Geschern und Gennung von

Mehr

Versicherungstechnischer Umgang mit Risiko

Versicherungstechnischer Umgang mit Risiko Verscherungstechnscher Umgang mt Rsko. Denstlestung Verscherung: Schadensdeckung von für de enzelne Person ncht tragbaren Schäden durch den fnanzellen Ausglech n der Zet und m Kollektv. Des st möglch über

Mehr

CLT - Cross Laminated Timber Brandschutz. www.clt.info www.storaenso.com

CLT - Cross Laminated Timber Brandschutz. www.clt.info www.storaenso.com CLT - Cross Lamnaed Tmber Brandschuz www.cl.nfo www.soraenso.com I N H A L T Verson 01/2014 AG Es s zu beachen, dass es sch bem vorlegenden Merkbla zum Thema Brandschuz ledglch um ene Hlfesellung für den

Mehr

14 Überlagerung einfacher Belastungsfälle

14 Überlagerung einfacher Belastungsfälle 85 De bsher betrachteten speellen Belastungsfälle treten n der Technk. Allg. ncht n rener orm auf, sondern überlagern sch. Da de auftretenden Verformungen klen snd und en lnearer Zusammenhang wschen Verformung

Mehr

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb

d da B A Die gesamte Erscheinung der magnetischen Feldlinien bezeichnet man als magnetischen Fluss. = 1 V s = 1 Wb S N De amte Erschenng der magnetschen Feldlnen bezechnet man als magnetschen Flss. = V s = Wb Kraftflssdchte oder magnetsche ndkton B. B d da B = Wb/m = T Für homogene Magnetfelder, we se m nneren von

Mehr

2. Spiele in Normalform (strategischer Form)

2. Spiele in Normalform (strategischer Form) 2. Spele n Normalform (strategscher Form) 2.1 Domnante Strategen 2.2 Domnerte Strategen 2.3 Sukzessve Elmnerung domnerter Strategen 2.4 Nash-Glechgewcht 2.5 Gemschte Strategen und Nash-Glechgewcht 2.6

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz):

Aufgabe 8 (Gewinnmaximierung bei vollständiger Konkurrenz): LÖSUNG AUFGABE 8 ZUR INDUSTRIEÖKONOMIK SEITE 1 VON 6 Aufgabe 8 (Gewnnmaxmerung be vollständger Konkurrenz): Betrachtet wrd en Unternehmen, das ausschleßlch das Gut x produzert. De m Unternehmen verwendete

Mehr

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen

9 Phasengleichgewicht in heterogenen Mehrkomponentensystemen 9 Phasenglechgewcht n heterogenen Mehrkomonentensystemen 9. Gbbs sche Phasenregel α =... ν Phasen =... k Komonenten Y n (α) -Molzahl der Komonente Y n der Phase α. Für jede Phase glt ene Gbbs-Duhem-Margules

Mehr

IK: Einkommen, Beschäftigung und Finanzmärkte (Wintersemester 2011/12) Wichtige makroökonomische Variablen

IK: Einkommen, Beschäftigung und Finanzmärkte (Wintersemester 2011/12) Wichtige makroökonomische Variablen IK: Enkommen, Beschäfgung und Fnanzmärke (Wnersemeser 2011/12) Wchge makroökonomsche Varablen 1 Überblck Aggregerer Oupu Agg. Oupu hs. Abrss Berechnung des BIP; reales vs. nomnales BIP, BIP vs. BNE, verkeees

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14

Die Ausgangssituation... 14 Das Beispiel-Szenario... 14 E/A Cockpt Für Se als Executve Starten Se E/A Cockpt........................................................... 2 Ihre E/A Cockpt Statusüberscht................................................... 2 Ändern

Mehr

Entgelte für die Netznutzung, Messung und Abrechnung im Gasverteilnetz

Entgelte für die Netznutzung, Messung und Abrechnung im Gasverteilnetz Entgelte für de Netznutzung, Messung und Abrechnung m Gasvertelnetz Gültg vom 22.12.2006 bs 30.09.2007 reslste (netto) 1. Netzentgelt (netto) De Netzentgelte der Kunden der Stadtwerke Osnabrück AG werden

Mehr

4. Energie, Arbeit, Leistung, Impuls

4. Energie, Arbeit, Leistung, Impuls 34 35 4. Energe, Arbet, Lestung, Ipuls Zentrale Größen der Physk: Energe E, Enhet Joule ( [J] [N] [kg /s ] Es gbt zwe grundsätzlche Foren on Energe: knetsche Energe: entelle Energe: Arbet, Enhet Joule

Mehr

EAU SWH l$,0, wohngebäude

EAU SWH l$,0, wohngebäude EAU SWH l$,0, wohngebäude gemäß den $$ 6 ff, Energeensparverordnung (EnEV) :,:: Gültsbs: 09208 Gebäude Gebäudetyp Altbau Mehrfamlenhaus Adresse Hardstraße 3 33, 40629 Düsseldorf Gebäudetel Baujahr Gebäude

Mehr

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08

Prof. Dr. Johann Graf Lambsdorff Universität Passau. Pflichtlektüre: WS 2007/08 y, s. y Pof. D. Johann Gaf Lambsdoff Unvestät Passau y* VI. Investton und Zns c* WS 2007/08 f(k) (n+δ)k Pflchtlektüe: Mankw, N. G. (2003), Macoeconomcs. 5. Aufl. S. 267-271. Wohltmann, H.-W. (2000), Gundzüge

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung

Fallstudie 4 Qualitätsregelkarten (SPC) und Versuchsplanung Fallstude 4 Qualtätsregelkarten (SPC) und Versuchsplanung Abgabe: Lösen Se de Aufgabe 1 aus Abschntt I und ene der beden Aufgaben aus Abschntt II! Aufgabentext und Lösungen schrftlch bs zum 31.10.2012

Mehr

Windows Server 2012 R2 Playbook OEM und Systembuilder 2013/2014

Windows Server 2012 R2 Playbook OEM und Systembuilder 2013/2014 2012 R2 2012 R2 Plabook OEM und Ssembulder 2013/2014 Immer an Ihrer See: OEM Server Kompeenz Club www.oem-server-kompeenz-club.de OEM Server 2012 R2 Edonsübersch 2012 R2 Daacener 2012 R2 Sandard 2012 R2

Mehr

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die "Schuldverschreibungen") unter dem

Konditionenblatt. Erste Group Bank AG. Daueremission Erste Group Reale Werte Express II. (Serie 211) (die Schuldverschreibungen) unter dem Kondtonenblatt Erste Group Bank AG 24.04.2012 Daueremsson Erste Group Reale Werte Express II (Sere 211) (de "Schuldverschrebungen") unter dem Programm zur Begebung von Schuldverschrebungen an Prvatkunden

Mehr

1 - Prüfungsvorbereitungsseminar

1 - Prüfungsvorbereitungsseminar 1 - Prüfungsvorberetungssemnar Kaptel 1 Grundlagen der Buchführung Inventur Inventar Blanz Inventur st de Tätgket des mengenmäßgen Erfassens und Bewertens aller Vermögenstele und Schulden zu enem bestmmten

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf.

Ich habe ein Beispiel ähnlich dem der Ansys-Issue [ansys_advantage_vol2_issue3.pdf] durchgeführt. Es stammt aus dem Dokument Rfatigue.pdf. Ich habe en Bespel ähnlch dem der Ansys-Issue [ansys_advantage_vol_ssue3.pdf durchgeführt. Es stammt aus dem Dokument Rfatgue.pdf. Abbldung 1: Bespel aus Rfatgue.pdf 1. ch habe es manuell durchgerechnet

Mehr

Geld- und Finanzmärkte

Geld- und Finanzmärkte Gel- un Fnanzmärkte Prof. Dr. Volker Clausen akroökonomk 1 Sommersemester 2008 Fole 1 Gel- un Fnanzmärkte 4.1 De Gelnachfrage 4.2 De Bestmmung es Znssatzes I 4.3 De Bestmmung es Znssatzes II 4.4 Zwe alternatve

Mehr

Gruppe. Lineare Block-Codes

Gruppe. Lineare Block-Codes Thema: Lneare Block-Codes Lneare Block-Codes Zele Mt desen rechnerschen und expermentellen Übungen wrd de prnzpelle Vorgehenswese zur Kanalcoderung mt lnearen Block-Codes erarbetet. De konkrete Anwendung

Mehr

wissenschaftliche Einrichtung elektronik

wissenschaftliche Einrichtung elektronik wssenscaftlce Enrctung elektronk Oberscwngungen, Begrffe und Defntonen Prof.. Burgolte Labor Elektromagnetsce Verträglcket Facberec ngeneurwssenscaften Begrff Störgröße (dsturbance) Störfestgket (mmunty)

Mehr

Working Paper Series

Working Paper Series Berebswrschaflches Insu Lehrsuhl Conrollng Worng Paer Seres Hsorsche Kosen oder Long Run Incremenal Coss als Kosenmaßsab für de Presgesalung n reguleren Mären? Gunher Fredl, Hans-Ulrch Küer Worng Paer

Mehr

MODUL: AGRARPREISBILDUNG AUF EU-MÄRKTEN WS 01/02 ULRICH KOESTER

MODUL: AGRARPREISBILDUNG AUF EU-MÄRKTEN WS 01/02 ULRICH KOESTER MODUL: AGRARPREISBILDUNG AUF EU-MÄRKTEN WS 01/02 ULRICH KOESTER 4.2: TECHNISCHER FORTSCHRITT UND AGRARPREISE 1 De mesen Agrarproduke - ob Rndflesch, Wezen, Eer oder Äpfel haben sch m Laufe der Ze grundsäzlch

Mehr

2. Periodische nichtsinusförmige Größen

2. Periodische nichtsinusförmige Größen . Perodsche nchsnusförge Größen n der Eleroechn haben neben den Snusgrößen auch nchsnusförge Größen erheblche Bedeuung. Generaoren lefern n eleronschen Schalungen Rechec-, puls- oder Sägezahnspannungen;

Mehr

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik

Quant oder das Verwelken der Wertpapiere. Die Geburt der Finanzkrise aus dem Geist der angewandten Mathematik Quant der das Verwelken der Wertpapere. De Geburt der Fnanzkrse aus dem Gest der angewandten Mathematk Dmensnen - de Welt der Wssenschaft Gestaltung: Armn Stadler Sendedatum: 7. Ma 2012 Länge: 24 Mnuten

Mehr

Optimierung von Problemstellungen aus der diskreten und der Prozess- Industrie unter Verwendung physikalischer Verfahren

Optimierung von Problemstellungen aus der diskreten und der Prozess- Industrie unter Verwendung physikalischer Verfahren Operung von roblesellungen aus der dskreen und der rozess- Indusre uner Verwendung physkalscher Verfahren Dsseraon zur Erlangung des Dokorgrades der Naurwssenschafen (Dr. rer. Na.) der Naurwssenschaflchen

Mehr