Physik für Bauingenieure

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Physik für Bauingenieure"

Transkript

1 Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster April 2010 Physik für Bauingenieure Übungsblatt 2 Gruppenübungen 1. Springende Kugeln Die nebenstehende Abbildung zeigt die Momentaufnahme eines Versuchs aus der Vorlesung, bei dem kleine Kugeln durch Stöße in einem Rohr auf unterschiedliche Höhen katapultiert werden. Das Rohr kann nun in Höhenstreifen der Höhe [h:h + dh] 1 cm unterteilt werden. a) Lesen Sie ab, wie viele Kugeln sich jeweils in den Abschnitten h bis h + dh befinden. b) Wieviele Kugeln befinden sich in dem Rohr? c) Was ist die mittlere Höhe der Kugeln? a) Die Tabelle gibt an, wie viele Kugeln sich im jeweiligen Abschnitt befinden Höhe / cm Anzahl h b) Um die Anzahl zu erlangen muss über die Höhen summiert werden N 5 Anzahl h 95Kugeln h c) Die mittlere Höhe ist gegeben durch H N 5 1 i Anzahl h h (was für h gewählt wird muss definiert werden; hier wird die Mitte gewählt) h 1 N 5 Anzahl h h i 1 26Kugeln 1,5cm+ 14Kugeln 2,5cm+1Kugeln 3,5cm+2Kugeln 4,5cm] 95Kugeln [52Kugeln 0,5cm+ 1,2cm Für die untere Grenze ergibt sich h low 0,7 cm, für die obere Grenze h up 1,7 cm. Wie groß ist also der Fehler? War die Wahl der Höhe geschickt?

2 2. Eine Wagenladung Hohlblocksteine Gegeben ist die abgebildete Verteilungsfunktion n(m). n gibt die Anzahl der Steine mit der Masse m im Bereich m und m+dm1 kg an. n(m) / kg -1 a) Geben Sie die abschnittsweise definierte Funktion n(m) an. b) Wieviele Hohlblocksteine umfasst die Wagenladung? 100 c) Was ist die mittlere Masse eines Hohlblocksteins? a) Die abschnittsweise definierte Funktion n(m) ist: m / kg n 1 (m)0kg 1 n 2 (m) 100kg 1 0kg 1 n 3 (m)100kg 1 + 0kg 1 100kg 1 n 4 (m)0kg 1 1 (m )20kg 2 m 200kg m [,] 17kg 1 (m ) 50kg 2 m+850kg m [,17kg] m m 17kg b) Um die Anzahl zu erlangen muss immer über die Funktion n(m) integriert werden mit N b n(m) dm 17kg N n 2 (m) dm + n 3 (m) dm 20kg 2 m 200kg 1 17kg dm + 50kg 2 m+850kg 1 dm 2 m 2 200kg 1 m + 25kg 2 m kg 1 m 17kg Steine a c) Die mittlere Masse ist gegeben durch M 1 N b a m n(m) dm M 1 17kg m n N 2 (m) dm + m n 3 (m) dm 1 20kg 2 m 2 200kg 1 m 17kg dm N + 50kg 2 m kg 1 m dm 1 20 N kg 2 m 3 100kg 1 m kg 2 m kg 1 m 2 17kg ( ( ) kg 2 ) kg kg 3. Ausdehnung des Eiffelturms Um wieviel länger ist der Eiffelturm (Höhe h 324, 82 m bei 10 C) im Sommer bei Temperaturen von T Sommer 35 C im Vergleich zum Winter mit Temperaturen von T Winter 15 C? Hinweis: Den Ausdehnungskoeffizienten von Stahl liegt beiα1, K 1.

3 Man berechnet die Längenänderungen des Eiffelturms mit der Formel h h α(t T 0). Es gilt: h ges α (T Sommer T 0 ) (T Winter T 0 ) α T Sommer T Winter 1, K 1 50K6, h h 0,211m 4. Thermische Ausdehnung der Öresundbrücke Die Öresundbrücke zwischen Dänemark und Schweden ist 7845 m lang (bei 20 C) und aus Spannbeton hergestellt worden. Da sich der Beton bei Temperaturänderungen ausdehnt, bzw. zusammenzieht, mussten auf beiden Seiten der Brücke Ausgleichselemente angebracht werden, die die Temperaturausdehnung ausgleichen. a) Welche Längenänderung müssen die Ausgleichselemente jeweils kompensieren können, wenn der erwartete Temperaturbereich von 50 C im Sommer bis zu 40 C im Winter reichen kann? Die Zufahrtsrampen werden nicht berücksichtigt, der thermische Ausdehnungskoeffizient von Spannbeton istα K 1. b) Welchen Ausdehnungskoeffizient müssen die Stahlseile, mit denen das mittlere Brückenteil aufgehängt ist, haben, damit sich die Fahrbahn mit wechselnder Temperatur nicht krümmt? Die Pfeiler, an denen die Stahlseile befestigt sind, sind aus dem selben Spannbeton hergestellt, wie die Fahrbahn. a) Für die maximale Ausdehnung die die Ausgleichselemente kompensieren müssen, muss gelten: l ges l Sommer + l Winter Man berechne als die beiden Längenänderungen mit der Formel l l Für den Sommer ergibt sich also: l Sommer l Für den Winter folgt analog: α(t T 0 ). α(t Sommer T 0 ) K 1 (323,15K 293,15K) l Sommer 0,235m l Winter l α(t Winter T 0 ) K 1 (233,15K 293,15K) l Winter 0,471m Insgesamt ergibt das l ges l Sommer + l Winter 0,235m+0,471m0,706m b) Die Ausdehnung der Fahrbahn und der Brückenpfeiler sind gleich. Daher muss der Ausdehnungskoeffizient der Stahlseile den Wert des Spannbetons haben. Bildlich kann man sich einen massiven Quader aus Spannbeton vorstellen (Fahrbahn und Pfeiler sind die Seitenflächen). Erfährt ein solcher Quader eine Temperaturänderung, dehnt er sich linear in alle Richtungen aus. Insbesondere dehnt er sich auch auf der Diagonalen (also in Richtung des Seils) genau so aus, wie in Richtung der Seitenflächen. Das kann man auch rechnen - wen es interessiert (beachte Skizze): Damit folgt: x x α Beton T bzw. y y α Beton T und l l+ l (x+ x) 2 +(y+ y) 2 l+ l (α Seil T) (x+x (α Beton T)) 2 +(y+ y (α Beton T)) 2 l (1+α Seil T) (x (1+α Beton T)) 2 +(y (1+α Beton T)) 2 l (1+α Seil T) x 2 (1+α Beton T) 2 + y 2 (1+α Beton T) 2 l (1+α Seil T)(1+α Beton T) x 2 + y 2 (1+α Seil T)(1+α Beton T) α Seil α Beton x 2 + y 2 α Seil T

4 5. Für den USA Aufenthalt Anfang des 18. Jahrhunderts entwickelte Daniel Gabriel Fahrenheit eine Temperaturskala, die noch heute in einigen englischsprachigen Ländern (vor allem dem USA) der hierzulande üblichen Celsius Temperaturskala vorgezogen wird. Die Fahrenheit Temperaturskala lässt sich folgendermaßen in die Celsius Temperaturskala umrechnen: C ( T Fahrenheit 32) 5 F 9 a) Geben Sie die umgekehrte Umrechnungsformel von Grad Celsius in Grad Fahrenheit an. Für den Nullpunkt seiner Temperaturskala (0 F) wählte Fahrenheit die tiefste Temperatur des strengen Winters 1708/1709 in seiner Heimatstadt Danzig. Den anderen Fixpunkt seiner Skala wählte er bei 100 F. b) Berechnen Sie diese Temperaturen in Grad Celsius. Was könnte Fahrenheit für seine 100 F verwendet haben? c) Rechnen Sie die fehlenden Werte aus: / C , T Fahrenheit / F a) Die Umrechnung erfolgt duch Umstellung der Gleichung b) T Fahrenheit F 1,8 TCelsius C F 17,78 C 100 F37,78 C Fahrenheit wählte die Körpertemperatur eines Menschen als zweiten Fixpunkt (leider hatte er etwas erhöhte Temperatur). Übrigens: Manche Quellen behaupten auch, das Fahrenheit die tiefste Temperatur, die er mit einer Eis-Salz- Kältemischung erzeugen konnte, als 0 F wählte, da diese gerade 17,8 C entspricht. c) Die Tabelle: / C , ,44 T Fahrenheit / F , A. Dichte von Sand Hausübungen Ein Betonwerk führt Buch über die Dichte der angelieferten LKW-Ladungen Sand. Die Häufigkeitsverteilung wird folgendermaßen beschrieben: n(ρ) n 0 (ρ ) 2 (ρ ρ max ) 2 mit den Parametern 1200 kg,ρ m 3 max 1600 kg und n m ( cm3 g )5. a) Skizzieren Sie den Verlauf der Häufigkeitsverteilung (Nullstellen und Maximalwert) im Bereich ρ ρ max. b) Wieviele LKW-Ladungen wurden in die Statistik aufgenommen (wurden geliefert)? c) Was ist die mittlere Dichte des angelieferten Sandes? d) Der Preis einer LKW-Ladung Sand hängt von der Dichte wie folgt ab: P(ρ) P 0 + A 1 (ρ ) mit P 0 20 und A LKW 1 25 LKW cm3 g Was sind die Gesamtausgaben für den Sand? Hinweis: Bei dieser Aufgabe ist auch die korrekte Rechnung mit den Maßeinheiten wichtig.

5 a) Der Verlauf sieht wie folgt aus: Die Nullstellen der Funktion sind beiρ max und. Das Maximum liegt beiρ 1400 kg m 3. Wichtig: n ( cm3 g ) ( m3 kg )5 n(ρ) ρ [kg/m 3 ] b) Man berechne N n(ρ) dρ n 0 (ρ ) 2 (ρ ρ max ) 2 dρ n 0 (ρ 2 2ρ +ρ 2 min )(ρ2 2ρρ max +ρ 2 max ) dρ. 512 Ladungen c) Die mittlere Dichte errechnet sich analog zur mittleren Masse ρ 1 N 1 N n 0 N. 1, kg m 3 ρn(ρ) dρ n 0 ρ(ρ ) 2 (ρ ρ max ) 2 dρ ρ(ρ 2 2ρ +ρ 2 min )(ρ2 2ρρ max +ρ 2 max ) dρ d) Die Ausgaben werden mit der Formel P(ρ) P 0 + A 1 (ρ ) errrechnet. Ausgaben P(ρ)n(ρ) dρ P0 + A 1 (ρ ) n(ρ) dρ P0 A 1 n(ρ)+a1 ρ n(ρ) dρ ρ max P 0 A 1 n(ρ) dρ+a 1 ρ n(ρ) dρ } {{ } N P 0 A 1 N+ A1 N ρ uro } {{ } N ρ

6 B. Thermische Ausdehnung einer Kugel Eine Messingkugel (linearer thermischer Ausdehnungskoeffizientα K 1 ) hat bei der Temperatur T 1 20 C den Durchmesser d 1 20 mm. a) Auf welche Temperatur T 2 muss die Kugel mindestens erwärmt werden, damit sie in einem Ring mit dem Innendurchmesser d 2 20, 03 mm stecken bleibt? b) Wie hat sich das Kugelvolumen bei der Erwärmung von T 1 auf T 2 relativ verändert ( V V )? a) Es muss die Temperatur errechnet werden, bei der der Durchmesser der Kugel gerade größer als d 2 ist. Für die Ausdehung des Durchmessers gilt die lineare Längenausdehnung d α(t T d 0). Somit folgt: d(t) d 1 α (T T 1 ) Gesucht ist nun die Temperatur T 2 bei der d(t)0,03 m ist. 0,03m d(t 2 ) d 1 α (T 2 T 1 ) T 2 T 1 + d(t 2) d 1 α 98,95 C b) Für das Volumen einer Kugel gilt: V Kugel (T) 4π 3 R(T)3 4π d(t) Die Volumenänderung errechnet man mit V Kugel (T) V Kugel (T 1 ) 3α(T T 1 ). V Kugel (T 1 )4,189cm 1 und V Kugel (T 2 )0,019cm 1 führen zu V V 0,0045 C. Fremde Temperaturskalen Auf seiner 80-tägigen Reise um die Welt stößt der Brite Phileas Fog in Siam auf ein Dorf, in dem der Siedepunkt von Wasser mit 33ℵbezeichnet wird. Die Körperwärme eines Menschen (37 C) mit 12ℵ. 0 ℵ ist die kälteste Temperatur, die der Dorfälteste jemals erlebt hat. Phileas notiert sich diese Angaben und überträgt sie linear in die Celsiusskala, die er gewohnt ist. a) Geben Sie eine Umrechnungsformel zwischen den Temperaturskalen an. b) Welche Temperatur in Grad Celsius musste der Dorfälteste ertragen? a) Die Umrechnung hat einen linearen Verlauf, das heißt a Tℵ + b C ℵ Verwende die beiden Umrechnungen um die Koeffizienten a, b zu errechnen. (Siedepunkt von Wasser) 100 C C 33ℵ a ℵ + b (Körperwärme eines Menschen) 37 C 12ℵ a C ℵ + b a3 und b 1 Die Umrechnungsformel vonℵ in Grad Celsius ist also: C 3 Tℵ ℵ + 1 b) Mit der Umrechnungsformel aus a) erhält man für die niedrigste Temperatur die der Dorfälteste je erlebt hat C 3 Tℵ ℵ ℵ ℵ + 11 T 0ℵ 1 C

Übungen: Lineare Funktionen

Übungen: Lineare Funktionen Übungen: Lineare Funktionen 1. Zeichnen Sie die Graphen der folgenden Funktionen und berechnen Sie die Nullstelle. a) f: y = 2x - 3 b) f: y = -3x + 6 c) f: y = ¼ x + 3 d) f: y = - 3 / 2 x + 9 e) f: y =

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Ruolf Feile Dipl. Phys. Markus Domschke Sommersemester 00 4. 8. Juni 00 Physik für Bauingenieure Übungsblatt 9 Gruppenübungen. Konensator Zwei quaratische Metallplatten mit

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 200 24. 28. Mai 200 Physik für Bauingenieure Übungsblatt 6. Luftfeuchtigkeit Gruppenübungen In einer Finnischen Sauna

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH

Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH 3 Physik1. Physik der Wärme. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Wärme 5 Themen Begriffsklärung Anwendungen Temperaturskalen Modellvorstellung Wärmeausdehnung Thermische Ausdehnung Phasenübergänge

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.

10. Thermodynamik. 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10. Inhalt 10.1 Temperatur und thermisches Gleichgewicht 10.2 Thermometer und Temperaturskala 10.3 Thermische Ausdehnung 10.4 Wärmekapazität Aufgabe: - Temperaturverhalten von Gasen, Flüssigkeiten, Festkörpern

Mehr

Übungsblatt 3 (10.06.2011)

Übungsblatt 3 (10.06.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 0 Übungsblatt (0.06.0 Wärmedämmung Ein Verbundfenster der Fläche A =.0 m besteht aus zwei Glasscheiben der Dicke d =.5 mm, zwischen

Mehr

6. Übungsblatt zur Experimentalphysik 1

6. Übungsblatt zur Experimentalphysik 1 6. Übungsblatt zur Experimentalphysik (Besprechung ab dem 3. Dezember 2006) Aufgabe 6. Loch in der Regentonne Eine h 2m hohe, voll gefüllte Regentonne steht ebenerdig. Versehentlich wird nun die Regentonne

Mehr

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010

Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 2010 im Fach Mathematik. 26. Mai 2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Schriftliche Prüfungsarbeit zum mittleren Schulabschluss 00 im Fach Mathematik 6. Mai 00 Arbeitsbeginn: 0.00 Uhr Bearbeitungszeit: 0 Minuten Zugelassene

Mehr

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, )

Funktionen. 1. Einführung René Descartes Cartesius (Frankreich, ) Mathematik bla Funktionen 1. Einführung 167 René Descartes Cartesius (Frankreich, 1596-1650)...führt das kartesische Koordinatensystem ein. Er beschreibt einen Punkt als ein Paar von reellen Zahlen und

Mehr

l0 Die Ausgangslänge ist die Länge, die das Rohr vor der Erwärmung hatte.

l0 Die Ausgangslänge ist die Länge, die das Rohr vor der Erwärmung hatte. Technische Mathematik Längenänderung Seite 1 von 11 Auf diesen Seiten wird die Berechnung der Längenänderung durch Erwärmung oder Abkühlung vorgestellt. Alle Rechenschritte werden sehr ausführlich erläutert,

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Absoluter Nullpunkt (AN) Herbstsemester 2015 Physik-Institut der Universität Zürich Inhaltsverzeichnis 5 Absoluter Nullpunkt der Temperaturskala

Mehr

Prüfungsteil I. Aufgabe 1. Wie viele Stunden und Minuten sind Sekunden? Kreuze an.

Prüfungsteil I. Aufgabe 1. Wie viele Stunden und Minuten sind Sekunden? Kreuze an. Prüfungsteil I Aufgabe 1 Wie viele Stunden und Minuten sind 15 120 Sekunden? Kreuze an. 2 Stunden 52 Minuten 25 Stunden 6 Stunden 30 Minuten 4 Stunden 12 Minuten 630 Minuten Aufgabe 2 Bestimme das Volumen

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Fehlerrechnung. Aufgaben

Fehlerrechnung. Aufgaben Fehlerrechnung Aufgaben 2 1. Ein digital arbeitendes Längenmeßgerät soll mittels eines Parallelendmaßes, das Normalcharakter besitzen soll, geprüft werden. Während der Messung wird die Temperatur des Parallelendmaßes

Mehr

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2010 REALSCHULABSCHLUSS MATHEMATIK. Arbeitszeit: 180 Minuten

SCHRIFTLICHE ABSCHLUSSPRÜFUNG 2010 REALSCHULABSCHLUSS MATHEMATIK. Arbeitszeit: 180 Minuten Arbeitszeit: 180 Minuten Es sind die drei Pflichtaufgaben und zwei Wahlpflichtaufgaben zu bearbeiten. Seite 1 von 6 Pflichtaufgaben Pflichtaufgabe 1 (erreichbare BE: 10) a) Berechnen Sie den Wert des Terms

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

Lösungen zum 6. Übungsblatt

Lösungen zum 6. Übungsblatt Lösungen zum 6. Übungsblatt vom 18.05.2016 6.1 Widerstandsschaltung (6 Punkte) Aus vier Widerständen R 1 = 20 Ω, R 2 = 0 Ω und R = R 4 wird die Schaltung aus Abbildung 1 aufgebaut. An die Schaltung wird

Mehr

B 2. " Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!!

B 2.  Zeigen Sie, dass die Wahrscheinlichkeit, dass eine Leiterplatte akzeptiert wird, 0,93 beträgt. (genauerer Wert: 0,933).!:!! Das folgende System besteht aus 4 Schraubenfedern. Die Federn A ; B funktionieren unabhängig von einander. Die Ausfallzeit T (in Monaten) der Federn sei eine weibullverteilte Zufallsvariable mit den folgenden

Mehr

mathphys-online EINFACHE UMKEHRFUNKTIONEN

mathphys-online EINFACHE UMKEHRFUNKTIONEN EINFACHE UMKEHRFUNKTIONEN Inhaltsverzeichnis Kapitel Inhalt Seite Einührungsbeispiel Der Begri Umkehrunktion 3 Die Umkehrunktion der linearen Funktion 3 Die Umkehrunktion der quadratischen Funktion Graphiken

Mehr

Einsatzmöglichkeiten im Unterricht

Einsatzmöglichkeiten im Unterricht Einsatzmöglichkeiten im Unterricht An folgenden Beispielen aus dem Bereich der Sekundarstufe I wird exemplarisch die Bandbreite der Einsatzmöglichkeiten vom Tafelwerk interaktiv demonstriert. Auftrieb

Mehr

- 2 - AP WS 10M. 1 Finanzmathematik Punkte

- 2 - AP WS 10M. 1 Finanzmathematik Punkte - 2 - AP WS 10M 1 Finanzmathematik Punkte Frau Werner hat vor einigen Jahren bei einer Versicherungsgesellschaft einen Vertrag für eine Lebensversicherung abgeschlossen. Am Ende der Laufzeit dieser Versicherung

Mehr

Lösung. Prüfungsteil 1: Aufgabe 1

Lösung. Prüfungsteil 1: Aufgabe 1 Zentrale Prüfung 01 Lösung Diese Lösung wurde erstellt von Cornelia Sanzenbacher. Sie ist keine offizielle Lösung des Ministeriums für Schule und Weiterbildung des Landes. Prüfungsteil 1: Aufgabe 1 a)

Mehr

F u n k t i o n e n Lineare Funktionen

F u n k t i o n e n Lineare Funktionen F u n k t i o n e n Lineare Funktionen Dieses Muster entstand aus der Drehung einer Geraden um einen kleinen Kreis. Dieser kleine Kreis dreht wiederum um einen grösseren Kreis. ADSL Internetanschlüsse

Mehr

Prüfungsvorbereitung Physik: Elektrischer Strom

Prüfungsvorbereitung Physik: Elektrischer Strom Prüfungsvorbereitung Physik: Elektrischer Strom Alle Grundlagen aus den vorhergehenden Prüfungen werden vorausgesetzt. Das heisst: Gut repetieren! Theoriefragen: Diese Begriffe müssen Sie auswendig in

Mehr

EXPEDITION Mathematik 3 / Übungsaufgaben

EXPEDITION Mathematik 3 / Übungsaufgaben 1 Berechne das Volumen und die Oberfläche eines Prismas mit der Höhe h = 20 cm. Die Grundfläche ist ein a) Parallelogramm mit a 12 cm; b 8 cm; ha 6 cm b) gleichschenkliges Dreieck mit a b 5 cm; c 60 mm;

Mehr

Labor Optische Messtechnik

Labor Optische Messtechnik Fachbereich MN Fachhochschule Darmstadt Studiengang Optotechnik und Bildverarbeitung Labor Optische Messtechnik Versuch: Michelson Interferometer durchgeführt am: 30. April 003 Gruppe: Tobias Crößmann,

Mehr

Prüfungsarbeit Mathematik Hauptschule (Typ B)

Prüfungsarbeit Mathematik Hauptschule (Typ B) rüfungsarbeit Mathematik Hauptschule (p B) rüfungsteil : Aufgabe a) In welchem Maßstab müsste das abgebildete Modellauto vergrößert werden, damit es ungefähr so groß wäre wie das Original? Kreuze an! :

Mehr

Technische Mathe: Problem-Lösungen Seite 1 von 6

Technische Mathe: Problem-Lösungen Seite 1 von 6 Technische Mathe: Problem-Lösungen Seite 1 von 6 Diese Lerneinheit ist besonders den Schülern gewidmet, für die jede Rechenaufgabe ein Problem darstellt. Ich versuche hier Problem-Lösungs-Strategien auf

Mehr

Chemie. In der Technik kommt es permament zu chemischen Reaktionen, welche je nach Produkt gezielt beeinflusst werden.

Chemie. In der Technik kommt es permament zu chemischen Reaktionen, welche je nach Produkt gezielt beeinflusst werden. Chemie Aufgabe 1. In der Technik kommt es permament zu chemischen Reaktionen, welche je nach Produkt gezielt beeinflusst werden. Entsprechend nach ihrem Energiegehalt werden hir exotherme und endotherme

Mehr

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme

Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Übung Lineare Algebra und Lösung linearer zeitinvarianter Differentialgleichungssysteme Diese Übung beschäftigt sich mit Grundbegriffen der linearen Algebra. Im Speziellen werden lineare Abbildungen, sowie

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

1. Schularbeit Stoffgebiete:

1. Schularbeit Stoffgebiete: 1. Schularbeit Stoffgebiete: Terme binomische Formeln lineare Gleichungen mit einer Variablen Maschine A produziert a Werkstücke, davon sind 2 % fehlerhaft, Maschine B produziert b Werkstücke, davon sind

Mehr

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung

Energie und Energieerhaltung. Mechanische Energieformen. Arbeit. Die goldene Regel der Mechanik. Leistung - Formelzeichen: E - Einheit: [ E ] = 1 J (Joule) = 1 Nm = 1 Energie und Energieerhaltung Die verschiedenen Energieformen (mechanische Energie, innere Energie, elektrische Energie und Lichtenergie) lassen

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Quadratische Funktionen

Quadratische Funktionen Quadratische Funktionen Aufgabe 1 Verschieben Sie die gegebenen Parabeln so, dass ihr Scheitelpunkt in S liegt. Gesucht sind die Scheitelpunktsform und die allgemeine Form der Parabelgleichung a) y = x²,

Mehr

Versuch W7 für Nebenfächler Wärmeausdehnung

Versuch W7 für Nebenfächler Wärmeausdehnung Versuch W7 für Nebenfächler Wärmeausdehnung I. Physikalisches Institut, Raum 106 Stand: 7. November 2013 generelle Bemerkungen bitte Versuchspartner angeben bitte Versuchsbetreuer angeben bitte nur handschriftliche

Mehr

M4 Oberflächenspannung Protokoll

M4 Oberflächenspannung Protokoll Christian Müller Jan Philipp Dietrich M4 Oberflächenspannung Protokoll Versuch 1: Abreißmethode b) Messergebnisse Versuch 2: Steighöhenmethode b) Messergebnisse Versuch 3: Stalagmometer b) Messergebnisse

Mehr

Übungsblatt 1 (13.05.2011)

Übungsblatt 1 (13.05.2011) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 11 Übungsblatt 1 (13.5.11) 1) Wasserstrahl Der aus einem Wasserhahn senkrecht nach unten ausfließende Wasserstrahl verjüngt

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten.

Lehre der Energie, ihrer Erscheinungsform und Fähigkeit, Arbeit zu verrichten. Einführung in die Physik I Wärmelehre/Thermodynamik Wintersemester 2007 Vladimir Dyakonov Raum E143, Tel. 888-5875, email: dyakonov@physik.uni-wuerzburg.de 10 Wärmelehre/Thermodynamik Lehre der Energie,

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse:

Mathematik. Prüfung zum mittleren Bildungsabschluss 2008. Saarland. Schriftliche Prüfung Pflichtaufgaben. Name: Vorname: Klasse: Prüfung zum mittleren Bildungsabschluss 2008 Schriftliche Prüfung Pflichtaufgaben Mathematik Saarland Ministerium für Bildung, Familie, Frauen und Kultur Name: Vorname: Klasse: Bearbeitungszeit: 120 Minuten

Mehr

Klausur zu Physik1 für B_WIng(v201)

Klausur zu Physik1 für B_WIng(v201) M. Anders Wedel, den 13.08.07 Klausur zu Physik1 ür B_WIng(v201) Klausurdatum: 16.2.07, 14:00, Bearbeitungszeit: 90 Minuten Achtung! Es ird nur geertet, as Sie au diesen Blättern oder angeheteten Leerseiten

Mehr

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8.

MSA Probearbeit. 2. Berechnen Sie: Ein Viertel des Doppelten der Summe aus 4 und 8. MSA Probearbeit www.mathementor.de Stand 22.5.09 1. Fassen Sie die Terme zusammen soweit es geht: x + 10 (4 2x) = (3x + 4)² (x² + 2x + 15) = 4a²b³ : 2a³bz = 5bz 25z² 2. Berechnen Sie: Ein Viertel des Doppelten

Mehr

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet.

Lernziele Mathbuch 90X (Flächen Volumen) Sek 2012.docx 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.1 Erkläre wie man die Fläche in eines Rechtecks berechnet. 90X.2 Erkläre wie man ein Parallelogramm in ein Rechteck verwandeln kann und somit auch dessen Fläche berechnen kann. 90X.3 Erkläre wie man

Mehr

Mathematik GK 11 m3, AB 07 Hochwasser Lösung

Mathematik GK 11 m3, AB 07 Hochwasser Lösung Aufgabe 1: Hochwasserwelle Während einer Hochwasserwelle wurde in einer Stadt der Wasserstand h des Flusses in Abhängigkeit von der Zeit t gemessen. Der Funktionsterm der Funktion, die den dargestellten

Mehr

W07. Gasthermometer. (2) Bild 1: Skizze Gasfeder

W07. Gasthermometer. (2) Bild 1: Skizze Gasfeder W07 Gasthermometer Das Gasthermometer ist zur Untersuchung der Gesetzmäßigkeiten idealer Gase geeignet. Insbesondere ermöglicht es eine experimentelle Einführung der absoluten Temperaturskala und gestattet

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine )

Physik 1 MW, WS 2014/15 Aufgaben mit Lösung 6. Übung (KW 03/04) Aufzugskabine ) 6. Übung (KW 03/04) Aufgabe (M 9. Aufzugskabine ) In einem Aufzug hängt ein Wägestück der Masse m an einem Federkraftmesser. Dieser zeigt die Kraft F an. Auf welche Beschleunigung a z (z-koordinate nach

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Drei Kreise Was ist zu tun?

Drei Kreise Was ist zu tun? 1 Drei Kreise Der Radius der Kreise beträgt drei Zentimeter. Zeichnet die Abbildung nach, falls ihr einen Zirkel zur Hand habt. Ansonsten genügt auch eine Skizze. Bestimmt den Flächeninhalt der schraffierten

Mehr

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab!

Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie jedes Blatt mit einer Seitenzahl und geben Sie auch die Aufgabenblätter ab! Klausur TM1 für WI SS 99 Prüfer: Prof. Dr. M. Lindner NAME: MATRIKEL-NR.: Aufgabe Punkte erreicht 1 20 2 26 3 28 4 26 Summe 100 Bitte tragen Sie vor Abgabe Ihren Namen und Matrikel-Nr. ein, versehen Sie

Mehr

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10

DSM Das Mathe-Sommer-Ferien-Vergnügen Klasse 9 auf 10 Juni 2016 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Aufgaben zur Sicherung eines minimalen einheitlichen Ausgangsniveaus in Klasse 10 Die Aufgaben sollen während der Sommerferien gelöst werden, damit notwendige Grundkenntnisse und Grundfertigkeiten nicht

Mehr

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch.

Bachelorprüfung. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Fakultät für Bauingenieurwesen und Umweltwissenschaften Institut für Werkstoffe des Bauwesens Univ.-Prof. Dr.-Ing. K.-Ch. Thienel Bachelorprüfung Prüfungsfach: Geologie, Werkstoffe und Bauchemie Prüfungsteil:

Mehr

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw=

c~åüüçåüëåüìäé=açêíãìåç== = = = k~ãéw= c~åüüçåüëåüìäéaçêíãìåç k~ãéw mêçñkaêkjfåökdk_~äáéä c_p j~íêkjkêkw Klausur: Bordnetze 14.7.2004 Aufgabe 1: Es sollen zwei massive Cu-Leiter auf Ihre Stromtragfähigkeit untersucht werden. Der eine hat einen

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités)

1. Wärmelehre 1.1. Temperatur. Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Physikalische Grundeinheiten : Die Internationalen Basiseinheiten SI (frz. Système international d unités) 1. Wärmelehre 1.1. Temperatur Ein Maß für die Temperatur Prinzip

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Lösungen lineare Funktionen

Lösungen lineare Funktionen lineare Funktionen Lösungen 1 Lösungen lineare Funktionen Schnittpunkt gegeben bestimme Funktionsvorschrift. Flächeninhalt von eingeschlossenem Dreieck berechnen. Schnittwinkel gegeben, berechne Steigung.

Mehr

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:.

Projekt Standardisierte schriftliche Reifeprüfung in Mathematik. T e s t h e f t B 1. Schulbezeichnung:.. Klasse: Vorname: Datum:. Projekt Standardisierte schriftliche Reifeprüfung in Mathematik T e s t h e f t B Schulbezeichnung:.. Klasse: Schüler(in) Nachname:. Vorname: Datum:. B Große und kleine Zahlen In Wikipedia findet man die

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

Übungen zu Physik 1 für Maschinenwesen

Übungen zu Physik 1 für Maschinenwesen Physikdepartment E3 WS 20/2 Übungen zu Physik für Maschinenwesen Prof. Dr. Peter Müller-Buschbaum, Dr. Eva M. Herzig, Dr. Volker Körstgens, David Magerl, Markus Schindler, Moritz v. Sivers Vorlesung 9.0.2,

Mehr

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau

Berufsreifeprüfung Studienberechtigung. Mathematik. Einstiegsniveau Berufsreifeprüfung Studienberechtigung Mathematik Einstiegsniveau Zusammenstellung von relevanten Unterstufenthemen, die als Einstiegsniveau für BRP /SBP Kurse Mathematik beherrscht werden sollten. /brp

Mehr

Versuch: Oberflächenspannung

Versuch: Oberflächenspannung Versuch M3 OBERFLÄCHENSPANNUNG Seite 1 von 5 Versuch: Oberflächenspannung Anleitung für folgende Studiengänge: Physik, L3 Physik, Biophysik, Meteorologie, Chemie, Biochemie, Geowissenschaften, Informatik

Mehr

Aufgabe 1 (Fundamentum)

Aufgabe 1 (Fundamentum) Aufgabe 1 (Fundamentum) a) Kreuze an, wie viele Minuten du ungefähr seit deiner Geburt gelebt hast. 80.000.000 8.000.000 800.000 80.000 8.000 b) Bei einer Durchschnittsgeschwindigkeit von 80 km / h benötigt

Mehr

N & T (R) 1 Stoffeigenschaften 01 Name: Vorname: Datum:

N & T (R) 1 Stoffeigenschaften 01 Name: Vorname: Datum: N & T (R) 1 Stoffeigenschaften 01 Name: Vorname: Datum: Aufgabe 1: Natur und Technik wird aufgeteilt in drei Teilbereiche: diese sind jedoch nicht immer ganz klar abgetrennt: Wasser kann zum Kochen und

Mehr

Prüfungsarbeit Mathematik Gymnasium

Prüfungsarbeit Mathematik Gymnasium Prüfungsteil 1: Aufgabe 1 a) In welchem Maßstab müsste das abgebildete Modellauto vergrößert werden, damit es ungefähr so groß wäre wie das Original? Kreuze an! 1 : 10 1 : 100 1 : 1 000 1 : 10 000 b) Kann

Mehr

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität

9. Thermodynamik. 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala. 9.4 Wärmekapazität 9. Thermodynamik 9.1 Temperatur und thermisches Gleichgewicht 9.2 Thermometer und Temperaturskala 93 9.3 Thermische h Ausdehnung 9.4 Wärmekapazität 9. Thermodynamik Aufgabe: - Temperaturverhalten von Gasen,

Mehr

Aufnahmeprüfung FHNW 2013: Physik

Aufnahmeprüfung FHNW 2013: Physik Muterlöungen Phyik Aufnahmeprüfung FHW 03 Aufnahmeprüfung FHW 03: Phyik Aufgabe Da nebentehende Diagramm zeigt den Gechwindigkeit-Zeit-Verlauf für ein Schienenfahrzeug. a ) Skizzieren Sie qualitativ richtig

Mehr

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur

Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Physik 2 exp. Teil. 15 Temperatur, Wärme und der erste Hauptsatz der Thermodynamik 15.1 Temperatur Der zentrale Begriff der Thermodynamik ist die Temperatur. Bsp.: Menschlicher Temperatursinn - Eisen vs.

Mehr

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung),

Extremwertaufgaben. 3. Beziehung zwischen den Variablen in Form einer Gleichung aufstellen (Nebenbedingung), Extremwertaufgaben x. Ein Landwirt will an einer Mauer einen rechteckigen Hühnerhof mit Maschendraht abgrenzen. 0 Meter Maschendraht stehen zur Verfügung. Wie groß müssen die Rechteckseiten gewählt werden,

Mehr

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK

TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG MATHEMATIK TECHNISCHE UNIVERSITÄT BERLIN STUDIENKOLLEG TEST IM FACH MATHEMATIK FÜR STUDIENBEWERBER MIT BERUFSQUALIFIKATION NAME : VORNAME : Bearbeitungszeit : 180 Minuten Hilfsmittel : Formelsammlung, Taschenrechner.

Mehr

24 Volumen und Oberfläche eines Quaders

24 Volumen und Oberfläche eines Quaders 52 24 Volumen und Oberfläche eines Quaders Das Volumen (V) eines Quaders berechnet man, indem man Länge (a), Breite (b) und Höhe (c) miteinander multipliziert, also: V = a b c. Die Oberfläche (O) eines

Mehr

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr)

10. Klasse der Hauptschule. Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 2010. (23. Juni 2010 von 8:30 bis 11:00 Uhr) 10. Klasse der Hauptschule Abschlussprüfung zum Erwerb des Mittleren Schulabschlusses 010 (3. Juni 010 von :30 bis 11:00 Uhr) M A T H E M A T I K Bei der Abschlussprüfung zum Erwerb des mittleren Schulabschlusses

Mehr

Kann man Wärme pumpen? Die Wärmepumpe

Kann man Wärme pumpen? Die Wärmepumpe Kann man Wärme pumpen? Die Wärmepumpe Inhalt 1. Was ist eine Wärmepumpe? Wie funktioniert sie? 2. Experimente 2.1 Welchen Wirkungsgrad hat die Wärmepumpe? (Experiment 1) 2.2 Wie groß ist die spezifische

Mehr

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1

Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik I (mit Kurzlösung) Wintersemester 2007/2008 Aufgabe 1 Ihnen liegt

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) =

Beispiel 11.2. Wenn p ein Polynom vom Grad größer gleich 1 ist, ist q : C Ĉ definiert durch q (z) = Funktionentheorie, Woche Funktionen und Polstellen. Meromorphe Funktionen Definition.. Sei U C offen und sei f : U gilt, nennt man f meromorph auf U: Ĉ eine Funktion. Wenn folgendes. P := f hat keine Häufungspunkte;.

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur

F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur F-Praktikum Physik: Photolumineszenz an Halbleiterheterostruktur David Riemenschneider & Felix Spanier 31. Januar 2001 1 Inhaltsverzeichnis 1 Einleitung 3 2 Auswertung 3 2.1 Darstellung sämtlicher PL-Spektren................

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus

1. Ziel des Versuchs. 2. Theorie. Dennis Fischer Gruppe 9 Magdalena Boeddinghaus Versuch Nr. 12: Gasthermometer 1. Ziel des Versuchs In diesem Versuch soll die Temperaturmessung durch Druckmessung erlernt werden. ußerdem soll der absolute Nullpunkt des Thermometers bestimmt werden.

Mehr

Erster Prüfungsteil: Aufgabe 1

Erster Prüfungsteil: Aufgabe 1 Erster Prüfungsteil: Aufgabe Kriterien: Der Prüfling Lösung: Punkte: a) entscheidet sich für passenden Wert 8 000 000 b) wählt ein geeignetes Verfahren zur z. B. Dreisatz Berechnung gibt das richtige Ergebnis

Mehr

Experimentalphysik EP, WS 2012/13

Experimentalphysik EP, WS 2012/13 FAKULTÄT FÜR PHYSIK Ludwig-Maximilians-Universität München Prof. O. Biebel, PD. W. Assmann Experimentalphysik EP, WS 0/3 Probeklausur (ohne Optik)-Nummer: 7. Januar 03 Hinweise zur Bearbeitung Alle benutzten

Mehr

Programmieren in JavaScript

Programmieren in JavaScript Lineare Programme 1. Euro a) Schreiben Sie ein Programm, dass Frankenbeträge in Euro umrechnet. Der Benutzer gibt dazu den aktuellen Kurs ein, worauf das Programm einige typische Werte (z.b. für Fr 10,

Mehr

DOWNLOAD. Vertretungsstunden Physik /8. Klasse: Wärmelehre Längenänderung. Hardy Seifert. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Vertretungsstunden Physik /8. Klasse: Wärmelehre Längenänderung. Hardy Seifert. Downloadauszug aus dem Originaltitel: DOWNLOAD Hardy Seifert Vertretungsstunden Physik 11 7./8. Klasse: Längenänderung Downloadauszug aus dem Originaltitel: Längenänderung 1 Längenänderung bei Temperaturänderung Temperaturerhöhung: Temperaturerniedrigung:

Mehr

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden)

Elementare Geometrie. Inhaltsverzeichnis. info@mathenachhilfe.ch. Fragen und Antworten. (bitte nur für den Eigengebrauch verwenden) fua0306070 Fragen und Antworten Elementare Geometrie (bitte nur für den Eigengebrauch verwenden) Inhaltsverzeichnis 1 Geometrie 1.1 Fragen............................................... 1.1.1 Rechteck.........................................

Mehr

GYMNASIUM MUTTENZ" MATURITÄTSPRÜFUNGEN! 2014! PHYSIK! KLASSE! 4AB

GYMNASIUM MUTTENZ MATURITÄTSPRÜFUNGEN! 2014! PHYSIK! KLASSE! 4AB GYMNASIUM MUTTENZ" MATURITÄTSPRÜFUNGEN! 2014! PHYSIK! KLASSE! 4AB Bestimmungen Lösungen! -! Rechnungsaufgaben sind so zu lösen, dass der Weg zum Resultat aus der Herleitung nachvollziehbar ist.! -! Resultate

Mehr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2014 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 2. Juli Teil B. 9:10 Uhr 10:20 Uhr

QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 2014 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK. 2. Juli Teil B. 9:10 Uhr 10:20 Uhr QUALIFIZIERENDER ABSCHLUSS DER MITTELSCHULE 201 BESONDERE LEISTUNGSFESTSTELLUNG MATHEMATIK 2. Juli 201 Platzziffer (ggf. Name/Klasse): Teil B 9:10 Uhr 10:20 Uhr Die Benutzung von für den Gebrauch an der

Mehr