TU Ilmenau Chemisches Praktikum Versuch Kennlinie der Brennstoffzelle in. Reihenschaltung/Parallelschaltung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "TU Ilmenau Chemisches Praktikum Versuch Kennlinie der Brennstoffzelle in. Reihenschaltung/Parallelschaltung"

Transkript

1 TU Ilmenau Chemisches Praktikum Versuch Kennlinie der Brennstoffzelle in V17 Fachgebiet Chemie Reihenschaltung/Parallelschaltung 1. Aufgabe Bauen Sie die Anordnung nach Bild 1 oder Bild 2 auf. Nehmen Sie anschließend die Kennlinien der Brennstoffzelle in Reihenschaltung und Parallelschaltung auf. Führen Sie jeweils eine Doppelbestimmung durch. 2. Grundlagen 2.1 Brennstoffzellen Bei einer Brennstoffzelle wird chemische Energie, die im Brennstoff und im Oxidationsmittel gespeichert ist, in elektrische Energie umgewandelt. Bei dieser Umwandlung laufen elektrochemische Reaktionen an Elektroden (Anode und Kathode) in einer elektrochemischen Zelle ab. Eine Brennstoffzelle besteht aus einer Anode, an der der Brennstoff zuströmt (meist Wasserstoff H 2 oder wasserstoffreiche Gase), und einer Kathode, an der das Oxidationsmittel zuströmt (meist Luft oder Sauerstoff O 2 ). Die beiden Elektroden sind durch einen Elektrolyten, durch den der Ionentransport abläuft, voneinander getrennt. Der Stromkreis wird durch eine elektrische Leitung zwischen Anode und Kathode geschlossen, sodass Strom fließen kann (Abbildung 1). Brennstoffzellen unterscheiden sich im Elektrodenmaterial, in den Brenngasen, im Oxi-dationsmittel und im Elektrolyten. Im Experiment werden Sie eine PEM Brennstoffzelle verwenden. 1

2 Abbildung 1: Grundlegender Aufbau einer elektrochemischen Zelle, bestehend aus Anode, Kathode und Elektrolyt. Abbildung 2: Aufbau einer PEM-Brennstoffzelle nach [2] 2.2 PEM-Brennstoffzelle Bei der PEM-Brennstoffzelle trennt eine protonenleitende, elektrisch isolierende Membran (PEM = proton exchange membrane) beide elektrochemische Halbzellen. Das Brenngas bei der PEM ist Wasserstoff H 2 und das Oxidationsmittel ist Sauerstoff O 2 (Abbildung 2). 2

3 Abbildung 3: Reaktionen in der elektrochemischen Zelle. a) Bei geschlossenem Stromkreis fließt Strom und die Gase werden verbraucht. b) Bei offenem Stromkreis laufen die Reaktionen ab und es baut sich ein Potential auf, dann werden die Gase nicht weiter verbraucht. Chemische Reaktion Im Folgenden wird nur eine kurze Einführung zur an der Brennstoffzelle ablaufenden Reaktion gegeben. Weitere Hintergrundinformation finden sich in Einführungen in die Chemie [3] oder Nachschlagewerken der Chemie [4]. Die Oxidation des H2 erfolgt an der Anode. Dabei werden entsprechend: H 2H 2e (2) 2 Elektronen freigesetzt. Die Reduktion des O2 erfolgt an der Kathode. Es werden Elektronen benötigt: 2 O2 4e 2O. (3) Beide Reaktionen laufen freiwillig ab. Die Gesamtreaktion (Bruttogleichung): 2 O2 2H2 2O 4H (4) ist exergonisch. Das heißt, das System verliert freie Enthalpie G und es wird elektrische Arbeit gewonnen. Ist der Stromkreis geschlossen, fließt ein Strom, ist er nicht geschlossen, baut sich zwischen den Elektroden ein Potential auf (Abbildung 3). Als Reaktionsprodukt in der Brennstoffzelle entsteht Wasser H 2 O bzw. Wasserdampf. Die bei der Oxidation entstehenden Protonen H + können durch die Membran diffundieren und verbinden sich an der anderen Elektrode mit den dort entstehenden Sauerstoffionen O 2- zu H 2 O. Es gilt das Dissoziationsgleichgewicht: 2 O 2H H2O. (5) 3

4 Abbildung 4: Energiediagramm für Ausgangsstoffe (Stoff 1), Produkte (Stoff 2). Mit Hilfe des Katalysators kann die Aktivierungsenergie abgesenkt werden. So wird die Reaktion beschleunigt. Hier muss für eine kontinuierliche Abführung des Wassers gesorgt werden, damit die Zelle nicht überflutet wird. Im Experiment müssen die Zellen wiederholt mit den Gasen gespült werden! Katalysator Die Reaktion in der Brennstoffzelle läuft zwar freiwillig, aber nicht sehr schnell ab. Ein positiver Katalysator beschleunigt die Reaktionsgeschwindigkeit, durch Erniedrigung der Aktivierungsenergie (Abbildung 4). Katalysatoren nehmen an einer chemischen Reaktion teil, werden aber nicht verbraucht. Aufbau der PEM Die Membran (Nafion Fa. DuPont) ist auf beiden Seiten mit Katalysator besprüht (Pt auf Kohlenstoff). Die Kontaktierung erfolgt dabei durch ein angepresstes Kohlenstoffpapier (zur Gasverteilung und als Stromsammler) und das metallische Gehäuse. Hier ist Pt der eigentliche Katalysator und Kohlenstoff ist das Elektrodenmaterial. Die eigentliche chemische Reaktion findet dabei an der Drei-Phasen-Grenze (TPB: three phase boundary) zwischen Gas, Wasser und Katalysator statt. An dieser Grenzfläche adsorbieren die Gase am Katalysator, werden ionisiert und diffundieren dann weg. In Abbildung 5 ist der Aufbau und die Funktionsweise der Brennstoffzelle zusammengefasst. 4

5 Abbildung 5: Aufbau und Funktion einer PEM-Brennstoffzelle 5

6 Abbildung 6: Typische Kennlinie einer Brennstoffzelle. Es können drei Bereiche unterscheiden werden: Elektrokinetischer Bereich, Ohmscher Bereich und der Bereich mit Diffusionseinfluss. 2.3 Kennlinie einer Brennstoffzelle Um eine Brennstoffzelle zu charakterisieren ist die Leistung P in Abhängigkeit vom fließenden Strom I wichtig und natürlich die von der Brennstoffzelle gelieferte Arbeit W. Es gelten die Gleichungen: Eine ideale Zelle verhält sich wie eine Konstantspannungsquelle: W P t (6) UI t. (7) U U 0 (8) du 0, di wobei U 0 die Spannung im stromlosen Zustand der Zelle, also ohne elektrischen Kontakt zwischen den Elektroden darstellt. Um die Abweichungen der Zelle vom idealen Verhalten zu charakterisieren wird die Abhängigkeit der Zellspannung U vom Zellstrom I, die Kennlinie der Brennstoffzelle betrachtet (Abbildung 6). Die Klemmspannung an der Brennstoffzelle weicht von der Ruhespannung U 0 ab, da unterschiedliche Überspannungen (Polarisationen) zu Spannungsverlusten führen. In Abhängigkeit vom fließenden Strom lässt sich das Verhalten der Brennstoffzelle in 3 Bereiche gliedern. In jedem der Bereiche ist eine Überspannungsart besonders gut zu erkennen, wobei der Wirkungsbereich der Überspannung noch größer sein kann. In diesem Zusammenhang ist es wichtig zu beachten, dass sich die Kennlinie auf das gesamte System Brennstoffzelle bezieht, sie ist die Superposition der Kennlinien der beiden Elektroden, die sich jedoch nicht getrennt vermessen lassen. (9) 6

7 Durchtrittsüberspannung Der Bereich kleiner Zellströme wird elektrokinetischer Bereich genannt. In diesem Bereich dominiert die Durchtrittsüberspannung η durch den Potentialverlauf der Kennlinie. η durch ist die Spannung, die für die Aktivierungsenergie (Abbildung 5) aufgebracht werden muss damit die Elektronen von der wässrigen Elektrolytlösung in die metallische Elektrode und umgekehrt fließen können. [siehe weitere Ausführungen in Abschnitt 2.4] Ohmsche Überspannung Der Bereich mittlerer Zellströme heißt ohmscher Bereich. Dort dominiert die Ohmsche Überspannung η ohm durch den ohmschen Innenwiderstand R in der Zelle. U mess fällt linear mit dem Zellstrom. Der Innenwiderstand ist unabhängig vom Lastwiderstand R L. Der Lastwiderstand am Aufbau dient lediglich der Variation des fließenden Stromes. Diffussionsüberspannung Bei hohen Strömen dominiert die Diffussionsüberspannung η diff den Spannungsabfall. Die Spannung fällt stark ab um die Elektroden mit Brenn- und Oxidationsgasen zu versorgen. Der Antransport ist durch die Diffussionsgeschwindigkeit der Gase in die Dreiphasenzone begrenzt. Bei Erreichen der Grenzstromdichte I grenz sinkt die Spannung auf Null ab: U(I grenz ) 0 (10) Bei den Experimenten mit Volumenstrombegrenzung kann I grenz bestimmt werden. Gesamtsystem Zusammenfassend kann das Brennstoffzellensystem mit folgenden Gleichungen beschrieben werden: UU 0 durch ohm diff (11) RT I U ln R I 0 z1 F I in diff 0 (12) Es ist verständlich, dass der Einfluss von η diff bei kleinen Strömen noch keine Rolle spielt, da an der Elektrode mehr Gas angeboten wird als verbraucht werden kann. η ohm spielt im gesamten Bereich eine Rolle. Der Term für η durch wird im folgenden Abschnitt genauer erklärt. Er wird bei größeren Strömen konstant. F ist die Faradaykonstante. 7

8 2.4 Durchtrittsüberspannung Im Folgenden wird die Herkunft der für den Versuch wichtigen Größen kurz dargelegt. Weitergehende Informationen zur Elektrochemie finden sich im Bard-Faulkner [6] (Chapter 3 Kinetics of electrode reactions) oder im Hamann-Vielstich [7] (Kapitel Die Durchtrittsüberspannung). Zwei wichtige Größen im Zusammenhang mit η durch sind die Austauschstromdichte I 0 und der Durchtrittsfaktor a. Auch wenn kein Strom fließt kommt es an den Elektroden zum Durchtritt von Elektronen in die Lösung und zurück. Anodische Ströme I an und kathodische Ströme I kat sind betragsmäßig gleich und heben sich damit auf: I I I. (13) an kat Unterscheiden sich I an und I kat im Betrag fließt ein Strom, zum Beispiel auf Grund einer ablaufenden Reaktion oder einer angelegten Spannung. a gibt an wie sich η durch zwischen Kathode und Anode aufteilt. a liegt zwischen 0 und 1 und gibt den Anteil von η durch an der für die Aktivierungsenergie der anodische Oxidation benötigt wird. Der Anteil der Aktivierungsenergie der kathodischen Reduktion entspricht 1 α.. Der Zusammenhang zwischen η durch und dem fließenden Strom I wird durch die Butler- Volmer-Gleichung (siehe auch [5]) beschrieben: zf RT 1 zfdurch durch II0 exp exp. Für kleine Ströme geht die Butler-Volmer-Gleichung in die einfachere Tafelgleichung über. Aus der Tafel-Gleichung können mit Hilfe von experimentellen Daten die Parameter a und I 0 bestimmt werden. Die Tafelgleichungen für große positive Überspannungen (Oxidation: Gleichung 15) und für große negative Überspannungen (Kathode: Gleichung 16) lauten: I zf RT RT (14) durch I0 exp (15) 1 zfdurch I I0 exp (16) RT Nach Vorzeichenkonvention werden anodische Ströme (Oxidation) mit einem positiven und kathodische Ströme (Reduktion) mit einem negativen Vorzeichen versehen. Von den beiden ablaufenden Reaktionen ist die Reduktion von O 2 (Gleichung 3) die langsamere. Deshalb wird diese Reaktion die Kinetik und damit das Verhalten im elektrokinetischen Bereich bestimmen. Aus Gleichung 16 ergibt sich für die Durchtrittsüberspannung: RT I durch ln. (17) 1 zf I 0 8

9 Mit Hilfe von Gleichung 17 lassen sich die Parameter durch halblogarithmisches Auftragen von η durch über I mit einer Ausgleichsgeraden aus dem Achsenabschnitt und dem Anstieg ermitteln. Da die langsamere Reaktion das Verhalten dominiert muss hier für z (Anzahl der durchtretenden Elektronen) der Wert 4 eingesetzt werden! 2.5 Wirkungsgrad Der Wirkungsgrad ist ein Maß das Verhältnis von Nutzen zu Aufwand. Der thermodynamische Wirkungsgrad ε therm gibt den theoretisch möglichen Wirkungsgrad an. Der elektrochemische Wirkungsgrad ε elect gibt an wie hoch das sich an der Brennstoffzelle einstellende Potential im Vergleich zum theoretischen Potential ist. Im vorliegenden Experiment wird elektrische Energie aufgewendet, um Brenngas und Oxidationsgas zu erzeugen. Die erzeugten Gase dienen wiederum der Erzeugung elektrischer Energie. Für den experimentellen Aufbau lässt sich also ein Gesammtwirkungsgrad ε aufbau ermitteln. Weitere Informationen zum Wirkungsgrad in [8]. Elektrochemischer Wirkungsgrad Für den elektrochemischen Wirkungsgrad ε elect wird die Zellspannung U ins Verhältnis zum Standardelektrodenpotential E0 gesetzt: U elect E0 (18) zf U G (19) mit der freien Reaktionsenthalpie G, der Faradaykonstante F und der Anzahl z, der durchtretenden Elektronen. Für die in der PEM Brennstoffzelle ablaufende Reaktion 0.5 O2 H2 H2O (20) sind die Werte der thermodynamischen Größen unter Standardbedingungen: 0 kj H (Enthalpieänderung) (21) mol 0 kj G (freie Reaktionsenthalpie), (22) mol wobei die Anzahl der durchtretenden Elektronen für Gleichung (20) z = 2 beträgt. Der thermodynamische Wirkungsgrad ist also ε therm =

10 Wirkungsgrad des experimentellen Aufbaus Der Wirkungsgrad ε aufbau bezieht auf den gesamten Versuch. Die an der Brennstoffzelle abgegebene Arbeit W brz wird zu der im Elektrolyseur aufgewendeten elektrischen Arbeit W electrolyse ins Verhältnis gesetzt: W brz aufbau (23) Welektrolyse UI t. U I t elektrolyse elektrolyse (24) ε aufbau wird für das Experiment mit Volumenstrombegrenzung berechnet, da hier die Menge der Gase von der Spannung U elektrolyse und dem Strom I elektrolyse am Elektrolyseur abhängig ist und nicht von einem angesammelten Gasvorrat. 3. Versuchsdurchführung A Die Spannung des Netzteils darf 1,8 V und der Strom 3 A nicht überschreiten! Polung beachten! B Prüfen Sie, ob die Gaszuleitungsschläuche an Elektrolyseur und Brennstoffzelle richtig angeschlossen sind. Stellen Sie den Wahlschalter des Verbrauchermoduls auf OFFEN. C Stellen Sie sicher, daß beide Gasspeicher am Elektrolyseur etwa bis zur 0 ml Markierung mit destilliertem Wasser gefüllt sind und stellen Sie mit dem Netzgerät am Elektrolyseur einen konstanten Strom von 2 A ein. Sie werden eine deutliche Gasentwicklung beobachten können. D Spülen Sie für 5 Minuten das gesamte System aus Elektrolyseur, Brennstoffzelle und Schläuchen mit den erzeugten Gasen. Stellen Sie anschließend den Wahlschalter des Verbrauchermoduls für 3 Minuten auf 2 Ω. Sie sollten jetzt am Amperemeter einen Strom von etwa 400 ma und am Voltmeter eine Spannung von etwa 0,75 V beobachten. Stellen Sie nun erneut den Wahlschalter des Verbrauchermoduls auf OFFEN. E Schließen Sie die beiden kurzen Schläuche an den Auslassöffnungen der Brennstoffzelle mit den Schlauchklemmen. F Unterbrechen Sie die Verbindung Netzgerät - Elektrolyseur, wenn auf der Wasserstoffseite des Elektrolyseurs die 60 ml Markierung erreicht ist. G Messen Sie nun die Kennlinie der Brennstoffzelle durch Variation des Meßwiderstandes (Wahlschalter des Verbrauchermoduls). Beginnen Sie bei OFFEN (Ruhespannung) und gehen dann nach rechts drehend zu kleineren Widerständen. Nehmen Sie für jede Schalterstellung den Wert von Strom und Spannung auf. Warten Sie vor dem Ablesen jeweils 15 Sekunden. Tragen Sie die Werte in die Meßtabelle ein. Messen Sie außerdem die Werte bei Betrieb der Lampe. H Stellen Sie nach Aufnahme der Kennlinie den Wahlschalter des Verbrauchermoduls wieder auf OFFEN und entfernen Sie außerdem die Schlauchklemmen an der Brennstoffzelle. 10

11 4. Meßtabellen Meßtabelle für Reihenschaltung R / Ω OFFEN ,5 0,3 Lampe U / V I / ma Meßtabelle für Parallelschaltung R / Ω OFFEN ,5 0,3 Lampe U / V I / ma 11

12 5. Auswertung A Zeichnen Sie die U-I- Kennlinie der Brennstoffzellen in Reihen- und Parallelschaltung in ein Diagramm. B Interpretieren Sie die Kennlinien. C Tragen Sie den Wert für die Spannung und die Stromstärke der Lampe in die U-I- Kennlinie ein. Abb. 7: Reihenschaltung 12

13 Beachten Sie die Anweisungen aus der Bedienungsanleitung! Beim Experimentieren Schutzbrille tragen und Zündquellen fernhalten! Abb. 8: Parallelschaltung Abb. 9: Speichern 13

Themengebiet: Thermodynamik. Brennstoffzelle, Wirkungsgrad, Durchtrittsüberspannung, Diffusionsüberspannung,

Themengebiet: Thermodynamik. Brennstoffzelle, Wirkungsgrad, Durchtrittsüberspannung, Diffusionsüberspannung, Seite 1 Themengebiet: Thermodynamik Stichwörter, Wirkungsgrad, Durchtrittsüberspannung, Diffusionsüberspannung, Literatur [1] A. Macdonald and M. Berry, Wasserstoff: Energie für morgen, Band 4, Heliocentris,

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 Elektrochemische Kinetik FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 FU Berlin Constanze Donner / Ludwig Pohlmann 2010 2 Elektrochemische Kinetik Was war: Die NernstGleichung beschreibt das thermodynamische

Mehr

Verfahrenstechnisches Tutorium Prof. Dr.-Ing. M. J. Hampe

Verfahrenstechnisches Tutorium Prof. Dr.-Ing. M. J. Hampe Verfahrenstechnisches Tutorium Prof. Dr.-Ing. M. J. Hampe Wintersemester 2012/13 4. Versuch: Brennstoffzelle Dipl.-Ing. Sebastian Lang Learning outcome Nachdem Sie sich mit diesem Versuch auseinandergesetzt

Mehr

Fachbereich Ingenieurwissenschaften und Mathematik. Praktikum Dezentrale Energiesysteme. DEZ 1 Brennstoffzellen

Fachbereich Ingenieurwissenschaften und Mathematik. Praktikum Dezentrale Energiesysteme. DEZ 1 Brennstoffzellen Fachbereich Ingenieurwissenschaften und Mathematik Praktikum Dezentrale Energiesysteme DEZ 1 Brennstoffzellen Lehrgebiet Regenerative Energiesysteme und Elektrotechnik Prof.-Dr.-Ing. Jens Haubrock Inhalt

Mehr

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1.

Daniell-Element. Eine graphische Darstellung des Daniell-Elementes finden Sie in der Abbildung 1. Dr. Roman Flesch Physikalisch-Chemische Praktika Fachbereich Biologie, Chemie, Pharmazie Takustr. 3, 14195 Berlin rflesch@zedat.fu-berlin.de Physikalisch-Chemische Praktika Daniell-Element 1 Grundlagen

Mehr

E 3 Brennstoffzelle. 1 Aufgabenstellung

E 3 Brennstoffzelle. 1 Aufgabenstellung E 3 Brennstoffzelle 1 Aufgabenstellung 1.1 Ermitteln Sie den Wirkungsgrad eines Elektrolyseurs. 1. Nehmen Sie die Strom-Spannungs-Kennlinie eines Brennstoffzellensystems auf und erläutern Sie den erhaltenen

Mehr

T3 - Brennstoffzelle. Vorwort. Einleitung

T3 - Brennstoffzelle. Vorwort. Einleitung T3 - Brennstoffzelle Vorwort Dieses Skript ersetzt kein Lehrbuch! Sie müssen sich mit Hilfe der im folgenden angeführten Literaturhinweise selbständig in das Thema einarbeiten. Die Grundlagen enthalten

Mehr

Elektrochemie. Brennstoffzelle

Elektrochemie. Brennstoffzelle Praktikum Physikalische Chemie: Elektrochemie / Brennstoffzelle Seite 1 Versuchsziel: Elektrochemie Brennstoffzelle In diesem Versuch wird die Strom-Spannungs-Charakteristik einer Brennstoffzelle und einer

Mehr

Physikalisch-Chemisches Praktikum für Fortgeschrittene V 12. Dynamische Elektrochemie. Brennstoffzelle

Physikalisch-Chemisches Praktikum für Fortgeschrittene V 12. Dynamische Elektrochemie. Brennstoffzelle Physikalisch-Chemisches Praktikum für Fortgeschrittene V 12 Dynamische Elektrochemie Brennstoffzelle Kurzbeschreibung: Dieser Versuch befasst sich mit dem Wechselspiel von elektrochemischen Potentialen,

Mehr

Wirkungsgrad einer Elektrolyseur-Brennstoffzellen-Anlage

Wirkungsgrad einer Elektrolyseur-Brennstoffzellen-Anlage Wirkungsgrad einer Elektrolyseur-Brennstoffzellen-Anlage ENT Schlüsselworte Elektrolyse, Protonen-Austausch-Membran, Ladungstrennung, Wasserstoffverbrennung, Brennstoffzelle, Wirkungsgrad Prinzip Bei jeder

Mehr

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND

Schalter. 2.3 Spannungsquellen. 2.3.1 Kondensatoren 112 KAPITEL 2. STROMFLUSS DURCH LEITER; EL. WIDERSTAND 112 KAPTEL 2. STROMFLSS DRCH LETER; EL. WDERSTAND 2.3 Spannungsquellen n diesem Abschnitt wollen wir näher besprechen, welche Arten von Spannungsquellen real verwendet werden können. 2.3.1 Kondensatoren

Mehr

Die Brennstoffzelle Technologie der Zukunft?

Die Brennstoffzelle Technologie der Zukunft? Westfälische Wilhelms-Universität Münster Institut für Physikalische Chemie Die Brennstoffzelle Technologie der Zukunft? Sommersemester 2005 Julia Hederer Carolin Eiersbrock Übersicht Einleitung Geschichte

Mehr

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik

Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Ernst-Moritz-Arndt-Universität Greifswald Institut für Physik Versuch E 19 Die Brennstoffzelle Name: Mitarbeiter: Gruppennummer: lfd. Nummer: Datum: 1. Aufgabenstellung Bestimmen Sie die Wirkungsgrade

Mehr

Zersetzung von Wasser LI

Zersetzung von Wasser LI Die Zersetzung von Wasser Zersetzung von Wasser LI Im Folgenden finden sich drei Ansätze zum Experiment Zersetzung von Wasser. Der Versuch eignet sich als Alternative zur Reaktion von Wasserdampf mit Magnesium.

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

Lerninhalte CHEMIE 12 - MuG erstellt von der Fachschaft Chemie

Lerninhalte CHEMIE 12 - MuG erstellt von der Fachschaft Chemie Christian-Ernst-Gymnasium Am Langemarckplatz 2 91054 ERLANGEN Lerninhalte CHEMIE 12 - MuG erstellt von der Fachschaft Chemie C 12.1 Chemisches Gleichgewicht Umkehrbare / Reversible Reaktionen Bei einer

Mehr

Experimente mit Brennstoffzellen - Kennlinienaufnahme

Experimente mit Brennstoffzellen - Kennlinienaufnahme Experimente mit Brennstoffzellen - Kennlinienaufnahme Ziel dieses Unterrichtsentwurfes ist es, die Funktionsweise von Brennstoffzellen näher kennen zu lernen. Die Strom-Spannungs-Kennlinie eines Elektrolyseurs

Mehr

Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven

Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven Martin Raiber 21.02.07 Elektrolyse: Strom - Spannungskurven Geräte: U-Rohr, verschiedene Platin-Elektroden (blank, platiniert), Graphit-Elektroden, spannungsstabilisierte Gleichspannungsquelle, CASSY-Spannungs/Stromstärkemessgerät

Mehr

Chemische Verbrennung

Chemische Verbrennung Christopher Rank Sommerakademie Salem 2008 Gliederung Die chemische Definition Voraussetzungen sgeschwindigkeit Exotherme Reaktion Reaktionsenthalpie Heizwert Redoxreaktionen Bohrsches Atommodell s Elektrochemie:

Mehr

2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB

2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB 2 Der elektrische Strom 2.1 Strom als Ladungstransport 2.1.1 Stromstärke PTB Auf dem Weg zum Quantennormal für die Stromstärke Doris III am DESY 1 Versuch zur Stromwirkung: Leuchtende Gurke 2 2.1.2 Stromdichte

Mehr

1. Strom-Spannungs-Kennlinie, Leistungskurve und Wirkungsgrad des Solarmoduls

1. Strom-Spannungs-Kennlinie, Leistungskurve und Wirkungsgrad des Solarmoduls 1. Strom-Spannungs-Kennlinie, Leistungskurve und Wirkungsgrad des Solarmoduls Hintergrund: Gegeben ist ein Datenblatt eines Solarpanels. Der Schüler soll messtechnisch die Daten eines kleinen Solarmoduls

Mehr

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai 2002. Chemie (Grundkurs) Thema 1 Wasserstoff

KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT. Abitur April/Mai 2002. Chemie (Grundkurs) Thema 1 Wasserstoff KULTUSMINISTERIUM DES LANDES SACHSEN-ANHALT Abitur April/Mai 2002 Chemie (Grundkurs) Einlesezeit: Bearbeitungszeit: 30 Minuten 210 Minuten Thema 1 Wasserstoff Thema 2 Organische Verbindungen und ihr Reaktionsverhalten

Mehr

Versuch 6. Der Elektrolyse-Brennstoffzellen-Versuch

Versuch 6. Der Elektrolyse-Brennstoffzellen-Versuch 1 Versuch 6 Der Elektrolyse-Brennstoffzellen-Versuch 1 DIE ELEKTROLYSE-BRENNSTOFFZELLEN-EINHEIT...2 2 SICHERHEITSHINWEISE:...3 3 DIE BETRIEBSARTEN...3 3.1 DER DEMONSTRATIONSBETRIEB...4 3.2 DER EXPERIMENTIERBETRIEB...4

Mehr

Versuchsprotokoll E11 Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode

Versuchsprotokoll E11 Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode Dieses Werk steht unter der Creative-Commons-Lizenz CC BY-NC 3.0 1 Physikalische Chemie I Versuchsprotokoll E11 Potentiometrische ph-messungen mit der Wasserstoffelektrode und der Glaselektrode Inhaltsverzeichnis

Mehr

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie.

ELEKTROCHEMIE. Elektrischer Strom: Fluß von elektrischer Ladung. elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie. ELEKTROCHEMIE Elektrischer Strom: Fluß von elektrischer Ladung Elektrische Leitung: metallische (Elektronen) elektrolytische (Ionen) Zwei Haupthemen der Elektrochemie Galvanische Zellen Elektrolyse Die

Mehr

Die Brennstoffzelle. Inhaltsverzeichnis. 12. November 2014. 1 Was versteht man unter Wasserstofftechnologie? 2

Die Brennstoffzelle. Inhaltsverzeichnis. 12. November 2014. 1 Was versteht man unter Wasserstofftechnologie? 2 Die Brennstoffzelle 12. November 2014 Inhaltsverzeichnis 1 Was versteht man unter Wasserstofftechnologie? 2 2 Funktionsprinzipien der Komponenten 3 2.1 Der Elektrolyseur...................................

Mehr

Mechatronische Systemtechnik im KFZ Kapitel 6: Alternative Antriebe Prof. Dr.-Ing. Tim J. Nosper

Mechatronische Systemtechnik im KFZ Kapitel 6: Alternative Antriebe Prof. Dr.-Ing. Tim J. Nosper Wasserstoff und Sauerstoff werden für sich oder zusammen zu einer unerschöpflichen Quelle von Wärme und Licht werden, von einer Intensität, die die Kohle überhaupt nicht haben könnte; das Wasser ist die

Mehr

Unterrichtsvorhaben II Elektrochemie Q1

Unterrichtsvorhaben II Elektrochemie Q1 Unterrichtsvorhaben II Elektrochemie Umfang: Jgst.: Q1 Schwerpunkte / Inhalt / Basiskonzepte Elektrochemische Gewinnung von Stoffen Mobile Energiequellen [Quantitative Aspekte elektrochemischer Prozesse]

Mehr

Da eine Elektrolyse unter Anlegen einer äußeren Spannung erzwungen, d.h. mit G > 0, abläuft, ist der Zusammenhang zwischen G und U 0 nach

Da eine Elektrolyse unter Anlegen einer äußeren Spannung erzwungen, d.h. mit G > 0, abläuft, ist der Zusammenhang zwischen G und U 0 nach Versuch PCA E 2 Polarisation und Zersetzungsspannung Aufgabenstellung Es sind die Temperaturabhängigkeit der Zersetzungsspannung einer 1,2 M HCl-Lösung sowie die Konzentrationsabhängigkeit der Zersetzungsspannung

Mehr

Brennstoffzellenantriebe für US Militär Hybridauto

Brennstoffzellenantriebe für US Militär Hybridauto Brennstoffzellenantriebe für US Militär Hybridauto PKW mit antrieb wurden von führenden Fahrzeugherstellern bereits in den 80iger Jahren entwickelt. Die anfänglichen Schwierigkeiten hinsichtlich der Tankgröße,

Mehr

Physikalische Chemie Praktikum. Elektrochemie: Elektromotorische Kraft und potentiometrische Titration

Physikalische Chemie Praktikum. Elektrochemie: Elektromotorische Kraft und potentiometrische Titration Hochschule Emden / Leer Physikalische Chemie Praktikum Vers.Nr.9 A / B Dez. 2015 Elektrochemie: Elektromotorische Kraft und potentiometrische Titration Allgemeine Grundlagen NERNST`sche Gleichung, Standard-Elektrodenpotentiale,

Mehr

Verflüssigung von Gasen / Joule-Thomson-Effekt

Verflüssigung von Gasen / Joule-Thomson-Effekt Sieden und Kondensation: T p T p S S 0 1 RTSp0 1 ln p p0 Dampfdrucktopf, Autoklave zur Sterilisation absolute Luftfeuchtigkeit relative Luftfeuchtigkeit a ( g/m 3 ) a pw rel S ps rel 1 Taupunkt erflüssigung

Mehr

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen

Grundlagen der Chemie Elektrolyt- und Nichtelektrolytlösungen Elektrolyt- und Nichtelektrolytlösungen Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrolyt- und Nichtelektrolytlösungen

Mehr

1 Chemische Verbrennung

1 Chemische Verbrennung 1 Chemische Verbrennung 1.1 Einleitung Vor etwa einer halben Million Jahre entdeckten die Vorfahren des heutigen Menschen die Nutzung des Feuers. Seine Nutzbarmachung war ein großer Fortschritt in der

Mehr

Hinweise für den Schüler. Von den 2 Prüfungsblöcken A und B ist einer auszuwählen.

Hinweise für den Schüler. Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Abitur 2001 Chemie Gk Seite 1 Hinweise für den Schüler Aufgabenauswahl: Von den 2 Prüfungsblöcken A und B ist einer auszuwählen. Bearbeitungszeit: Die Arbeitszeit beträgt 210 Minuten, zusätzlich stehen

Mehr

Vortrag Brennstoffzellen-Grundlagen Aufbau und Funktion

Vortrag Brennstoffzellen-Grundlagen Aufbau und Funktion Vortrag Brennstoffzellen-Grundlagen Aufbau und Funktion Basisseminar Brennstoffzellen- und Wasserstofftechnologie am 24. Januar 2008 am WBZU in Ulm Peter Pioch (WBZU), Thomas Aigle (WBZU), Ludwig Jörissen

Mehr

Elektrodenreaktion [electrode reaction] Die an einer Elektrode ablaufende elektrochemische Reaktion (siehe auch: Zellreaktion).

Elektrodenreaktion [electrode reaction] Die an einer Elektrode ablaufende elektrochemische Reaktion (siehe auch: Zellreaktion). Glossar In diesem Glossar, das keinen Anspruch auf Vollständigkeit erhebt, werden einige Grundbegriffe der Elektrochemie erläutert. [In Klammern sind die englischen Begriffe angegeben.] Autor: Klaus-Michael

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm

Abb. 1: Exotherme und endotherme Reaktionen Quelle: http://www.seilnacht.com/lexikon/aktivi.htm#diagramm Energie bei chemischen Reaktionen Chemische Reaktionen sind Stoffumwandlungen bei denen Teilchen umgeordnet und chemische Bindungen gespalten und neu geknüpft werden, wodurch neue Stoffe mit neuen Eigenschaften

Mehr

DOWNLOAD. Physik kompetenzorientiert: Elektrizitätslehre 3. 7. / 8. Klasse

DOWNLOAD. Physik kompetenzorientiert: Elektrizitätslehre 3. 7. / 8. Klasse DOWNLOAD Anke Ganzer Physik kompetenzorientiert: Elektrizitätslehre 3 7. / 8. Klasse Anke Ganzer Bergedorfer Unterrichtsideen Downloadauszug aus dem Originaltitel: Physik II kompetenzorientierte Aufgaben

Mehr

Geburt der Brennstoffzelle 1839: Die Entdeckung der Brennstoffzelle

Geburt der Brennstoffzelle 1839: Die Entdeckung der Brennstoffzelle Modul II: KWK Brennstoffzellen BHKW Dipl. Ing. (FH) Peter Pioch 5.3.2015 Weiterbildungszentrum für innovative Energietechnologien der Handwerkskammer Ulm (WBZU) Geschichtliches zur Brennstoffzelle Frühe

Mehr

Messungen zum Laden und Entladen eines Modell-Bleiakkumulators

Messungen zum Laden und Entladen eines Modell-Bleiakkumulators Messungen zum und eines Modell-Bleiakkumulators Von Peter Keusch, Jörg Baran und Jürgen P. Pohl Die Messung des zeitlichen Ablaufs chemischer oder physikalischer Vorgänge mit Hilfe von Messdaten-Erfassungssystemen

Mehr

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen

Chemie für Biologen. Vorlesung im. WS 2004/05 V2, Mi 10-12, S04 T01 A02. Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen Chemie für Biologen Vorlesung im WS 200/05 V2, Mi 10-12, S0 T01 A02 Paul Rademacher Institut für Organische Chemie der Universität Duisburg-Essen (Teil : 03.11.200) MILESS: Chemie für Biologen 66 Chemische

Mehr

Grundlagen der Chemie Elektrochemie

Grundlagen der Chemie Elektrochemie Elektrochemie Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Elektrischer Strom Ein elektrischer Strom ist ein

Mehr

Photovoltaik. Physikalisch-Chemische Praktika

Photovoltaik. Physikalisch-Chemische Praktika Physikalisch-Chemische Praktika Photovoltaik Hinweis. Dieser Versuch wird in diesem Semester erstmals ausgegeben. Die Skripte ist möglicherweise fehlerbehaftet. Die Versuchsdurchführung ist vielleicht

Mehr

7. Chemische Reaktionen

7. Chemische Reaktionen 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7. Chemische Reaktionen 7.1 Thermodynamik chemischer Reaktionen 7.2 Säure Base Gleichgewichte 7.3 Redox - Reaktionen

Mehr

Demonstrationsversuch: Wasserelektrolyse

Demonstrationsversuch: Wasserelektrolyse 1 Aufgabe Demonstrationsversuch: Wasserelektrolyse Aufbau des Demonstrationsversuchs Wasserelektrolyse im Elektrolyseur. Mögliche Versuche: a) Bestimmung der Kennlinie des Elektrolyseurs und Ermittlung

Mehr

Grundwissen Chemie 8I

Grundwissen Chemie 8I 1) Stoffe, Experimente Chemie ist die Lehre von den Stoffen, ihren Eigenschaften, ihrem Aufbau, ihren Veränderungen und ihrer Herstellung. Einfache Möglichkeiten der Stofferkennung (Farbe, Glanz, Kristallform,

Mehr

Dunkel- und Hellkennlinie des Solarmoduls. Beachten Sie die Anweisungen aus der Bedienungsanleitung! Messgerät + V + A. Solarmodul

Dunkel- und Hellkennlinie des Solarmoduls. Beachten Sie die Anweisungen aus der Bedienungsanleitung! Messgerät + V + A. Solarmodul P s1 Dunkel- und Hellkennlinie des Solarmoduls Material: Solarmodul Verbrauchermodul Strom- und Spannungsmessgeräte 5 Kabel Zusätzliche Komponenten: Schwarze Pappe (Teil 1) Netzteil (Teil 1) Lampe 100-150

Mehr

Rost und Rostschutz. Chemikalien: Rost, verdünnte Salzsäure HCl, Kaliumhexacyanoferrat(II)-Lösung K 4 [Fe(CN) 6 ]

Rost und Rostschutz. Chemikalien: Rost, verdünnte Salzsäure HCl, Kaliumhexacyanoferrat(II)-Lösung K 4 [Fe(CN) 6 ] Universität Regensburg Institut für Anorganische Chemie Lehrstuhl Prof. Dr. A. Pfitzner Demonstrationsversuche im Sommersemester 2009 24.06.2009 Dozentin: Dr. M. Andratschke Referenten: Mühlbauer, Manuel

Mehr

Vorlesung Anorganische Chemie

Vorlesung Anorganische Chemie Vorlesung Anorganische Chemie Prof. Ingo Krossing WS 2007/08 B.Sc. Chemie Lernziele Block 6 Entropie und Gibbs Enthalpie Gibbs-elmholtz-Gleichung Absolute Entropien Gibbs Standardbildungsenthalpien Kinetik

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016 Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Kennlinien elektrischer Leiter (KL) Frühjahrssemester 2016 Physik-nstitut der Universität Zürich nhaltsverzeichnis 10 Kennlinien elektrischer Leiter

Mehr

Strom-Spannungs-Kennlinie und Leistung eines Windrades

Strom-Spannungs-Kennlinie und Leistung eines Windrades Strom-Spannungs-Kennlinie und ENT Schlüsselworte Windenergie, Kennlinie, Spannung, Stromstärke, Leistung, Widerstand, Innenwiderstand, Anpassung Prinzip Die Strom-Spannungs-Kennlinie eines Windgenerators

Mehr

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1. Bestimmung der Verbrennungsenthalpie

Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1. Bestimmung der Verbrennungsenthalpie Praktikum Physikalische Chemie I (C-2) Versuch Nr. 1 Bestimmung der Verbrennungsenthalpie Praktikumsaufgaben 1. Ermittlung der Kalorimeterkonstante durch Verbrennung von Benzoesäure. 2. Bestimmung der

Mehr

14. elektrischer Strom

14. elektrischer Strom Ladungstransport, elektrischer Strom 14. elektrischer Strom In Festkörpern: Isolatoren: alle Elektronen fest am Atom gebunden, bei Zimmertemperatur keine freien Elektronen -> kein Stromfluß Metalle: Ladungsträger

Mehr

TU Clausthal Stand: 26.11.2007 Institut für Physikalische Chemie Praktikum C Cyclovoltammetrie Seite 1/10

TU Clausthal Stand: 26.11.2007 Institut für Physikalische Chemie Praktikum C Cyclovoltammetrie Seite 1/10 Praktikum C Cyclovoltammetrie Seite 1/10 Cyclovoltammetrie Grundlagen zum Versuch Komponenten - Potentiostat - Funktionsgenerator - Messzelle - Platin-Elektroden - gesättigte Kalomel-Referenzelektrode

Mehr

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik

Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik. Praktikum Elektrotechnik und Antriebstechnik FH D FB 4 Fachhochschule Düsseldorf Fachbereich Maschinenbau und Verfahrenstechnik Elektro- und elektrische Antriebstechnik Prof. Dr.-Ing. Jürgen Kiel Praktikum Elektrotechnik und Antriebstechnik Versuch

Mehr

andré wolz Fachgebiet Erneuerbare Energien Fachbereich Material- und Geowissenschaften Technische Universität Darmstadt

andré wolz Fachgebiet Erneuerbare Energien Fachbereich Material- und Geowissenschaften Technische Universität Darmstadt andré wolz N A N O S T R U K T U R I E RT E P E M - B R E N N S T O F F Z E L L E N E L E K T R O D E N A U S A LT E R N AT I V E N M AT E R I A L I E N Zur Erlangung des akademischen Grades des Doktors

Mehr

Der elektrische Strom

Der elektrische Strom Der elektrische Strom Bisher: Ruhende Ladungen Jetzt: Abweichungen vom elektrostatischen Gleichgewicht Elektrischer Strom Transport von Ladungsträgern Damit Ladungen einen Strom bilden, müssen sie frei

Mehr

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:...

TP 6: Windenergie. 1 Versuchsaufbau. TP 6: Windenergie -TP 6.1- Zweck der Versuche:... TP 6: Windenergie -TP 6.1- TP 6: Windenergie Zweck der ersuche: 1 ersuchsaufbau Der Aufbau des Windgenerators und des Windkanals (Abb.1) erfolgt mit Hilfe der Klemmreiter auf der Profilschiene. Dabei sind

Mehr

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von

Physikalische Chemie. Heinz Hug Wolfgang Reiser EHRMITTEL. EUROPA-FACHBUCHREIHE für Chemieberufe. 2. neu bearbeitete Auflage. von 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. EHRMITTEL EUROPA-FACHBUCHREIHE für Chemieberufe Physikalische Chemie

Mehr

Silbercoulometer / Elektrolyse. Bestimmung der Faraday schen Zahl mit dem Silbercoulometer

Silbercoulometer / Elektrolyse. Bestimmung der Faraday schen Zahl mit dem Silbercoulometer Institut f. Experimentalphysik Technische Universität Graz Petersgasse 16, A-8010 Graz Laborübungen: Elektrizität und Optik 20. Mai 2010 Silbercoulometer / Elektrolyse Stichworte zur Vorbereitung: Elektrolytische

Mehr

Grundlagen der Chemie Verschieben von Gleichgewichten

Grundlagen der Chemie Verschieben von Gleichgewichten Verschieben von Gleichgewichten Prof. Annie Powell KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Prinzip des kleinsten Zwangs Das

Mehr

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben.

+ O. Die Valenzelektronen der Natriumatome werden an das Sauerstoffatom abgegeben. A Oxidation und Reduktion UrsprÄngliche Bedeutung der Begriffe UrsprÅnglich wurden Reaktionen, bei denen sich Stoffe mit Sauerstoff verbinden, als Oxidationen bezeichnet. Entsprechend waren Reaktionen,

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer:

Physikalisches Praktikum I. PTC und NTC Widerstände. Fachbereich Physik. Energielücke. E g. Valenzband. Matrikelnummer: Fachbereich Physik Physikalisches Praktikum I Name: PTC und NTC Widerstände Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Messung elektrischer Größen Bestimmung von ohmschen Widerständen

Messung elektrischer Größen Bestimmung von ohmschen Widerständen Messtechnik-Praktikum 22.04.08 Messung elektrischer Größen Bestimmung von ohmschen Widerständen Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. Bestimmen Sie die Größen von zwei ohmschen Widerständen

Mehr

Temperaturabhängigkeit von ρ s (T) für einige Stoffe. ρ s = spezifischer Widerstand. Variation mit Temperatur bezogen auf T = 300 K

Temperaturabhängigkeit von ρ s (T) für einige Stoffe. ρ s = spezifischer Widerstand. Variation mit Temperatur bezogen auf T = 300 K Temperaturabhängigkeit von ρ s (T) für einige Stoffe ρ s = spezifischer Widerstand Variation mit Temperatur bezogen auf T = 300 K 77 Temperatur-Abhängigkeit von Widerständen normaler (ohmscher) Widerstand:

Mehr

Kennlinie der Vakuum-Diode

Kennlinie der Vakuum-Diode Physikalisches Praktikum für das Hauptfach Physik Versuch 20 Kennlinie der Vakuum-Diode Wintersemester 2005 / 2006 Name: Mitarbeiter: EMail: Gruppe: Daniel Scholz Hauke Rohmeyer physik@mehr-davon.de B9

Mehr

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion

Elektrolyse. Zelle.. Bei der Elektrolyse handelt es sich im Prinzip um eine Umkehrung der in einer galvanischen Zelle Z ablaufenden Redox-Reaktion (Graphit) Cl - Abgabe von Elektronen: Oxidation Anode Diaphragma H + Elektrolyse Wird in einer elektrochemischen Zelle eine nicht-spontane Reaktion durch eine äußere Stromquelle erzwungen Elektrolyse-Zelle

Mehr

Aufgabenblatt Nr.: 1 Grundlagen Elektrotechnik

Aufgabenblatt Nr.: 1 Grundlagen Elektrotechnik Aufgabenblatt Nr.: 1 Grundlagen Elektrotechnik 1) Berechnen Sie den Widerstand R einer Leitung, Cu spez. R 0.0175 Leitungslänge: 15 m R = Rho * l * 2 / A = 0.0175 * 15m * 2 / 1.5 = 0.350 Ohm Querschnitt:

Mehr

Grundlagen der Korrosion

Grundlagen der Korrosion Grundlagen der Korrosion 1. Elektrochemische Vorgänge Die Korrosion der Metalle ist wie die Verbrennung oder die Bruttoreaktion der Photosynthese ein Redoxprozess, der mit dem Austausch von Elektronen

Mehr

a.) Wie groß ist die Reaktionsenthalpie für die Diamantbildung aus Graphit? b.) Welche Kohlenstoffform ist unter Standardbedingungen die stabilere?

a.) Wie groß ist die Reaktionsenthalpie für die Diamantbildung aus Graphit? b.) Welche Kohlenstoffform ist unter Standardbedingungen die stabilere? Chemie Prüfungsvorbereitung 1. Aufgabe Folgende Reaktionen sind mit ihrer Enthalpie vorgegeben C (Graphit) + O 2 CO 2 R = 393,43 KJ C (Diamant) + O 2 CO 2 R = 395,33 KJ CO 2 O 2 + C (Diamant) R = +395,33

Mehr

Experimentalphysik II TU Dortmund SS2012 Shaukat. Khan @ TU - Dortmund. de Kapitel 2

Experimentalphysik II TU Dortmund SS2012 Shaukat. Khan @ TU - Dortmund. de Kapitel 2 Experimentalphysik T Dortmund SS202 Shaukat. Khan @ T - Dortmund. de Kapitel 2 2. 5 Messung on Strom und Spannung Messung on Strömen (Amperemeter) el. Strom Wärme Temperaturerhöhung Längenausdehnung el.

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

Technische Universität München Department für Physik E19 Grenzflächen und Energieumwandlung Praktikum Brennstoffzellen

Technische Universität München Department für Physik E19 Grenzflächen und Energieumwandlung Praktikum Brennstoffzellen Technische Universität München Department für Physik E19 Grenzflächen und Energieumwandlung Praktikum Brennstoffzellen Autor: Manfred Stefener stefener@ph.tum.de 1 Die Grundlagen der Brennstoffzellentechnologie

Mehr

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände)

Vers. 3: Elektrizität 1 (Strom, Spannung, Leistung, Widerstände) Praktikum Technische Grundlagen ersuch 3 ers. 3: Elektrizität (Strom, Spannung, Leistung, Widerstände) orbereitung Literatur zu den Stichworten Ohmsches Gesetz, Strom, Spannung, Leistung, Widerstandsschaltungen,

Mehr

Fachliche Kontexte (Inhaltsfelder)

Fachliche Kontexte (Inhaltsfelder) Krupp-Gymnasium: Schulinternes Curriculums Chemie SI Fachliche Kontexte (Inhaltsfelder) Jahrgang 7 Speisen und Getränke alles Chemie? (Stoffe und Stoffveränderungen) Brände und Brandbekämpfung Stoffe und

Mehr

Tabellen und Formelsammlung Chemie

Tabellen und Formelsammlung Chemie Tabellen und Forelsalung Cheie Fakultät Maschinenbau Stand SS 2015 Nachfolgende Tabellen und Inforationen staen aus de Lehrbuch G. Kickelbick, Cheie für Ingenieure, Pearson-Verlag, 2008 soweit nicht anderweitig

Mehr

Grundlagen der Elektrik Kapitel 1

Grundlagen der Elektrik Kapitel 1 Grundlagen der Elektrik 1. Atomaufbau 2 2. Elektrische Leitfähigkeit 4 3. Elektrische Spannung 5 4. Elektrischer Strom 7 5. Elektrischer Widerstand 11 6. Ohmsches Gesetz 14 7. Grundschaltungen 17 8. Elektrische

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

Fakultät Chemie Physikalische Chemie I

Fakultät Chemie Physikalische Chemie I Fakultät Chemie Physikalische Chemie I Einstiegstraining für die Chemie-Olympiade 013 in Russland Physikalische Chemie Einheiten und Größen Ableiten und Integrieren Ideale Gase Thermodynamik chemischer

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD Elektrizitätslehre GV: Gleichstrom Durchgeführt am 14.06.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Philip Baumans Marius Schirmer E3-463 Inhaltsverzeichnis

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

Kann man Wärme pumpen? Die Wärmepumpe

Kann man Wärme pumpen? Die Wärmepumpe Kann man Wärme pumpen? Die Wärmepumpe Inhalt 1. Was ist eine Wärmepumpe? Wie funktioniert sie? 2. Experimente 2.1 Welchen Wirkungsgrad hat die Wärmepumpe? (Experiment 1) 2.2 Wie groß ist die spezifische

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Galileo. Intelligente Wärme. Sauberer Strom.

Galileo. Intelligente Wärme. Sauberer Strom. Galileo Intelligente Wärme. Sauberer Strom. Wärme und Strom aus Brennstoffzellen: Vorteile, die überzeugen Zukunftsgerichtete und umweltschonende Effizienz Die Brennstoffzellen-Technologie ist eine der

Mehr

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen.

Das Formelzeichen der elektrischen Spannung ist das große U und wird in der Einheit Volt [V] gemessen. Spannung und Strom E: Klasse: Spannung Die elektrische Spannung gibt den nterschied der Ladungen zwischen zwei Polen an. Spannungsquellen besitzen immer zwei Pole, mit unterschiedlichen Ladungen. uf der

Mehr

Weiterbildung Grundschullehrer im Bereich Technik. Workshop 1: Lösungsprinzipien untersuchen und entdecken

Weiterbildung Grundschullehrer im Bereich Technik. Workshop 1: Lösungsprinzipien untersuchen und entdecken Universität Potsdam Institut für Arbeitslehre/Technik Informationsmaterial Angelika Liermann Weiterbildung Grundschullehrer im Bereich Technik Workshop 1: Lösungsprinzipien untersuchen und entdecken Am

Mehr

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, 02.05.11/03.05.11

Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, 02.05.11/03.05.11 Übung zum chemischen Praktikum für Studierende mit Chemie als Nebenfach Übung Nr. 3, 02.05.11/03.05.11 1. Sie haben Silberbesteck geerbt. Um Ihren neuen Reichtum ordentlich zur Schau zu stellen, haben

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wie funktioniert eigentlich eine Batterie?

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Wie funktioniert eigentlich eine Batterie? Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das komplette Material finden Sie hier: School-Scout.de 26. 1 von 12 Axel Donges, Isny im Allgäu Batterien und Akkumulatoren ( Akkus

Mehr

Versuch 20. Kennlinie der Vakuum-Diode

Versuch 20. Kennlinie der Vakuum-Diode Physikalisches Praktikum Versuch 20 Kennlinie der Vakuum-Diode Name: Henning Hansen Datum der Durchführung: 9.09.2006 Gruppe Mitarbeiter: Christian Köhler ssistent: testiert: 3 Einleitung Die Vakuum-Diode

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Inhalt. Atombau und Periodensystem ein untrennbarer Zusammenhang... 1. Chemische Bindung wie Teilchen zusammenhalten... 25

Inhalt. Atombau und Periodensystem ein untrennbarer Zusammenhang... 1. Chemische Bindung wie Teilchen zusammenhalten... 25 Inhalt Vorwort Atombau und Periodensystem ein untrennbarer Zusammenhang... 1 1 Vorstellung über den Bau der Atome... 1 1.1 Erste Atommodelle Entwicklung aus Grundgesetzen und Versuchen... 1 1.2 Atomkern

Mehr

Elektrochemie II: Potentiometrie

Elektrochemie II: Potentiometrie ersuchsprotokoll ersuchsdatum: 25.10.04 Zweitabgabe: Sttempell Durchgeführt von: Elektrochemie II: Potentiometrie 1. Inhaltsangabe 1..Inhaltsangabe---------------------------------------------------------------------------------

Mehr

ALTERNATIVE ANTRIEBE BRENNSTOFFZELLE. Die Brennstoffzelle

ALTERNATIVE ANTRIEBE BRENNSTOFFZELLE. Die Brennstoffzelle Die Brennstoffzelle Um aus (regenerativ gewonnenem) Wasserstoff Strom zu erzeugen, verwendet man Brennstoffzellen. Bei einer Brennstoffzelle handelt es sich um eine besondere Art eines galvanischen Elements.

Mehr