Wechselwirkungen an Oberflächen: Gaschromatographie / Massenspektrometrie (GC/MS)

Größe: px
Ab Seite anzeigen:

Download "Wechselwirkungen an Oberflächen: Gaschromatographie / Massenspektrometrie (GC/MS)"

Transkript

1 Wechselwirkungen an Oberflächen: Gaschromatographie / Massenspektrometrie (GC/MS) 1. Theorie 1.1 Einleitung Trennmethoden, bei denen die Stofftrennung eines Gemisches durch Verteilung zwischen einer stationären und einer mobilen Phase erreicht wird, bezeichnet man als chromatographische Methoden. Die für die Trennung verantwortlichen physikalischen Vorgänge können in zwei Gruppen eingeteilt werden: Erfolgt die Trennung durch Adsorption an der Oberfläche der stationären Phase, spricht man von Adsorptions-Chromatographie. Wird die Stofftrennung durch den Lösevorgang in beiden, miteinander nicht mischbaren Phasen bestimmt, spricht man von Verteilungs-Chromatographie. Beide Trennprinzipien kommen im Allgemeinen nicht rein, sondern im unterschiedlichen Maße gemischt vor. Eine grundlegendere Einteilung säulenchromatographischer Methoden basiert auf der Natur der stationären und mobilen Phase. Bei der Flüssigkeitschromatographie (LC, engl. liquid chromatography) befindet sich die mobile Phase im flüssigen Zustand und bei der Gaschromatographie (GC) im gasförmigen Zustand (Tab.1). Tabelle 1 Generelle Einteilung Einteilung der säulenchromatographischen Methoden Flüssigkeitschromatographie (mobile Phase: Flüssigkeit) Chromatographie Art Flüssig Flüssig Stationäre Phase Flüssigkeit, adsorbiert an einem Feststoff Zugrundeliegende Gleichgewichtsreaktion Verteilung zwischen mischbaren Flüssigkeiten Flüssig Fest Feststoff Adsorption Gaschromatographie (mobile Phase: Gas) Gas Flüssig (glc) Flüssigkeit, adsorbiert an einem Feststoff überwiegend Verteilung zwischen Gas und Flüssigkeit Gas Fest (gsc) Feststoff Adsorption glc: gsc: gas liquid chromatography gas solid chromatography Nach der chromatographischen Trennung erfolgt die Detektion. Im Laufe der Entwicklung der GC wurden Dutzende von Detektoren untersucht und eingesetzt. Bei dem im Versuch verwendeten Gaschromatographen fungiert ein Massenspektrometer (MS) als Detektor. Dieser dient nicht nur dazu, das Auftreten von Analyten am Säulenausgang zu detektieren, sondern auch Informationen über ihre Identität zu liefern. 1

2 1. Adsorptions-Chromatographie Unter Adsorption versteht man eine Grenzflächenreaktion zwischen einem gelösten und einem festen Stoff (Adsorbens, Sorbens), d.h. es tritt eine Anreicherung des gelösten Stoffes (als Adsorbat) an der Phasengrenzfläche des festen Stoffes ein. Als mobile Phase kann eine Flüssigkeit oder ein Gas verwendet werden (Flüssigkeits- bzw. Gas-Chromatographie). Je nach Stärke der auftretenden Wechselwirkungskräfte unterscheidet man zwischen physikalischer und chemischer Adsorption: Physikalische Adsorption (Physisorption): Die Physisorption ist durch schwache Van-der-Waals Kräfte mit Adsorptionsenthalpien zwischen 8 und 40 kj/mol gekennzeichnet. Der physikalisch-chemische Vorgang läuft bis zur Gleichgewichtseinstellung ungehemmt ab und ist reversibel. Chemische Adsorption (Chemisorption): Hier betragen die Adsorptionsenthalpien zwischen 80 und 600 kj/mol. Die Gleichgewichtseinstellung kann stark gehemmt sein und zum Teil sind hohe Aktivierungsenergien erforderlich. Die Chemisorption ist im Gegensatz zur Physisorption häufig nicht reversibel. Bei Adsorbentien wie Aluminiumoxid oder Kieselgel kann die Adsorption von Stoffen auf Dipol-Dipol-Wechselwirkungen (mit induzierten oder permanenten Dipolen), Wasserstoffbrückenbindungen, charge-transfer- oder -Komplexen als spezifische Wechselwirkungen zwischen polarer Adsorbens-Oberfläche und polaren Gruppen adsorbierter Moleküle beruhen. Der Gleichgewichtszustand der Grenzflächenreaktion kann durch empirisch ermittelte Gleichungen, den so genannten Adsorptionsisothermen, beschrieben werden. Aus dem Verlauf der Isothermen zweier Stoffe A und B lassen sich Aussagen über die Wirksamkeit adsorptionschromatographischer Trennungen machen (Abb. 1): Fall 1: Bei gegebener Polarität der mobilen Phase weisen die Isothermen einen linearen Verlauf mit großer Steigung auf. Das bedeutet, dass beide Stoffe stark adsorbiert werden. Die Unterschiede in der Steigung sind für eine Trennung jedoch zu gering. Der rechte Teil zeigt die Verteilung der Stoffe in der chromatographischen Trennstrecke. Fall : Ändert man die Zusammensetzung und damit die Polarität der mobilen Phase, ändert sich auch der Verlauf der Isothermen. Beide Stoffe werden nicht mehr so stark adsorbiert wie im Fall 1. Die Steigungen sind sehr unterschiedlich, so dass eine Trennung möglich ist. Fall 3: Zeigen die Isothermen den in Abb. 1 unten wiedergegebenen Verlauf, so ziehen sich die Substanzbereiche beim chromatographischen Prozess auseinander, da die Konzentrationen nicht mehr im linearen Bereich der Adsorptionsisothermen liegen.

3 m gesamt x m m c V x = adsorbierte Gasmenge, m = Gesamtmenge an Adsorbens, c = Konzentration der Stoffe in der Lösung im Gleichgewichtszustand, V = Volumen des Lösungsmittels, in dem der Stoff verteilt ist. Abb. 1: Unterschiedliche Trennergebnisse aufgrund unterschiedlicher Adsorptionsisothermen. 3

4 Wie Fall 3 zeigt, muss bei chromatographischen Trennungen im geradlinigen Teil der Adsorptionsisothermen gearbeitet werden, um eine symmetrische Substanzverteilung zu erreichen. Dies ist bei geringeren Konzentrationen c i annähernd gewährleistet. Außerdem müssen sich die Steigungen genügend voneinander unterscheiden, um einen ausreichenden Trenneffekt zu erzielen. Aus der Steigung der Adsorptionsisothermen lässt sich die Wanderungsgeschwindigkeit u einer Substanz innerhalb der Trennstrecke ablesen. Verläuft die Adsorptionsisotherme steil, wird die stationäre Phase bevorzugt und die Substanz wandert entsprechend langsam. 1.3 Verteilungs-Chromatographie Die Verteilung als Trennungsmethode findet sowohl bei der Flüssig-Flüssig Chromatographie als auch bei der Gas-Flüssig Chromatographie (GC) statt. Im Fall der Flüssig-Flüssig Chromatographie kann die Verteilung eines Stoffes, der in beiden Phasen löslich ist, anhand der Abbildung einfach dargestellt werden. Abb. : Verteilung eines Stoffes auf zwei flüssigen Phasen. Für die Konzentrationen c 1 und c eines Stoffes, der in den Phasen 1 und gelöst ist, gilt c1 (1) c falls die Lösungen sehr verdünnt sind und der Stoff in beiden Lösungsmitteln monomer vorliegt. Für unterschiedliche Stoffe ist der Verteilungskoeffizient für das gleiche Lösungsmittelpaar im Allgemeinen verschieden. Der Verteilungskoeffizient eines Stoffes stellt die Gleichgewichtskonstante eines Verteilungsgleichgewichtes dar und hängt von der Art der beiden flüssigen Phasen, der Temperatur und vom externen Druck ab. Für die Berechnung von Verteilungsgleichgewichten werden die Konzentrationen c 1 und c durch die Quotienten m 1 /V 1 bzw. m /V ersetzt. Dabei ist m i die Masse eines Stoffes im Phasenvolumen V i : 4

5 c c 1 1 G () m V m V 1 V V 1 Das Verhältnis m 1 /m wird als Verteilungszahl G bezeichnet. G ist bei gleichen Volumina identisch mit. Anstelle des Verteilungskoeffizienten werden häufig prozentuale Angaben verwendet, um das Maß der Verteilung anzugeben. Im Fall der Gaschromatographie (Gas- Flüssig, glc) besteht das System aus einer gasförmigen mobilen Phase und einer flüssigen stationären Phase. Die Trennung beruht auf unterschiedlicher Verteilung des gasförmigen Stoffes in den zwei Phasen. Im Gleichgewichtszustand ist die Konzentration c eines Gases in einer Flüssigkeit bei gegebener Temperatur nach dem HENRYschen Gesetz proportional zum Partialdruck p des Gases c K p (3) mit der Gleichgewichtskonstante K, die von der Art des Gases und Flüssigkeit sowie von der Temperatur abhängt. Der Partialdruck (p) des Stoffes ist proportional zum Molenbruch (x) in der gasförmigen Mischung nach dem RAOULTschen Gesetz: p o x p (4) p 0 stellt den Dampfdruck der reinen Substanz in der Gasphase dar. 1.4 Modell der Gaschromatographie Wir wollen das Prinzip des gaschromatographischen Verfahrens anhand von Abb. 3 näher betrachten. Wir gehen davon aus, dass ein Strom des Trägergases kontinuierlich durch die flüssige Phase in einer Mischzelle strömt. Anschließend strömt das Gas durch eine Messzelle, in der seine Wärmeleitfähigkeit sich ändert, wenn in dem Trägergas eine Substanz gelöst ist. Die Messzelle ist mit einem Anzeigegerät verbunden, dessen Ausschlag proportional zur Konzentration der zu untersuchenden Stoffe in dem Trägergas ist. (Anstelle der Wärmeleitfähigkeit können grundsätzlich auch beliebige andere Stoffeigenschaften herangezogen werden). 5

6 Abb. 3: Auftrennung eines Gemisches zweier Komponenten A und B nach einmaligem Durchgang durch eine Mischzelle, y = Ausschlag des Anzeigeinstrumentes. Wir gehen davon aus, dass in der Flüssigkeit der Mischzelle ein Substanzgemisch (Komponenten A und B) gelöst ist. Beide Komponenten lösen sich in dem Trägergas und werden dadurch nach und nach aus der Flüssigkeit herausgespült. Nehmen wir an, dass sich die Komponente B in der flüssigen Phase besser löst als die Komponente A, dann reichert sich die Komponente A in der Gasphase an. Im zuerst austretenden Gas ist demnach die Komponente A angereichert. Im nachströmenden reinen Trägergas löst sich aus der Flüssigkeit bevorzugt die Komponente A aber auch allmählich die Komponente B. Nach einiger Zeit ist die Komponente A praktisch ganz herausgelöst, so dass schließlich nur noch Anteile der reinen Komponente B in die Gasphase übergehen. Schematisch ist dies in Abb. 3a so dargestellt, dass ein Gasstrom, der vorne aus der reinen Substanz A, am Ende aus der reinen Substanz B und in der Mitte aus einer Mischung beider Substanzen besteht, die Mischzelle verlässt. Beim Durchströmen der Messzelle erhält man einen Ausschlag des Messinstruments, der von Null auf ein Maximum (reine Komponente A) steigt, dann etwas abfällt (verdünnte Mischung von A und B) und schließlich ein zweites Maximum (reine Komponente B) erreicht (Abb. 3b). Schaltet man eine große Anzahl von Mischzellen hintereinander, kann die Auftrennung des Gemisches so weit gehen, dass nach Durchströmen der letzten Mischzelle die Komponenten A und B völlig getrennt in die Messzelle strömen. Den gleichen Effekt erzielt man, wenn man den Trägergasstrom durch eine lange Säule schickt, die mit einer stationären flüssigen Phase überzogen ist. Damit die Flüssigkeit nicht zusammen mit dem Gas wandert, wird sie von einer porösen festen Substanz festgehalten. Das Gaschromatogramm für diesen Fall ist in Abb. 4 dargestellt. 6

7 Abb. 4: Auftrennung eines Gemisches zweier Komponenten A und B nach dem Durchgang durch eine Säule. y = Ausschlag des Anzeigeinstrumentes. Die Retentionszeiten t A und t B bis zum Auftreten der Signalmaxima sind bei konstanter Versuchsanordnung charakteristische Größen für die betrachteten Substanzen, so dass mit Hilfe der Gaschromatographie qualitative Analysen von Substanzgemischen möglich sind. Die Flächen unter den Signalen sind, wie weiter unten gezeigt wird, proportional zu den eingegebenen Mengen A und B im Gemisch, so dass auch quantitative Analysen möglich sind. Zur Bestimmung der sog. Durchflusszeit (früher Totzeit ) gibt man zusammen mit der zu untersuchenden Substanz etwas Luft in die Trennsäule (siehe Abb. 5). Die Luft wird in der flüssigen Phase praktisch nicht gelöst und gelangt deshalb genau so schnell zur Messzelle wie das Trägergas. Das Signal, das der Luft zuzuordnen ist, erscheint zu der Zeit t 0 und wird Durchflusszeit benannt. Die Zeit t 1, nach der das Maximum des zweiten Signals erscheint, bezeichnet man als Gesamtretentionszeit. Abb. 5: Kenngrößen eines Gaschromatogramms. y = Ausschlag des Anzeigeinstrumentes. Um die Vorgänge bei der Gaschromatographie quantitativ zu erklären, nehmen wir vereinfachend an, dass sich das Trägergas nicht kontinuierlich, sondern ruckweise bewegt. Nach jeder Weiterbewegung um die Strecke Dx = u Dt (u = Strömungsgeschwindigkeit) soll sich das Gleichgewicht zwischen Gasphase und flüssiger Phase einstellen. Dt muss so groß 7

8 sein, dass der im Gas gelöste Stoff durch Diffusion in die Flüssigphase (Dicke d) eindringen kann, es muss also nach EINSTEIN und SMOLUCHOWSKI gelten d D t (5) (D = Diffusionskoeffizient des gelösten Stoffes in der Flüssigphase). Nach Abb. 6 teilen wir den Bereich, in dem das Gas mit der Flüssigkeit in Kontakt kommt, in Intervalle der Breite Dx. Innerhalb von Dt stellt sich das Gleichgewicht mit der Gasphase ein. Nach (1) gilt dann ng (6) nf n G bzw. n F = Stoffmenge des Gelösten in der betrachteten Kontaktzelle in der Gasphase bzw. in der Flüssigphase; = Verteilungskoeffizient (die Volumina der Gas- bzw. Flüssigkontaktzellen werden als gleich groß vorausgesetzt). Für die weitere Betrachtung ist es einfacher mit den Verhältnissen n n G bzw. F 1 (7) n n zu rechnen, wobei n die gesamte Stoffmenge darstellt, die in den beiden im Gleichgewicht stehenden Kontaktzellen enthalten ist. Die Konstante b hängt über ( 1) (8) mit dem Verteilungskoeffizienten zusammen. Abb. 6: Schrittweise Verschiebung der Gasphase über die Kontaktzellen der Flüssigphase (Breite x). Das Gleichgewicht wird nach den Zeiten t, t, 3t...eingestellt. 8

9 Zu Beginn des Vorgangs befindet sich die komplette Substanz in der ersten Kontaktzelle und es gilt für diese Kontaktzelle n F = n. Nach dem ersten Verteilungsschritt (Zeit t) befindet sich die Stoffmenge n G n in der Gasphase und die Stoffmenge 1 n in der Flüssigphase (Abb. 6b). Die Gasphase wird dann um eine Kontaktzelle nach rechts verschoben und es stellt sich das Gleichgewicht erneut ein. Nach der Zeit t ist 1 n die Stoffmenge in der ersten Kontaktzelle in der Gasphase; n n G ist die Stoffmenge in der zweiten. Entsprechendes gilt für die Flüssigphase (Stoffmenge n F ( 1 ) (1 ) n bzw. ( 1 ) n (siehe Abb. 6c, 6d). Allgemein gilt für eine n F beliebige Kontaktzelle in der Gasphase nach der Einstellung des neuen Gleichgewichtes und in der Flüssigphase n F n G alt n alt ( neu) n (9) G 1 n alt n alt F ( neu) (10) G F n F n G Auf diese Art wird die gelöste Substanz allmählich sowohl in der Gasphase als auch in der Flüssigphase nach rechts verschoben. Die Verteilung der Stoffmenge in der Gasphase ist für den Fall = 1 (bzw. = 0,5) in der Abb. 7 für die ersten vier Verteilungsschritte dargestellt. Abb. 7: Verteilung der Stoffmenge n G in der Gasphase in den Kontaktzellen 1,,3,... nach dem Schema in Abb. 6 mit = 1 (bzw. = 0,5). Mit Hilfe eines Computerprogramms lässt sich dieses Verfahren leicht auf eine große Zahl von Verteilungsschritten übertragen. In Abb. 8a ist das Ergebnis einer solchen Rechnung mit = 1 bzw. = 0,5 für 100 bzw. 00 Verteilungsschritte dargestellt. 9

10 Abb. 8: Verteilung der Stoffmengen n G in der Gasphase in den Kontaktzellen nach 100 bzw. 00 Verteilungsschritten. a) = 1, b) = 0,5. Vergleichen wir beide Signale innerhalb des Chromatogramms, dann sehen wir, dass sie mit steigender Zahl der Verteilungsschritte niedriger und breiter werden. Bei = 0,5 löst sich die Substanz viel besser in der Flüssigkeit als in der Gasphase, und sie wandert entsprechend langsamer. Stellen wir uns am Ende der Trennsäule einen Detektor vor, dessen Signal zur Stoffmenge n G proportional ist, dann erscheint das Signal einer Substanz um so später, je kleiner der Verteilungskoeffizient ist. 1.5 Kinetische Theorie Die Formen eines chromatographischen Signals und die Einflüsse der verschiedenen Variablen auf die Breite dieses Signals können mit Hilfe der kinetischen Theorie der Chromatographie quantitativ erklärt werden. Nach der Definition der Chromatographie wandert eine mobile Phase an einer stationären Phase vorbei. Die Moleküle der zu trennenden Substanzen sind in der Lage, sich sowohl in der mobilen als auch in der stationären Phase zu verteilen, gleichgültig, ob diese Verteilung ein Adsorptions- oder ein Lösevorgang ist. Der Ausgangspunkt der kinetischen Theorie ist die Tatsache, dass verschiedene Stoffe mit unterschiedlicher Geschwindigkeit eine Trennstrecke passieren. Da der eigentliche Stofftransport aber durch die mit konstanter Geschwindigkeit strömende mobile Phase erfolgt, ist der Geschwindigkeitsunterschied nur scheinbar. Die einzelnen Stoffe haben unterschiedliche Retentionszeiten in der stationären Phase, die durch die freie GIBBSsche Enthalpie des Verzögerungsvorganges (Adsorption oder Lösung) bestimmt wird. Die Gesamtzeit des chromatographischen Vorgangs t R setzt sich aus dieser Nettoretentionszeit t s und der Durchflusszeit ohne Retention t 0 (Tot- oder Durchbruchzeit), d.h. der Zeit für den unverzögerten Transport mit der mobilen Phase, zusammen. t t 0 (11) R t s 10

11 Abb. 9: Elutionskurve nach einem chromatographischen Vorgang. Stellt man für einen chromatographischen Vorgang die Menge an Substanz in Abhängigkeit von der Zeit dar, so erhält man eine Verteilungskurve oder, bei säulenchromatographischer Technik, eine Elutionskurve (Abb. 9), aus der die Retentionszeiten zu entnehmen sind. Mit Elution bezeichnet man den Vorgang, bei dem die mobile Phase solange durch eine Trennstrecke (Säulenlänge) fließt, bis die einzelnen Komponenten des zu trennenden Gemisches die Trennstrecke verlassen haben. Das Signal, welches nach der Trennung erhalten wird, hat oft die Form einer GAUß-Funktion und wird im Chromatogramm als Bande oder Peak bezeichnet. Die Peak-Form wird durch statistische Unregelmäßigkeiten in der Gleichgewichtseinstellung des Stoffes zwischen den Phasen und durch Diffusionsvorgänge in ihnen bestimmt. Die Substanzen werden um so weiter auseinander diffundieren, je länger die Trennstrecke bzw. die Trenndauer ist. Als Konsequenz ergibt sich hieraus eine Verbreiterung der Banden. Dieses Modell ermöglicht eine qualitative Beschreibung des Trennvorganges und die Definition wichtiger chromatographischer Trenngrößen. 1.6 Dynamische Theorie Die dynamische Theorie kann als erweiterte Theorie der Böden angesehen werden. Zur Erlangung einer möglichst kleinen Trennstufenhöhe müssen idealer weise die folgenden Voraussetzungen erfüllt sein, die experimentell nicht in allen Teilen zu verwirklichen sind: 1. eine sofortige (ungehemmte) Gleichgewichtseinstellung der Adsorption oder Verteilung. eine lineare Adsorptions- bzw. Verteilungsisotherme 3. eine konstante Geschwindigkeit der mobilen Phase 4. eine konstante Temperatur im gesamten Bereich der stationären Phase 5. eine zu vernachlässigende Diffusion. Die Verbreiterung der Banden mit zunehmender Länge der Trennstrecke kann nun vor allem auf die nicht zu vernachlässigende Diffusion zurückgeführt werden. Bei der theoretischen Behandlung der Gas-Flüssigkeits-Chromatographie werden sowohl Diffusionseffekte als auch 11

12 Nichtgleichgewichtsbedingungen berücksichtigt. So beschreibt die VAN-DEEMTER-Gleichung ( H A B / u Cu ) den Zusammenhang zwischen der Höhe einer theoretischen Trennstufe und den dynamischen Erscheinungen. Hier beschreiben die Koeffizienten A, B und C die Beiträge der turbulenten und der longitudinalen Diffusion und des Massentransfers. Die VAN- DEEMTER-Gleichung ist von großem historischem Interesse, die Effizienz einer chromatographischen Säule wird jedoch heutzutage durch den Ausdruck H B / u C u C u (1) S M angenähert beschrieben. Dabei ist H die Bodenhöhe (in cm) und u die lineare Fließgeschwindigkeit der mobilen Phase (in cm/s). Die Größen B, C S und C M sind Koeffizienten, die durch die in Tabelle aufgeführten Gleichungen mit den Eigenschaften der Säule und des Analyten in Beziehung stehen. Tabelle : Kinetische Prozesse, die zur Bandenverbreiterung beitragen. Prozess Term in Gl. 1 Beziehung zu den Eigenschaften von Säule und Analyt Longitudinale Diffusion B/u B k D DM u u Massentransport zur und von der flüssigen stationären Phase C S u qk' d f CSu (1 k') u D S Massentransport in der mobilen Phase C M u C M u f ( d p, d D M c, u) u Erläuterung der Variablen Symbol Gebräuchliche Einheit Koeffizient der longitudinalen Diffusion B cm /s Lineare Strömungsgeschwindigkeit der mobilen u cm/s Phase Massentransferkoeffizienten in stationären bzw. C S, C M s mobiler Phase Diffusionskoeffizient in der mobilen Phase D M cm /s Diffusionskoeffizient in der stationären Phase D S cm /s Kapazitätsfaktor (Maß für die Wanderungs- k - geschwindigkeit des Analyten) Dicke des Flüssigkeitsfilmes auf der stationären d f cm Phase Säulendurchmesser d c cm Konstanten q, k D Funktion von f() 1

13 In der Säulenchromatographie ist die longitudinale Diffusion ein bandenverbreitender Prozess, bei dem die Analyten von der konzentrierten Mitte einer Bande in die verdünnteren Bereiche vor und hinter der Bandenmitte, also in Fließrichtung der mobilen Phase sowie entgegengesetzt zu ihr diffundieren. Dieser Term ist dem Diffusionskoeffizienten D M direkt proportional (Tabelle ). Die Konstante k D berücksichtigt die gehinderte Diffusion durch die Säulenpackung und wird als Obstruktionsfaktor bezeichnet. Bei gepackten Säulen weist diese Konstante einen Wert von etwa 0,6 auf, in ungepackten Säulen ist sie gleich 1. Die Massentransferkoeffizienten C S und C M müssen berücksichtigt werden, weil sich das Gleichgewicht zwischen mobiler und stationärer Phase so langsam einstellt, dass eine chromatographische Säule immer unter Nichtgleichgewichtsbedingungen arbeitet. Folglich werden die Teilchen des Analyten, die sich an der Front einer Bande befinden, mit der mobilen Phase vorwärts gespült, bevor sie Zeit haben, mit der stationären Phase ins Gleichgewicht zu kommen und somit retardiert werden. In ähnlicher Weise wird auch das Gleichgewicht am Ende einer Bande nicht erreicht, und die Teilchen bleiben hinter der sich schnell bewegenden mobilen Phase zurück. Die Bandenverbreiterung durch Massentransfereffekte kommt durch die vielen Strömungsschichten der mobilen Phase in der Säule und in der immobilisierten Flüssigkeitsschicht zustande, die die stationäre Phase bildet. Folglich benötigen die Teilchen des Analyten Zeit, um vom Inneren dieser Phasen zu ihrer Grenzschicht zu gelangen, wo der Massentransfer stattfindet. Diese Zeitdifferenz hat ein Fortdauern der Nichtgleichgewichtsbedingungen entlang der Säule zur Folge. Wenn die Geschwindigkeiten des Massentransfers in den beiden Phasen unendlich wären, würde diese Art von Bandenverbreiterung nicht auftreten. Zwar hängen das Ausmaß sowohl der longitudinalen Bandenverbreiterung als auch der Bandenverbreiterung durch Massentransfer von der Diffusionsgeschwindigkeit des Analyten ab, aber die Richtung der Diffusion ist in beiden Fällen unterschiedlich. Die longitudinale Bandenverbreiterung kommt dadurch zustande, dass sich die Teilchen in Richtungen bewegen, die parallel zum Fluss verlaufen, während die Bandenverbreiterung durch Massentransfer durch die Diffusion der Teilchen senkrecht zur Fließrichtung hervorgerufen wird. Folglich ist das Ausmaß der longitudinalen Bandenverbreiterung umgekehrt proportional der Fließgeschwindigkeit. Im Falle der Bandenverbreiterung durch Massentransfer hingegen bleibt zur Gleichgewichtseinstellung um so weniger Zeit, je schneller sich die mobile Phase bewegt. Folglich ist der Einfluss des Massentransfers auf die Bodenhöhe der Fließgeschwindigkeit u der mobilen Phase direkt proportional. Der Einfluss der einzelnen Terme auf die Bodenhöhe in Abhängigkeit von der Fließgeschwindigkeit u ist in Abb. 10 zusammengefasst. Es ist leicht zu erkennen, dass eine optimale Geschwindigkeit existiert, über der die Bodenhöhe ein Minimum durchläuft und die Effizienz der Säule am höchsten ist. 13

14 Abb. 10: Einfluß verschiedener Massentransferkoeffizienten auf die Bodenhöhe H einer Säule. Bei der Kapillar-Gaschromatographie, die in diesem Versuch zur Anwendung kommt, sind die Anteile der longitudinalen Diffusion an der Bandenverbreiterung wegen der sehr hohen Diffusionsgeschwindigkeiten in Gasen groß. Folglich sind die Minima in den H(u)-Kurven in der Gaschromatographie in der Regel sehr viel breiter. 1.7 Experimentelle Ermittlung von Säulenkenngrößen Als ein quantitatives Maß für die Effizienz einer chromatographischen Säule werden häufig zwei Ausdrücke verwendet: die Bodenhöhe H und die Zahl der theoretischen Böden N. Beide sind durch folgende Gleichung miteinander verknüpft: L N (13) H wobei L die Länge der Säule ist. Die Effizienz nimmt mit steigender Bodenzahl und abnehmender Bodenhöhe zu. Infolge der Unterschiede im Säulentyp und in der Wahl der stationären und mobilen Phase können die Unterschiede in der Effizienz beachtlich sein. So können die Bodenzahlen von wenigen hundert bis zu einigen tausend Böden variieren. H und N werden sowohl in der Literatur als auch von den Geräteherstellern häufig als Maß für die Leistungsfähigkeit einer Säule benutzt. Damit man mit diesen Zahlen zwei Säulen sinnvoll vergleichen kann, ist es erforderlich, daß sie mit demselben Analyten bestimmt wurden. Experimentell lässt sich N mit Hilfe der Peak Halbwertsbreite b 1/ und der Gesamtretentionszeit t R einfach bestimmen. Die Zahl der theoretischen Böden N ergibt sich dann aus: 14

15 N t 8 ln b R 1/ t 5,54 b R 1/ (14) In Abb. 11 ist b 1/ in Abhängigkeit von t R (in dem Fall t 1 ) für verschiedene Werte von aufgetragen. Die Punkte lassen sich für < 1 tatsächlich gut durch eine Gerade mit der Steigung b 1/ / t 1 = 0,4 verbinden. Die Bodenhöhe H ergibt sich aus: L L b1/ L w H in m 8 ln 16 (15) N t R t R (mit w = Basisbreite, d. h. die Bandenbreite zwischen den Wendetangenten einer Bande; b 1/ = Bandenbreite auf halber Höhe; t R = Gesamtretentionszeit; L = Länge der Trennsäule in m). w, b 1/ und die Gesamtretentionszeit t R müssen in der gleichen Einheit eingesetzt werden (min oder m). Abb.11: Modellrechnung für eine Gaschromatographiesäule mit N = 100 Kontaktzellen. Die Halbwertsbreite b 1/ des Signals ist in Abhängigkeit von der Gesamtretentionszeit t 1 für verschiedene Werte von dargestellt. Die Zeit t ist willkürlich gleich 1s gesetzt. N wird in Analogie zur Rektifikation als theoretische Bodenzahl der Trennsäule bezeichnet und stellt für die Trennsäule eine Konstante dar, falls die Säulentemperatur und die Geschwindigkeit des Trägergasstromes konstant gehalten werden. Im Gegensatz zur Rektifikation, bei der die Auftrennung eines Substanzgemisches allein durch die Anzahl der theoretischen Böden gegeben ist, besteht bei der Gaschromatographie die Möglichkeit, durch Variieren der Säulentemperatur den Verteilungskoeffizienten und damit den Trennvorgang zu 15

16 beeinflussen. Gemische, die sich durch Destillation grundsätzlich nicht trennen lassen (z.b. azeotrope Gemische) können gaschromatographisch durchaus trennbar sein. Wegen der endlichen Geschwindigkeit der Gleichgewichtseinstellung werden einerseits Moleküle, die aufgrund der Lage ihres thermodynamischen Gleichgewichts an einer bestimmten Stelle in die stationäre Phase übergehen sollten, von der mobilen Phase weitergeführt, andererseits bleiben jene Moleküle zurück, deren Übertritt aus der stationären Phase in die mobile verzögert ist. So tritt eine Substanzzone am Ende der Trennstrecke in Form einer verbreiterten Bande auf. Liegen nur wenige Trennstufen vor, erhält man diese Bande in Form einer POISSON- Verteilung. Mit zunehmender Trennstufenzahl nimmt die Kurve die Form der Normal- Verteilung an (GAUßsche Glockenkurve, Abb. 1). Abb. 1: GAUßsche Glockenkurve. Die allgemeine Funktion dieser Kurve lautet: 1 b / h( b) e (16) mit der Standardabweichung und der Bandenhöhe h(b) an der Stelle b. Beeinflusst wird die Verbreiterung der Substanzzone durch die Strömungsgeschwindigkeit und Viskosität der mobilen Phase, durch Form, Größe und Packungsdichte der festen stationären Phase oder durch die mittlere Filmdicke und Viskosität der flüssigen stationären Phase auf dem Trägermaterial. Die Auflösung R einer Säule stellt ein quantitatives Maß für die Fähigkeit dar, zwei Analyten voneinander zu trennen. Sie ist folgendermaßen definiert: ( t1 t ) R (17) w w 1 16

17 Bei einer Auflösung über 1,5 sind die beiden Komponenten vollständig voneinander getrennt, wohingegen sie bei einer Auflösung von 0,75 nur andeutungsweise getrennt sind. Bei gegebener stationärer Phase kann die Auflösung durch Verlängerung der Säule und die damit verbundene Erhöhung der Bodenzahl verbessert werden. Daraus ergibt sich jedoch gleichzeitig eine Verlängerung der Zeit, die für die Trennung benötigt wird. 1.8 Aufbau eines Gaschromatographen Ein Gas, eine verdampfbare Flüssigkeit oder Feststoff wird in eine Trennsäule gegeben. Dort werden die Substanzen mit Hilfe eines Trägergases durch eine thermostatisierte Säule transportiert, wo der chromatographische Vorgang stattfindet. Die getrennten Substanzen passieren dann nacheinander am Säulenende einen Detektor. Die Substanzaufgabe erfolgt je nach Aggregatzustand mit unterschiedlichen Systemen. Gasförmige Analysenproben lassen sich über Gasschleifen (mit geeichten Volumina) durch Drehen eines Ventils mit Hilfe des Trägergasstromes direkt in die Säule spülen. Flüssige Proben werden mit Hilfe einer Injektionsspritze durch ein Septum (meist aus Silicongummi) am Kopf der Säule in den Trägergasstrom gebracht (Septuminjektion). Für Flüssigkeiten befindet sich am Säulenanfang ein getrennt vom Säulenofen beheizbarer Einspritzblock, um bei höheren Temperaturen als der Säulentemperatur eine unverzögerte Überführung in die Gasphase zu erreichen. Die Volumina für Gase liegen zwischen 0,5 und 5 ml, die für Flüssigkeiten etwa bei 1 bis 10 μl (bei Kapillarsäulen nur etwa 0,1 bis 1μL). Außerdem existieren Festprobengeber, bei denen eine schwerflüchtige Probe, die durch externes Vorheizen bei niedriger Temperatur vom Lösungsmittel befreit werden kann, in einem Kapillarröhrchen in den Probengeber eingeführt und dort bei hoher Temperatur augenblicklich verdampft wird. Die Probenaufgabetechnik muss eine schnelle Überführung der zu trennenden Substanzen in den Trägergasstrom gewährleisten, um Bandenverbreiterungen infolge verzögertem, mit Diffusion verbundenem Eintritt in die Trennsäule zu vermeiden. Abb. 13 zeigt schematisch den Aufbau eines Gas- Chromatographen. Abb. 13: Schematischer Aufbau eines Gaschromatographen. 17

18 Die stationäre Phase befindet sich in einer Säule, die aus einem Kupfer-, Stahl- oder Glasbzw. Quarzrohr bestehen kann. Glas- und Quarzrohre sind vorzuziehen, um katalytisch beschleunigte Zersetzungsreaktionen organischer Stoffe bei höheren Temperaturen auszuschließen. Die inneren Durchmesser liegen bei gepackten Säulen zwischen 3 und 8 mm mit Längen von etwa 1 bis 6 m (Kapillarsäulen haben Durchmesser von 0,1 bis 1 mm mit Längen von 30 bis 300 m). Längere gepackte Säulen sind ungeeignet, da wegen des zunehmenden Druckabfalls die optimale Strömungsgeschwindigkeit nicht in allen Teilen der Säule erreicht werden kann. Die Durchflussgeschwindigkeiten (Gasmengenströme) liegen meist zwischen 30 und 80 ml/min. Die Trägergaszufuhr sowie die Versorgung der verschiedenen Detektoren mit Brenn- bzw. Messgasen erfolgt über eine Regeleinheit, die für einen konstanten Druck vor der Säule und für konstante Strömungsgeschwindigkeiten zu sorgen hat. Die Gase werden meist aus Stahlflaschen über Reduzier- und Feinregulierventile sowie Gasreiniger (Adsorptionsmittel zur Trocknung und Entfernung organischer Spuren) in die Säule bzw. den Detektor geführt. Manometer vor der Säule bzw. Strömungsmesser hinter der Säule bzw. dem Detektor ermöglichen die Messung von Druckabfall und Durchflussgeschwindigkeiten. Von der mobilen Phase wird gefordert, dass sie weder mit den zu trennenden Substanzen noch mit dem Trägermaterial reagiert. Geeignet sind die Gase Stickstoff, Helium, Argon und mit Einschränkungen Wasserstoff und Kohlendioxid. Je nach eingesetztem Detektor muss berücksichtigt werden, dass auch Gase eine elutrope Wirkung besitzen, die mit der Polarisierbarkeit zunimmt (zunehmende Polarisierbarkeit von Helium über Wasserstoff, Argon und Stickstoff bis zum Kohlendioxid). Der Säulenofen soll eine Temperaturkonstanz von besser als 0,1 C gewährleisten. Die gaschromatographische Trennung bzw. die Retentionszeiten hängen von der Säulentemperatur ab. Die Veränderung der Temperatur in der GC kann in ihrer Wirkung mit der Veränderung der Polarität in der Flüssigkeits-Chromatographie verglichen werden. Ähnlich wie für die Strömungsgeschwindigkeit existiert auch für die Temperatur ein Optimum im Hinblick auf die Trennstufenhöhe und Auflösung. Die optimale Trenntemperatur liegt etwa 100 bis 00 C unter der mittleren Siedetemperatur bzw. dem höchsten Siedepunkt eines Gemisches. Säulenöfen werden zwischen 0 und 400 C betrieben. Elektronische Einheiten regulieren die Temperatur im Probeneingabeteil und im Detektorraum. Im Falle der GC/MS steht als Detektor ein Massenspektrometer zur Verfügung, mit dessen Hilfe eine Art Gaschromatogramm (TIC = total ion count = Totalionenstrom) erstellt wird und die getrennten Analyten massenspektrometrisch untersucht werden können. 18

19 1.8.1 Gepackte Trennsäulen Die Leistungsfähigkeit gepackter Säulen kann durch folgende Größen charakterisiert werden: 1. Trennleistung (Trennstufenzahl N) für zwei aufeinander folgende n-alkane. Selektivität r für eine bestimmte Trennaufgabe 3. Belastbarkeit als maximal dosierbare Substanzmenge. Das Verhältnis von Bandenhöhe zu Bandenbreite in halber Höhe nimmt in Abhängigkeit von der Substanzmenge nach Überschreiten der Kapazität der Trennsäule ab (Abb. 14). Als Belastbarkeit wird die Substanzmenge angegeben, bei der die Trennleistung auf 90 % des Maximalwertes gesunken ist. Abb. 14: Vergleich einer normalen Elutionskurve mit der bei überlasteter Säule. Für die Adsorptions-GC lassen sich folgende Materialien als stationäre Phasen einsetzen: Aktivkohle, Poropak-Materialien (poröses Polystyrol mit unterschiedlicher Vernetzung), Molekularsiebe, Ionenaustauscher, Kieselgel. Sie eignen sich zur Trennung von z.b. anorganischen Gasen, Alkoholen, Kohlenwasserstoffen, Glykolen, Wasser und Alkylaminen. Die wichtigste Rolle spielt jedoch die Verteilungs-GC. Die flüssige stationäre Phase befindet sich dabei gleichmäßig verteilt auf einem festen Trägermaterial. Die gebräuchlichsten Trägermaterialien sind: Kieselgur bzw. Kieselgele, Fluorocarbone (z.b. Teflon) und Glaskugeln. An die Trennflüssigkeiten für die GC werden folgende allgemeine Forderungen gestellt (Auswahl von geeigneten Trennflüssigkeiten für die Trennung von Stoffgruppen siehe Tabelle 3): 1. thermische Beständigkeit. geringer Dampfdruck bei der erforderlichen Temperatur 3. geringe Viskosität bei der Temperatur 4. keine Reaktion mit Trägermaterial und zu trennenden Substanzen 5. hohe Selektivität r für das zu lösende Trennproblem. 19

20 Tabelle 3: Auswahl der stationären Phase für die Trennung von Stoffgruppen unpolare Phase Siliconöle, Squalan, Apiezonfette (Erdöl-Fraktionen) mittelpolare Phase polare Phase Ester, z.b. Ethylenglykolphtalat, -succinat, Polyester oder Polyether sowie Polyethylenoxide Stoffe mit Cyan-Gruppen Die folgenden vier Kräfte sind für die Selektivität der Trennsäule von Bedeutung, wobei mit zunehmender Größe dieser Kräfte die Retentionszeit eines Stoffes zunimmt. 1. LONDON-Kräfte (zwischenmolekulare Kräfte zwischen zwei nicht polaren Stoffen). KEESOM-Kräfte (Orientierungskräfte aus dem Zusammenwirken permanenter Dipole) 3. DEBYE-Kräfte (auf induzierten Dipolen beruhend) 4. chemische Bindungskräfte (charge-transfer-komplexbindungen). Die Kräfte 1 bis 3 fasst man i.d.r. als VAN-DER-WAALS-Wechselwirkungen zusammen Kapillar-Säulen GC Kapillar-Säulen haben einen Durchmesser von 0,1 bis 1 mm und eine Länge von 30 bis 300 m und zeichnen sich durch besonders hohe Trennleistungen (hohe Trennstufenzahlen) aus. Gegenüber gepackten Säulen enthalten sie kein Trägermaterial (keine Packung) für die Trennflüssigkeit. Es gibt zwei Arten von Kapillar-Säulen: 1. Dünnfilm-Kapillaren, bei denen sich die Trennflüssigkeit direkt auf der inneren Wandung der Trennsäule in Form eines etwa 1 bis 3 µm dünnen Films befindet. (WCOT: wall-coated open tubular). Dünnschicht-Kapillaren, die auf der inneren Wandung eine dünne Schicht feinen Trägermaterials besitzen, die mit der flüssigen Phase belegt ist. (SCOT: support-coated open tubular) 0

21 Abb. 15: Querschnitte von Dünnfilm- und Dünnschicht-Kapillaren in der GC. Beide Arten von Kapillarsäulen verfügen über einen offenen Längs-Kanal in den Kapillaren, da keine Packung vorhanden ist. Dementsprechend ist das Gasvolumen der mobilen Phase groß im Verhältnis zu dem der flüssigen Phase. Dünnschicht-Kapillaren können mehr flüssige Phasen aufnehmen als Dünnfilm-Kapillaren, sie sind daher höher belastbar. Kapillarsäulen werden für die Trennung sehr komplexer Stoffgemische eingesetzt. Wegen der geringen Belegung mit flüssiger Phase können in Kapillarsäulen nur Volumina von 0,1 bis zu maximal 1 μl Flüssigkeit getrennt werden, was besondere Probenaufgabesysteme verlangt. Allgemein wird für die GC eine Probenaufgabe gefordert, welche die gesamte Substanz sofort und zersetzungsfrei auf die Säule und damit in Kontakt mit der Trennflüssigkeit bringt. Daher ist in Kapillarsäulen das Volumen, das ohne Peakverbreiterung injiziert werden kann, infolge geringer Trägergasströme begrenzt. Man dosiert ein größeres Probenvolumen (bis ca. 1 μl) bei hohen Gasströmen und teilt nach der Verdampfung das Gasgemisch in zwei ungleiche Ströme (Splitten). Abb. 15 zeigt Querschnitte der beiden verschiedenen Kapillarsäulen. Alle Vorteile der Kapillarsäulen gegenüber gepackten Säulen, vor allem geringere Trennstufenhöhen, höhere Trennstufenzahlen und kaum störende Adsorptionseffekte, ergeben sich aus der fehlenden Packung, dem somit geringeren Strömungswiderstand für die mobile Phase und der dadurch möglichen größeren Säulenlänge. Tabelle 4 zeigt den Vergleich einiger Daten von gepackten und Kapillar-Säulen. 1

22 Tabelle 4: Vergleich von gepackten und Kapillar-Säulen gepackte Säule Dimension Kapillar-Säule Dünnfilm- Dünnschicht Innerer Durchmesser 1-10 mm Länge 1-10 m Länge bei gleichem Druckabfall 1.8 m 10 Lineare Geschwindigkeit (z.b.) 6.8 cm/s Vergleich von k -Werten Auflösung* Analysenzeit* 30. min Trennstufenzahl Trennstufenhöhe* 0.71 mm Trägergasgeschwindigkeit ml/min Belastbarkeit bis 10 μl * für das Stoffpaar Methyloleat/Methylstearat 1.9 Detektion in der Gaschromatographie Bei der normalen Gaschromatographie gibt es eine Reihe verschiedener Detektoren. In diesem Versuch wird jedoch ein Massenspektrometer als Detektor verwendet. Dennoch sei als Beispiel der gebräuchlichste Detektortyp, der Flammenionisationsdetektor (FID), kurz erläutert Flammenionisationsdetektor In einem FID (Abb. 16) werden organische Substanzen in einer Wasserstoff-Flamme verbrannt. Dabei wird die Zunahme der Ionisation im Raum Gasflamme-Kollektor über einen Verstärker gemessen. Folgende Verbindungen werden von einem FID nicht angezeigt: Wasser, Kohlendioxid, Schwefelwasserstoff, Schwefeldioxid, Edelgase, Sauerstoff, Stickstoff, Tetrachlormethan, Ammoniak, Kohlenmonoxid. Das Signal des FID beruht auf der Ionenbildung bei der Verbrennung von Substanzen, die C C- und C H-Bindungen besitzen. In der normalerweise kaum ionisierten Wasserstoff-Flamme entstehen über Radikalreaktionen Ladungsträger (Ionen), die durch ein elektrisches Feld an einer Sammelelektrode aufgefangen werden. Dadurch erhöht sich der wegen der geringen Ionisation der reinen Wasserstoff- Flamme sehr kleine Null-Strom des FID. Das Signal ist proportional der je Zeiteinheit durchgesetzten Substanzmenge. Es wird verstärkt und als Chromatogramm aufgezeichnet. Abb. 16: Flammenionisationsdetektor (FID)

23 1.9. Massenspektrometer Befinden sich in der Gasphase positiv geladene Teilchen, so werden sie durch ein homogenes Magnetfeld proportional zu ihrer Masse aufgetrennt. Dies ist das Grundprinzip der Massenspektrometrie. Ein klassisches Massenspektrometer läßt sich in vier Funktionsabschnitte unterteilen: Probenzuführung, Ionen-Erzeugung, Massentrennung und Ionen-Nachweis (Abb. 17). Die Ionenerzeugung und die Vorgänge im sog. Analysatorteil also Massentrennung und Ionennachweis - finden im Hochvakuum statt, um unfreiwillige Zusammenstöße zwischen Ionen und Molekülen oder Atomen zu vermeiden. Der Druck im Ionen-Erzeugungsteil beträgt 10-3 bis 10-4 Pa und im Analysatorteil 10-6 bis 10-7 Pa. Abb. 17: Schematische Darstellung eines Massenspektrometers. Die Probe wird aus der GC Trennsäule in das Massenspektrometer zugeführt. Dabei sind nur sehr geringe Substanzmengen nötig (10-9 bis g). Das Ende der Säule wird in die Ionenquelle des Massenspektrometers geführt, so dass die aus der Säule ausströmenden Komponenten der Reihe nach direkt ionisiert und gemessen werden können. Die Ionisation der einströmenden Komponenten erfolgt durch Elektronen-Stoß-Ionisation (EI). Vom Einlasssystem strömt der Molekülstrahl in die Ionenquelle und trifft dort senkrecht auf einen Elektronenstrahl (zwischen Glühkathode und Anode). Die Potentialdifferenz zwischen Kathode und Anode ist variabel zwischen 0 und 300 V. Durch Wechselwirkung der Elektronen mit den neutralen Molekülen entstehen positiv geladene Molekül-Ionen: M + e - M + + e - oder seltener M + e - M + + 3e - Die nichtionisierten Teilchen werden durch die Hochvakuumpumpen aus dem Ionenquellen- Raum entfernt. Die in der Ionenquelle entstandenen Ionen hingegen werden nun beschleunigt und fokussiert. Die Beschleunigung der Teilchen geschieht durch Anlegen einer Spannung an 3

24 die Quelle ( bis 10 kv), wobei die Endgeschwindigkeit am Austrittsspalt erreicht wird. Die Fokussierung, d.h. die Bündelung der Ionen, wird durch elektrostatische Zusatzfelder erreicht. In dem im Versuch benutzten Massenspektrometer wird die Trennung der Ionen durch ein sog. Quadrupol-System erreicht (Abb. 18). Das Quadrupol-Massenspektrometer enthält vier konzentrisch parallel zueinander angeordnete runde Stabelektroden. An jedes Paar gegenüberliegender Elektroden legt man eine Gleichspannung U, die von einer hoch frequenten Wechselspannung V cos t überlagert wird. Der Ionenstrahl im Inneren des Stabsystems wird durch das Hochfrequenzfeld zu einer Trajektorien gezwungen, die Schwingungen ähneln und die massenabhängig sind. Nur für Ionen einer bestimmten Masse bleibt die Schwingungsamplitude so klein, dass sie das System passieren und in den Auffänger gelangen (Abb. 19). Die anderen Ionen treffen auf die Stäbe und werden eliminiert. Durch Ändern der Werte für Gleich- und Wechselspannung kann das Massenspektrum durchfahren werden. In seinen Hauptleistungsdaten wie Massenbereich, Auflösung und Genauigkeit der Massenbestimmung ist das Quadrupolgerät eher mäßig. Infolge seines günstigen Preis/Leistungs-Verhältnisses ist es allerdings das am häufigsten verwendete Massenspektrometer. Abb. 18: Schematische Darstellung eines Quadrupols 4

25 Abb. 19: Links: zx-ebene, rechts: zy-ebene des Quadrupolfilters Chromatogramm Durch kontinuierliche Registrierung einer elektrischen Größe, die zu jedem Zeitpunkt entweder der Konzentration der getrennten Spezies im Trägergas (in g/ml) oder dem Massenstrom dieser Spezies (in g/s) proportional ist, entsteht das Chromatogramm (Abb. 0). Solange nur reines Trägergas aus der Säule in den Detektor gelangt, wird die so genannte Basislinie aufgezeichnet. Sobald jedoch eine getrennte Komponente mit dem Trägergas die Säule verlässt und in den Detektor gelangt, steigt das im Detektor erzeugte Signal entsprechend der Konzentration oder des Massenstroms bis zu einem Maximum an und fällt danach wieder auf die Basislinie ab. Auf diese Weise wird für jede eluierte und getrennte Komponente der Mischung ein Peak erhalten. Die Summe aller Peaks bildet das Chromatogramm. Die Peakform erlaubt Rückschlüsse auf den Ablauf der Verteilungs- und Transportvorgänge in der Säule. Die Flächen, aber auch die Höhen der Peaks liefern Informationen über die Mengen der eluierten Komponenten. 5

26 Abb. 0: Isothermes Gaschromatogramm, registriert mit einem Differentialdetektor (E Einspritzpunkt, G Gaspeak). Das Gaschromatogramm beginnt am Einspritzpunkt E zu dem Zeitpunkt, in dem die flüssige Probe mit einer Spritze in das Trägergas eingeführt und dort verdampft wird. Es endet, wenn die letzte Komponente eluiert und im Detektor angelangt ist. Der erste Peak (zur Bestimmung der Durchflusszeit t 0 ) ist bei der Flüssigkeits-GC ein Gaspeak G (z.b. von Methan). Bleibt die Säulentemperatur während der Trennung konstant, so spricht man von isothermer Gaschromatographie. Bei linearer oder nicht-linearer Änderung der Temperatur in der Säule während des Ablaufs der Trennung spricht man von temperaturprogrammierter Gaschromatographie (Temperaturgradient). Durch kontinuierliche Veränderung des Trägergasdruckes am Säulenanfang können auch strömungsprogrammierte Trennungen durchgeführt werden. Beide Verfahren der Programmierung von Temperatur und Strömung dienen zur Beschleunigung von Trennungen. Literatur - Peter W. Atkins, Physikalische Chemie,. Auflage, VCH Verlag, s (Kap. 8.5 Adsorption an Oberflächen) - D. A. Skoog, J. J. Leary, Instrumentelle Analytik, 4. Auflage, Springer Verlag (Kap. 18, 5) 6

27 . Aufgabenstellung: Analyse einer flüssigen Mischung Ein Gemisch aus fünf Substanzen o-bromanisol, 4-Brom-Iodbenzol, Benzophenon, 1,1- Diphenylethylen und Tetradecan (interner Standard!!!) wird gaschromatographisch getrennt. Die Trennung wird bei drei unterschiedlichen Temperaturen (10 C, 160 C, 00 C) durchgeführt. Durch Messung von vier Kalibrierlösungen bei der Temperatur, die sich für die Trennung als optimal erweist, soll die Zusammensetzung des Gemisches quantitativ bestimmt werden. Aufgaben: 1. Beschreiben Sie den Aufbau und die Funktionsweise eines Gaschromatographen mit Massendetektor.. Erläutern Sie die chromatographischen Trennprinzipien. 3. Berechnen Sie die Molekülmassen der verwendeten Verbindungen und identifizieren Sie die Substanzen im Gaschromatogramm anhand ihrer Molekülionenpeaks. 4. Tragen Sie die Halbwertsbreite b 1/ gegen die Gesamtretentionszeit t R auf, und berechnen Sie die Anzahl der theoretischen Böden N für die 10 C-Isotherme. 5. Berechnen Sie die Höhe eines theoretischen Bodens. 6. Berechnen Sie aus der Trägergasgeschwindigkeit u und der Säulenlänge L die Durchflusszeit der Chromatographiesäule. 7. Berechnen Sie für die 10 C- und die 160 C-Isotherme die Kapazitätsfaktoren k und die Verteilungskoeffizienten α aller Substanzen. 8. Bestimmen Sie den Selektivitätsfaktor (Trennfaktor) aus den Kapazitätsfaktoren k und die Auflösung R für die Substanzen o-bromanisol und 4-Brom-Iodbenzol sowie für 1,1- Diphenylethylen und Benzophenon bei 10 C und 160 C aus der Gesamtretentionszeit t R und der Basisbreite w der Peaks. Diskutieren Sie die Ergebnisse. 9. Ermitteln Sie mit Hilfe der Kalibrierlösungen die quantitative Zusammensetzung des Gemisches und vergleichen Sie die Ergebnisse mit den Werten der Flächenintegration aus dem Chromatogramm. 10. Ordnen Sie den Hauptsignalen in den Massenspektren von 4-Brom-Iodbenzol, Tetradecan und Benzophenon die entsprechenden Fragmente zu. 7

28 3. Anhang L 1. Totzeit: u t0 t. Kapazitätsverhältnis: 3. Verteilungskoeffizient: 0 L u t k' 4. Anzahl theoretischer Böden:, u: He-Trägergasgeschwindigkeit, L: Säulenlänge R t 0 t 0 r k' d f, t R : Gesamtretentionszeit, r: innerer Säulenradius, d f : Filmdicke t R N 16 w 1000L w 5. Bodenhöhe: H 16 in mm t R ( t1 t ) 6. Auflösung (isotherm): R w w k1' 7. Trennfaktor: k ' 1 Säulenangaben - Länge: 30 m - Filmdicke: 0,5 µm - Innendurchmesser: 0,5 mm - Außendurchmesser: 0,36 mm Ergänzungen - Halbwertsbreite GAUß-Peak: b 1/ =,354 - Basisbreite w GAUß-Peak : w = 4 - Aus der Halbwertsbreite kann demzufolge leicht die Basisbreite errechnet werden 8

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Gaschromatographie 1. Gaschromatographie

Gaschromatographie 1. Gaschromatographie Gaschromatographie 1 Gaschromatographie Die Aufgabe chromatographischer Verfahren besteht darin, komplexe stoffliche Systeme in Verbindung mit empfindlichen Messmethoden schnell und in ihrer Vielfalt erfassen

Mehr

Prüfungsfragenkatalog für Methoden der Chromatographie (Prof. Werner Seebacher)

Prüfungsfragenkatalog für Methoden der Chromatographie (Prof. Werner Seebacher) Prüfungsfragenkatalog für Methoden der Chromatographie (Prof. Werner Seebacher) Stand: Mai 2015 Termin: 28.05.2015 1. Zeigen Sie anhand einer einfachen Strukturformel einer Aminosäure wie sie im basischen,

Mehr

Chromatographie Version 04/2008

Chromatographie Version 04/2008 Chromatographie Version 04/2008 1. Erläutern Sie das Prinzip der Chromatographie. 2. In der Dünnschichtchromatographie kann man mit der sogenannten eindimensionalen Mehrfachentwicklung bzw. der zweidimensionalen

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Ein modernes Analyselabor kann heute nicht mehr ohne chromatographische Analysetechniken

Ein modernes Analyselabor kann heute nicht mehr ohne chromatographische Analysetechniken g g g Chromatographie für alle In diesem Kapitel Was versteht man unter Chromatographie? In welche Gebiete teilt sich die Chromatographie auf? Was sind mobile und stationäre Phasen? 1 Ein modernes Analyselabor

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

High Performance Liquid Chromatography

High Performance Liquid Chromatography Was ist? Was ist das Besondere? Aufbau Auswertung Möglichkeiten & Varianten der Zusammenfassung High Performance Liquid Chromatography () Systembiologie - Methodenseminar WS 08/09 FU Berlin 10. November

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

Analyse komplexer Proben mit multidimensionaler (Heart-Cut) GC-GCMS und LC-GCMS

Analyse komplexer Proben mit multidimensionaler (Heart-Cut) GC-GCMS und LC-GCMS Analyse komplexer Proben mit multidimensionaler (Heart-Cut) GC-GCMS und LC-GCMS Dr. Margit Geißler, Susanne Böhme Shimadzu Europa GmbH, Duisburg info@shimadzu.de www.shimadzu.de Das Problem von Co-Elutionen

Mehr

ANALYTISCHE CHEMIE I. Trennmethoden. 1. Grundlagen Chromatographie WS 2004/2005

ANALYTISCHE CHEMIE I. Trennmethoden. 1. Grundlagen Chromatographie WS 2004/2005 ANALYTISCHE CHEMIE I Trennmethoden 1. Grundlagen Chromatographie WS 2004/2005 Michael Przybylski Chromatographie Stoffgemisch Mobile Phase Stationäre Phase Unterschiedliche Adsorption Unterschiedliche

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

Flüssigkeiten. einige wichtige Eigenschaften

Flüssigkeiten. einige wichtige Eigenschaften Flüssigkeiten einige wichtige Eigenschaften Die Oberflächenspannung einer Flüssigkeit ist die zur Vergröß ößerung der Oberfläche um den Einheitsbetrag erforderliche Energie (H 2 O bei 20 C: 7.29 10-2 J/m

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören:

EM-Wellen. david vajda 3. Februar 2016. Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: david vajda 3. Februar 2016 Zu den Physikalischen Größen innerhalb der Elektrodynamik gehören: Elektrische Stromstärke I Elektrische Spannung U Elektrischer Widerstand R Ladung Q Probeladung q Zeit t Arbeit

Mehr

Informationsblatt Induktionsbeweis

Informationsblatt Induktionsbeweis Sommer 015 Informationsblatt Induktionsbeweis 31. März 015 Motivation Die vollständige Induktion ist ein wichtiges Beweisverfahren in der Informatik. Sie wird häufig dazu gebraucht, um mathematische Formeln

Mehr

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung)

Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) HTW Dresden V-SL1 Lehrgebiet Strömungslehre 1. Vorbetrachtung Druckgleichung nach Daniel Bernoulli (Bernoulligleichung) In ruhenden und bewegten Flüssigkeiten gilt, wie in der Physik allgemein, das Gesetz

Mehr

Skript zum Praktikum Instrumentelle Analytik der Universität Heidelberg im 4. Fachsemester Pharmazie

Skript zum Praktikum Instrumentelle Analytik der Universität Heidelberg im 4. Fachsemester Pharmazie HPLC 1 Skript zum Praktikum Instrumentelle Analytik der Universität Heidelberg im 4. Fachsemester Pharmazie 1. Aufgabe In diesem Versuch werden die Retentionszeiten der Substanzen Acetylsalicylsäure (ASS)

Mehr

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010

Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 1 Musterprüfung Chemie Klassen: MPL 09 Datum: 14. 16. April 2010 Themen: Metallische Bindungen (Skript S. 51 53, inkl. Arbeitsblatt) Reaktionsverlauf (Skript S. 54 59, inkl. Arbeitsblatt, Merke, Fig. 7.2.1

Mehr

Elektrischer Widerstand

Elektrischer Widerstand In diesem Versuch sollen Sie die Grundbegriffe und Grundlagen der Elektrizitätslehre wiederholen und anwenden. Sie werden unterschiedlichen Verfahren zur Messung ohmscher Widerstände kennen lernen, ihren

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge

Nerreter, Grundlagen der Elektrotechnik Carl Hanser Verlag München. 8 Schaltvorgänge Carl Hanser Verlag München 8 Schaltvorgänge Aufgabe 8.6 Wie lauten für R = 1 kω bei der Aufgabe 8.1 die Differenzialgleichungen und ihre Lösungen für die Spannungen u 1 und u 2 sowie für den Strom i? Aufgabe

Mehr

2.8 Grenzflächeneffekte

2.8 Grenzflächeneffekte - 86-2.8 Grenzflächeneffekte 2.8.1 Oberflächenspannung An Grenzflächen treten besondere Effekte auf, welche im Volumen nicht beobachtbar sind. Die molekulare Grundlage dafür sind Kohäsionskräfte, d.h.

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt.

Die Näherung durch die Sekante durch die Punkte A und C ist schlechter, da der Punkt C weiter von A entfernt liegt. LÖSUNGEN TEIL 1 Arbeitszeit: 50 min Gegeben ist die Funktion f mit der Gleichung. Begründen Sie, warum die Steigung der Sekante durch die Punkte A(0 2) und C(3 11) eine weniger gute Näherung für die Tangentensteigung

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen

Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen Grundlagen der höheren Mathematik Einige Hinweise zum Lösen von Gleichungen 1. Quadratische Gleichungen Quadratische Gleichungen lassen sich immer auf die sog. normierte Form x 2 + px + = 0 bringen, in

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft.

Bruttoreaktionen sagen nichts darüber aus, wie der Umsatz tatsächlich abläuft. 7. Chemische Stoffumwandlungen 7.1 Massenbilanz bei chemischen Stoffumwandlungen Bruttoreaktionen, z. B. die Knallgasreaktion H 2 + ½ O 2 = H 2 O, beschreiben die Mengenverhätnisse beim Umsatz H 2 zu O

Mehr

Festigkeit von FDM-3D-Druckteilen

Festigkeit von FDM-3D-Druckteilen Festigkeit von FDM-3D-Druckteilen Häufig werden bei 3D-Druck-Filamenten die Kunststoff-Festigkeit und physikalischen Eigenschaften diskutiert ohne die Einflüsse der Geometrie und der Verschweißung der

Mehr

Kapitel 13: Laugen und Neutralisation

Kapitel 13: Laugen und Neutralisation Kapitel 13: Laugen und Neutralisation Alkalimetalle sind Natrium, Kalium, Lithium (und Rubidium, Caesium und Francium). - Welche besonderen Eigenschaften haben die Elemente Natrium, Kalium und Lithium?

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Organische Chemie I Chemie am 16.11.2012. Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2

Organische Chemie I Chemie am 16.11.2012. Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2 Organische Chemie I Inhaltsverzeichnis Lewisformeln von Kohlenstoffverbindungen korrekt zeichnen!... 2 Verstehen was Organische Chemie heisst und die Entstehung von Kohlenstoffverbindungen kennen!... 2

Mehr

Strukturerklärung mit Flüssigchromatographie Massenspektrometrie (LC-MS)

Strukturerklärung mit Flüssigchromatographie Massenspektrometrie (LC-MS) Strukturerklärung mit Flüssigchromatographie Massenspektrometrie (LC-MS) Untersuchung von Imatinib Mesylate und Metaboliten Julia dermatt, Kantonsschule bwalden, Sarnen Jerome Dayer, ovartis 1. Zusammenfassung

Mehr

Chemische Reaktionen

Chemische Reaktionen Ein paar Worte zuvor 7 Stoffe und ihre Eigenschaften 1 Reine Stoffe und Gemische 10 2 Aggregatzustände, Dichte, Löslichkeit, Brennbarkeit und Leitfähigkeit 12 3 Trennverfahren 19 Auf einen Blick: Stoffe

Mehr

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X

Praktikum Physik. Protokoll zum Versuch 1: Viskosität. Durchgeführt am 26.01.2012. Gruppe X Praktikum Physik Protokoll zum Versuch 1: Viskosität Durchgeführt am 26.01.2012 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

Anleitung über den Umgang mit Schildern

Anleitung über den Umgang mit Schildern Anleitung über den Umgang mit Schildern -Vorwort -Wo bekommt man Schilder? -Wo und wie speichert man die Schilder? -Wie füge ich die Schilder in meinen Track ein? -Welche Bauteile kann man noch für Schilder

Mehr

Strom - Spannungscharakteristiken

Strom - Spannungscharakteristiken Strom - Spannungscharakteristiken 1. Einführung Legt man an ein elektrisches Bauelement eine Spannung an, so fließt ein Strom. Den Zusammenhang zwischen beiden Größen beschreibt die Strom Spannungscharakteristik.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Grundlagen der Theoretischen Informatik, SoSe 2008

Grundlagen der Theoretischen Informatik, SoSe 2008 1. Aufgabenblatt zur Vorlesung Grundlagen der Theoretischen Informatik, SoSe 2008 (Dr. Frank Hoffmann) Lösung von Manuel Jain und Benjamin Bortfeldt Aufgabe 2 Zustandsdiagramme (6 Punkte, wird korrigiert)

Mehr

Finanzierung: Übungsserie III Innenfinanzierung

Finanzierung: Übungsserie III Innenfinanzierung Thema Dokumentart Finanzierung: Übungsserie III Innenfinanzierung Lösungen Theorie im Buch "Integrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Finanzmanagement 2.3 Innenfinanzierung Finanzierung: Übungsserie

Mehr

Arbeitspunkt einer Diode

Arbeitspunkt einer Diode Arbeitspunkt einer Diode Liegt eine Diode mit einem Widerstand R in Reihe an einer Spannung U 0, so müssen sich die beiden diese Spannung teilen. Vom Widerstand wissen wir, dass er bei einer Spannung von

Mehr

1 Aufgabe: Absorption von Laserstrahlung

1 Aufgabe: Absorption von Laserstrahlung 1 Aufgabe: Absorption von Laserstrahlung Werkstoff n R n i Glas 1,5 0,0 Aluminium (300 K) 25,3 90,0 Aluminium (730 K) 36,2 48,0 Aluminium (930 K) 33,5 41,9 Kupfer 11,0 50,0 Gold 12,0 54,7 Baustahl (570

Mehr

Induktivitätsmessung bei 50Hz-Netzdrosseln

Induktivitätsmessung bei 50Hz-Netzdrosseln Induktivitätsmessung bei 50Hz-Netzdrosseln Ermittlung der Induktivität und des Sättigungsverhaltens mit dem Impulsinduktivitätsmeßgerät DPG10 im Vergleich zur Messung mit Netzspannung und Netzstrom Die

Mehr

Innere Reibung von Gasen

Innere Reibung von Gasen Blatt: 1 Aufgabe Bestimmen Sie die Viskosität η von Gasen aus der Messung der Strömung durch Kapillaren. Berechnen Sie aus den Messergebnissen für jedes Gas die Sutherland-Konstante C, die effektiven Moleküldurchmesser

Mehr

Übungsblatt zu Säuren und Basen

Übungsblatt zu Säuren und Basen 1 Übungsblatt zu Säuren und Basen 1. In einer wässrigen Lösung misst die Konzentration der Oxoniumionen (H 3 O + ) 10 5 M. a) Wie gross ist der ph Wert? b) Ist die Konzentration der OH Ionen grösser oder

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

Katalysatoren - Chemische Partnervermittlung im virtuellen Labor

Katalysatoren - Chemische Partnervermittlung im virtuellen Labor Seite 1 von 6 Katalysatoren - Chemische Partnervermittlung im virtuellen Labor Katalysatoren Der Katalysator in der Großindustrie Was passiert im Inneren? Das virtuelle Labor. Katalysatoren Katalysatoren

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Technical Note Nr. 101

Technical Note Nr. 101 Seite 1 von 6 DMS und Schleifringübertrager-Schaltungstechnik Über Schleifringübertrager können DMS-Signale in exzellenter Qualität übertragen werden. Hierbei haben sowohl die physikalischen Eigenschaften

Mehr

Der Kälteanlagenbauer

Der Kälteanlagenbauer Der Kälteanlagenbauer Band : Grundkenntnisse Bearbeitet von Karl Breidenbach., überarbeitete und erweiterte Auflage. Buch. XXVIII, S. Gebunden ISBN 00 Format (B x L):,0 x,0 cm Zu Inhaltsverzeichnis schnell

Mehr

Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

4. BEZIEHUNGEN ZWISCHEN TABELLEN

4. BEZIEHUNGEN ZWISCHEN TABELLEN 4. BEZIEHUNGEN ZWISCHEN TABELLEN Zwischen Tabellen können in MS Access Beziehungen bestehen. Durch das Verwenden von Tabellen, die zueinander in Beziehung stehen, können Sie Folgendes erreichen: Die Größe

Mehr

Mobile Intranet in Unternehmen

Mobile Intranet in Unternehmen Mobile Intranet in Unternehmen Ergebnisse einer Umfrage unter Intranet Verantwortlichen aexea GmbH - communication. content. consulting Augustenstraße 15 70178 Stuttgart Tel: 0711 87035490 Mobile Intranet

Mehr

Modellbildungssysteme: Pädagogische und didaktische Ziele

Modellbildungssysteme: Pädagogische und didaktische Ziele Modellbildungssysteme: Pädagogische und didaktische Ziele Was hat Modellbildung mit der Schule zu tun? Der Bildungsplan 1994 formuliert: "Die schnelle Zunahme des Wissens, die hohe Differenzierung und

Mehr

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1

Zugversuch. Laborskript für WP-14 WS 13/14 Zugversuch. 1) Theoretische Grundlagen: Seite 1 Laborskript für WP-14 WS 13/14 Zugversuch Zugversuch 1) Theoretische Grundlagen: Mit dem Zugversuch werden im Normalfall mechanische Kenngrößen der Werkstoffe unter einachsiger Beanspruchung bestimmt.

Mehr

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6

Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Übungen zur VL Chemie für Biologen und Humanbiologen 05.12.2011 Lösung Übung 6 Thermodynamik und Gleichgewichte 1. a) Was sagt die Enthalpie aus? Die Enthalpie H beschreibt den Energiegehalt von Materie

Mehr

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + +

3. Anwendungen. 3.1. Chemische Reaktionen. Aufgabe: Die Gleichung + + 1 3. Anwendungen 3.1. Chemische Reaktionen Aufgabe: Die Gleichung + + beschreibt die Verbrennung von Ammoniak zu Stickstoffoxid und Wasser Für welche möglichst kleine natürliche Zahlen x1, x2, x3 und x4

Mehr

Stammdatenanlage über den Einrichtungsassistenten

Stammdatenanlage über den Einrichtungsassistenten Stammdatenanlage über den Einrichtungsassistenten Schritt für Schritt zur fertig eingerichteten Hotelverwaltung mit dem Einrichtungsassistenten Bitte bereiten Sie sich, bevor Sie starten, mit der Checkliste

Mehr

A Lösungen zu Einführungsaufgaben zu QueueTraffic

A Lösungen zu Einführungsaufgaben zu QueueTraffic A Lösungen zu Einführungsaufgaben zu QueueTraffic 1. Selber Phasen einstellen a) Wo im Alltag: Baustelle, vor einem Zebrastreifen, Unfall... 2. Ankunftsrate und Verteilungen a) poissonverteilt: b) konstant:

Mehr

Berechnung der Erhöhung der Durchschnittsprämien

Berechnung der Erhöhung der Durchschnittsprämien Wolfram Fischer Berechnung der Erhöhung der Durchschnittsprämien Oktober 2004 1 Zusammenfassung Zur Berechnung der Durchschnittsprämien wird das gesamte gemeldete Prämienvolumen Zusammenfassung durch die

Mehr

GEVITAS Farben-Reaktionstest

GEVITAS Farben-Reaktionstest GEVITAS Farben-Reaktionstest GEVITAS Farben-Reaktionstest Inhalt 1. Allgemeines... 1 2. Funktionsweise der Tests... 2 3. Die Ruhetaste und die Auslösetaste... 2 4. Starten der App Hauptmenü... 3 5. Auswahl

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Versuch 3. Frequenzgang eines Verstärkers

Versuch 3. Frequenzgang eines Verstärkers Versuch 3 Frequenzgang eines Verstärkers 1. Grundlagen Ein Verstärker ist eine aktive Schaltung, mit der die Amplitude eines Signals vergößert werden kann. Man spricht hier von Verstärkung v und definiert

Mehr

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert

Download. Mathematik üben Klasse 8 Funktionen. Differenzierte Materialien für das ganze Schuljahr. Jens Conrad, Hardy Seifert Download Jens Conrad, Hard Seifert Mathematik üben Klasse 8 Funktionen Differenzierte Materialien für das ganze Schuljahr Downloadauszug aus dem Originaltitel: Mathematik üben Klasse 8 Funktionen Differenzierte

Mehr

Inhalt. Allgemeine Einführung. Argumentationsvermögen. Räumliches Vorstellungsvermögen. Begabungen und Fähigkeiten messen

Inhalt. Allgemeine Einführung. Argumentationsvermögen. Räumliches Vorstellungsvermögen. Begabungen und Fähigkeiten messen Beispielheft Inhalt Allgemeine Einführung Test Eins: Test Zwei: Test Drei: Test Vier: Test Fünf: Argumentationsvermögen Auffassungsvermögen Zahlenvermögen Sprachverständnis Räumliches Vorstellungsvermögen

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

Wärmeleitung und thermoelektrische Effekte Versuch P2-32

Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Vorbereitung Wärmeleitung und thermoelektrische Effekte Versuch P2-32 Iris Conradi und Melanie Hauck Gruppe Mo-02 3. Juni 2011 Inhaltsverzeichnis Inhaltsverzeichnis 1 Wärmeleitfähigkeit 3 2 Peltier-Kühlblock

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Teilübung: Kondensator im Wechselspannunskreis Gruppenteilnehmer: Jakic, Topka Abgabedatum: 24.02.2006 Jakic, Topka Inhaltsverzeichnis 2HEA INHALTSVERZEICHNIS

Mehr

DIFFERENTIALGLEICHUNGEN

DIFFERENTIALGLEICHUNGEN DIFFERENTIALGLEICHUNGEN GRUNDBEGRIFFE Differentialgleichung Eine Gleichung, in der Ableitungen einer unbekannten Funktion y = y(x) bis zur n-ten Ordnung auftreten, heisst gewöhnliche Differentialgleichung

Mehr

Physikalische Chemie 19.06.2002 SS 2002. Versuch 7 : Aufnahme einer Adsorptionsisothermen

Physikalische Chemie 19.06.2002 SS 2002. Versuch 7 : Aufnahme einer Adsorptionsisothermen Physikalische Chemie 19.06.2002 SS 2002 Praktikumprotokoll Versuch 7 : Aufnahme einer Adsorptionsisothermen von Joanna Swidlinski Matrikelnr.: 200124158 Annika Dettloff Matrikelnr.: 200124116 1 Physikalische

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Schriftliche Abschlussprüfung Physik Realschulbildungsgang Sächsisches Staatsministerium für Kultus Schuljahr 1992/93 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Mehr

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang

Outlook. sysplus.ch outlook - mail-grundlagen Seite 1/8. Mail-Grundlagen. Posteingang sysplus.ch outlook - mail-grundlagen Seite 1/8 Outlook Mail-Grundlagen Posteingang Es gibt verschiedene Möglichkeiten, um zum Posteingang zu gelangen. Man kann links im Outlook-Fenster auf die Schaltfläche

Mehr

Optik. Optik. Optik. Optik. Optik

Optik. Optik. Optik. Optik. Optik Nenne das Brechungsgesetz! Beim Übergang von Luft in Glas (Wasser, Kunststoff) wird der Lichtstrahl zum Lot hin gebrochen. Beim Übergang von Glas (Wasser...) in Luft wird der Lichtstrahl vom Lot weg gebrochen.

Mehr

Technische Information Nr. 5 Seite 1

Technische Information Nr. 5 Seite 1 Technische Information Nr. 5 Seite 1 Kenndaten für den Katalysator-Einsatz Volumenbelastung: Raumgeschwindigkeit: Verweilzeit: Eintrittsgeschwindigkeit: Nm³ Abgas / h / Katalysator-Element Nm³ Abgas /

Mehr

Lineare Differentialgleichungen erster Ordnung erkennen

Lineare Differentialgleichungen erster Ordnung erkennen Lineare Differentialgleichungen erster Ordnung In diesem Kapitel... Erkennen, wie Differentialgleichungen erster Ordnung aussehen en für Differentialgleichungen erster Ordnung und ohne -Terme finden Die

Mehr

Wasserkraft früher und heute!

Wasserkraft früher und heute! Wasserkraft früher und heute! Wasserkraft leistet heute einen wichtigen Beitrag zur Stromversorgung in Österreich und auf der ganzen Welt. Aber war das schon immer so? Quelle: Elvina Schäfer, FOTOLIA In

Mehr

Insiderwissen 2013. Hintergrund

Insiderwissen 2013. Hintergrund Insiderwissen 213 XING EVENTS mit der Eventmanagement-Software für Online Eventregistrierung &Ticketing amiando, hat es sich erneut zur Aufgabe gemacht zu analysieren, wie Eventveranstalter ihre Veranstaltungen

Mehr

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4

1. Kennlinien. 2. Stabilisierung der Emitterschaltung. Schaltungstechnik 2 Übung 4 1. Kennlinien Der Transistor BC550C soll auf den Arbeitspunkt U CE = 4 V und I C = 15 ma eingestellt werden. a) Bestimmen Sie aus den Kennlinien (S. 2) die Werte für I B, B, U BE. b) Woher kommt die Neigung

Mehr

6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Wortschema Reaktionsschema Beispiel 1: Kupfer und Schwefel Vorzahlen

6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Wortschema Reaktionsschema Beispiel 1: Kupfer und Schwefel Vorzahlen 6. Reaktionsgleichungen 6.1 Chemisches Reaktionsschema Das Wortschema benennt die Ausgangsstoffe und die Reaktionsprodukte einer chemischen Reaktion. Das Reaktionsschema sagt zusätzlich etwas über das

Mehr

Dynamische Methoden der Investitionsrechnung

Dynamische Methoden der Investitionsrechnung 4 Dynamische Methoden der Investitionsrechnung Lernziele Das Konzept des Gegenwartswertes erklären Den Überschuss oder Fehlbetrag einer Investition mit Hilfe der Gegenwartswertmethode berechnen Die Begriffe

Mehr

Die Größe von Flächen vergleichen

Die Größe von Flächen vergleichen Vertiefen 1 Die Größe von Flächen vergleichen zu Aufgabe 1 Schulbuch, Seite 182 1 Wer hat am meisten Platz? Ordne die Figuren nach ihrem Flächeninhalt. Begründe deine Reihenfolge. 1 2 3 4 zu Aufgabe 2

Mehr

Daten sammeln, darstellen, auswerten

Daten sammeln, darstellen, auswerten Vertiefen 1 Daten sammeln, darstellen, auswerten zu Aufgabe 1 Schulbuch, Seite 22 1 Haustiere zählen In der Tabelle rechts stehen die Haustiere der Kinder aus der Klasse 5b. a) Wie oft wurden die Haustiere

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN

PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN PTV VISWALK TIPPS UND TRICKS PTV VISWALK TIPPS UND TRICKS: VERWENDUNG DICHTEBASIERTER TEILROUTEN Karlsruhe, April 2015 Verwendung dichte-basierter Teilrouten Stellen Sie sich vor, in einem belebten Gebäude,

Mehr

2 Physikalische Eigenschaften von Fettsäuren: Löslichkeit, Dissoziationsverhalten, Phasenzustände

2 Physikalische Eigenschaften von Fettsäuren: Löslichkeit, Dissoziationsverhalten, Phasenzustände 2 Physikalische Eigenschaften von Fettsäuren: Löslichkeit, Dissoziationsverhalten, Phasenzustände Als Fettsäuren wird die Gruppe aliphatischer Monocarbonsäuren bezeichnet. Der Name Fettsäuren geht darauf

Mehr