Gestagenpille. Pille. (nur Gestagenhormon, kein Östrogen) (kombiniert)

Größe: px
Ab Seite anzeigen:

Download "Gestagenpille. Pille. (nur Gestagenhormon, kein Östrogen) (kombiniert)"

Transkript

1 Pille (kombiier) 9 Gesgepille (ur Gesgehormo, kei Ösroge) 10 - der Eisprug wird uerdrück - der Schleim im Gebärmuerhls wird verdick dmi die Spermie ich eidrige köe - der Aufbu der Gebärmuerschleimhu wird uerdrück - sehr hohe - gue Akzepz - keie Vorbereiug vor Sex - regelmässiger Zyklus - häufig schwächere, kürzere ud weiger schmerzhfe Mosbluuge - keie Beeirächigug der Fruchbrkei ch Abseze - posiiver Effek für die Hu, bei gewisse Pille - gerigeres Risiko für Krebskrkheie (Eiersock ud Gebärmuer) - ägliche Eihme erforderlich - mögliche uerwüsche Begleierscheiuge wie Brusspe, Übelkei, Kopfschmerze, depressive Versimmuge, Nervosiä, Ake - mögliche Gewichszuhme - sele Thromboserisiko - Frue bis 40 Jhre l - eige sich sehr gu ls erse Mehode der Empfägisverhüug - der Schleim im Gebärmuerhls wird verdick dmi die Spermie ich eidrige köe - der Eisprug wird verhider - Eihme bei Ösroge-Uverräglichkei oder Risikosiuioe möglich - Eihme währed Sillzei möglich - uregelmässige ud z.t. lg duerde Bluuge möglich - Ausbleibe der Bluuge möglich - Müer - hrombosegefährdee Frue - währed der Sillzei

2 hoch Vgilrig Hormopflser Der Kussoffrig wird zu Begi des Zyklus i die Scheide eigeleg. Nch drei Woche wird der Rig für eie Woche efer, dmi es zur Bluug komme k. Ds Plser wird m erse Tg der Mesruio uf eie Huselle ufgekleb. Nch eier Woche muss ds Pflser usgewechsel werde. Nch drei Woche wird eie Woche lg pusier ud es komm zur Mosbluug. - der Eisprug wird gehemm - der Schleim im Gebärmuerhls wird verdick dmi die Spermie ich eidrige köe - der Aufbu der Gebärmuerschleimhu wird uerdrück - hohe - kei ägliches «Drdeke» - kei Eifluss durch Erbreche oder Durchfll - iefe Hormodosis - gleiche Begleierscheiuge wie kombiiere Pille - ussosse des Rigs möglich - mögliche Scheideezüduge - eilweise Spüre des Rigs währed des Verkehrs (Fremdkörpergefühl) - Frue mi uregelmässigem Lebesrhyhmus - für lle, die kokree Eihmezeie ich eihle köe oder wolle - der Eisprug wird gehemm - der Schleimpfropfe im Gebärmuerhls wird für die Spermie schwer durchdriglich - der Aufbu der Gebärmuerschleimhu wird uerdrück - hohe - kei ägliches «Drdeke» - kei Eifluss durch Erbreche oder Durchfll - Kopfschmerze, Brusspe - lokle Hureizuge - mögliche uregelmässige Bluuge - Übelkei - erhöhes Risiko für Thromboembolie - Frue mi uregelmässigem Lebesrhyhmus - für lle die kokree Eihmezeie ich eihle köe oder wolle

3 3-Mossprize 13 Hormoimpl (Hormosäbche) 14 Die Dreimossprize wird lle drei Moe vo der Ärzi/vom Arz i de Gesässmuskel gespriz. Der Arz/die Ärzi führ uf der Ieseie des Oberrms ds Röhrche durch eie kleie Huschi ei. Die häl drei Jhre. - der Aufbu der Gebärmuerschleimhu wird uerdrück - der Eisprug wird gehemm - der Schleimpfropfe im Gebärmuerhls wird für die Spermie schwer durchdriglich - sichere Verhüug für 3 Moe - kei ägliches «Drdeke» - Zwische- ud Schmierbluuge möglich - z.t. verlägere Duer bis zum Wiederherselle der Fruchbrkei - Abbu der Kochesubsz möglich - Kopfschmerze, Nervosiä, Schwidel, Depressioe, Akebildug ur i spezielle Siuioe empfohle für Frue, welche kei Ösroge verrge ud regelmässige Eihmeforme ich eihle köe - der Aufbu der Gebärmuerschleimhu wird uerdrück - der Eisprug wird gehemm - der Schleimpfropfe im Gebärmuerhls wird für die Spermie schwer durchdriglich - sichere Verhüug für 3 Jhre - kei ägliches «Drdeke - ehäl kei Ösroge - uregelmässige, lg duerde Bluuge möglich - häufig Nebewirkuge wie Ake (Bibeli), Gewichszuhme, Kopfschmerze, Brusspe, Depressioe, Gewichszuhme - regelmässige Korolle beim Fruerz ur i spezielle Siuioe empfohle für Frue, welche kei Ösroge verrge ud regelmässige Eihmeforme ich eihle köe

4 Hormospirle Ds T-förmige Kussoffröhrche wird vom Arz/der Ärzi i die Gebärmuer eigeleg. Dor werde äglich bis zu füf Jhre miimle Hormomege freigesez. 15 miel bis hoch Kupferspirle 16 Die T-förmige Kupferspirle wird vom Arz/der Ärzi i die Gebärmuer eigeleg. Die Kupferspirle k bis füf Jhre i der Gebärmuer bleibe, bis sie wieder efer werde muss. - der Schleimpfropfe im Gebärmuerhls wird für die Spermie schwer durchdriglich - Hemmug des Aufbus der Gebärmuerschleimhu - die Spermie werde i ihrer Beweglichkei gehemm - sehr sichere Verhüug für 5 Jhre - sehr iedriger Hormospiegel im Blu - weiger srke ud schmerzhfe Bluuge - währed der Sillzei wedbr - kei ägliches «Drdeke» - währed der erse drei Moe häufig Zwischebluuge - zu Begi z.t. Uerleibsschmerze, Brusspe, Übelkei, Huprobleme (sele) - die Lge der Spirle muss jährlich mi Ulrschll korollier werde - die Spirle k usgesosse werde - eie gerige Fremdkörperrekio is möglich Bei c. 20% der Frue «Ausbleibe der Mesruio», ws keie egive Eifluss uf die Fruchbrkei h! - für Frue, die sich eie lgfrisige, zuverlässige ud ief dosiere Verhüugsmehode wüsche - währed der Sillzei möglich - sie is ebeso für Frue mi srke ud / oder schmerzhfe Bluuge geeige ud für Frue, welche bereis gebore hbe - für juge Frue, welche och ich gebore hbe, is es die 2. Whl Es wird dvo usgegge, dss sich durch ds Kupfer sowohl der Schleim m Muermud, ls uch der Gebärmuerschleim veräder. Ddurch wird es de Spermie erschwer bis zur Eizelle vorzudrige bzw. k sich die befruchee Eizelle ich eiise. - lägerfrisige, hormofreie Verhüug bis 5 Jhre - währed der Sillzei wedbr - kei ägliches «Drdeke» - z.t. versärke ud verlägere Bluuge - Gefhr vo Uerleibsezüduge - Gefhr der Eileierschwgerschf leich erhöh - regelmässige Korolle beim Fruerz - Frue, die lägerfrisig verhüe möche bzw. sich ich regelmässig um ihre Verhüug kümmer wolle - für älere Frue, die keie Kider (mehr) bekomme möche ud ihre Fmilieplug bereis bgeschlosse hbe

5 miel miel Kodom Femidom ds Kodom für die Fru Eiziges Verhüugsmiel für de M! Verhider bei korreker Awedug zuverlässig vor Ifekioskrkheie. Ds Präserviv is der bese Schuz vor eier HIV- Überrgug! Bei Oe-Nigh-Sds solle immer ei Kodom beuz werde! Eizige Schuzmöglichkei der Fru sich kiv vor Ifekioskrkheie zu schüze. - eizig wirksmer Schuz vor Krkheie - rezepfrei, überll erhällich - keie Nebewirkuge Modere Präservive sid Highech-Produke ud biee opimle ud Quliä. Gue Präservive rge de Vermerk «OK». Dieses Güesiegel besäig, dss ds Produk die sregse schecks für Kodome besde h! - is vo korreker Hdhbug bhägig - Kodome köe reisse, zusäzliche Cremes oder Öle beeirächige die - Meril k Allergie uslöse - es Empfide k gesör sei - eizig wirksmer Schuz der Fru, sich kiv vor Krkheie zu schüze - rezepfrei, überll erhällich - vo korreker Hdhbug bhägig - Kodome köe reisse, zusäzliche Cremes oder Öle beeirächige die - Meril k Allergie uslöse - es Empfide k gesör sei Kodome ich im Poremoie ufbewhre! Beser Schuz vor Krkheie Beser Schuz vor Krkheie

6 miel 19 Chemische Verhüugsmehode miel bis usicher Nürliche Mehode 20 Scheidezäpfche, Schum, Schwämmche, Vgilblee Chemische Verhüugsmiel wirke spermizid, d. h. die ehlee Subsze öe die mäliche Smefäde ierhlb kurzer Zei b. - i Kombiio z.b. mi Kodom wedbr - ur bei Bedrf eisezbr - rezepfrei, überll erhällich - vo korreker Hdhbug bhägig - lokle Rekioe (Jucke, Bree) - Awedug mid. 10 Miue vor Eidrige des Peis i die Scheide - ur für kurze Zei Chemische Verhüugsmiel sid reliv usicher ud deshlb ls lleiige Verhüugs- Mehode ich empfehleswer. Sivoll is es, chemische Verhüugsmiel mi eier Brriere- Mehode (Kodom) zu kombiiere. juge Frue,welche zusäzlich eie Brriere- Mehode beuze - Temperur-Mehode - Kus-Ogio Mehode (Kleder-Mehode) - Ds «Aufpsse» (Coius ierrupus: Herusziehe des Gliedes vor dem Smeerguss) Alle ürliche Verhüugsmehode beruhe uf der Beobchug vom Zyklus der Fru, um de Termi des Eisprugs zu besimme ud somi die fruchbre Tge zu erreche. Währed der fruchbre Tge is d e Ehlsmkei geboe. Die gue Kooperio der Prer is dbei für eie erfolgreiche Verhüug mssgebed. - kei Eigriff i de ürliche Abluf - kosegüsig - keie Nebewirkuge - keie Vorbereiuge vor dem Sex - sehr ufwädig ud usicher - verlg ei hohes Mss Diszipli - grosser zeilicher Aufwd Nürliche Verhüugsmehode erforder de Verzich uf Sex de fruchbre Tge. Die Mehode der ürliche Fmilieplug müsse erler werde. Ds bruch Zei, Geduld ud gue Körperkeisse. Alle diese Mehode erforder eie geue ud ägliche Beobchug. Eie «Lehrzei» vo 6 bis 12 Moszykle is öig, möglichs uer Aleiug eier erfhree Perso. - älere Frue - Pre i eier sbile Beziehug mi möglichem Kiderwusch

7 21 o i s i l i r e S Bei der Eileieruerbidug werde der Fru uer Nrkose beide Eileier verschlosse (kogulier) ud dmi udurchdriglich gemch. Beim M is die Serilisio ei reliv kleier Eigriff; die Smeleier werde uerbroche. hüug r e v ll f o N Die h c d e l l Pi - Operio owedig - kum rückgägig zu mche Die «Pille dch» sör die Befruchug ud/ oder Eiisug der Eizelle i die Gebärmuer. Alle, welche die Fmilieplug bgeschlosse hbe Eihme späeses bis zu 72 Sude ch ugeschüzem Geschlechsverkehr! vo c. 85 % bei rechzeiiger Eihme hohe S ch ü i ch z s e x u vo r üb e r r e ll If e gb re k i o & HI e V 22 - hohe Gesge-Dosis - Nebewirkuge wie Übelkei, Erbreche, Zyklussöruge Diese Mehode soll ur im Nofll ch dem Nichwede oder Versge eies Verhüugsmiels (Vergesse der Pille, Plze des Kodoms) gewede werde. Es hdel sich um eie Nofllverhüug! S ch ü i ch z s e x u vo r üb e r r e ll If e gb re k i o & HI e V

Bericht zur Prüfung im Oktober 2014 über Mathematik der Personenversicherung (Grundwissen)

Bericht zur Prüfung im Oktober 2014 über Mathematik der Personenversicherung (Grundwissen) UTSCH KTURVRIIGUG e.v. Berich ur rüfug im Okober 24 über hemik der eroevericherug (Grudwie Jürge Srobel (Köl m..24 wurde i Köl die viere rüfug über hemik der eroevericherug (Grudwie ch der rüfugordug der

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Bericht zur Prüfung im Oktober 2012 über Mathematik der Personenversicherung (Grundwissen)

Bericht zur Prüfung im Oktober 2012 über Mathematik der Personenversicherung (Grundwissen) EUTSCHE TUVEEIIGUG e.v. Berich zur rüfug i Okober über Mheik der ersoeversicherug Grudwisse Jürge Srobe ö 3.. wurde i ö die zweie rüfug über Mheik der ersoeversicherug Grudwisse ch der rüfugsordug der

Mehr

STUDIUM. Mathematische Grundlagen für Betriebswirte

STUDIUM. Mathematische Grundlagen für Betriebswirte STUDIUM Mthetische Grudlge für Betrieswirte Mit de folgede Aufge köe Sie i eie Selsttest üerprüfe, o Sie och eiigerße die Grudlge der Alger eherrsche. Diese hdwerkliche Fertigkeite sid wesetlich, we es

Mehr

Logarithmus - Übungsaufgaben. I. Allgemeines

Logarithmus - Übungsaufgaben. I. Allgemeines Eie Gleichug höhere Grdes wie z. B. Gymsium / Relschule Logrithmus - Üugsufge Klsse 0 I. Allgemeies k ch ufgelöst werde, idem m die Wurzel zieht. Tritt die Uekte jedoch im Epoete eier Potez uf, spricht

Mehr

8.3. Komplexe Zahlen

8.3. Komplexe Zahlen 8.. Komplee Zhle Wie bereits i 8.. drgestellt, wurde die fortlufede Erweiterug der Zhlbereiche durch die Eiführug immer kompleerer Recheopertioe otwedig:. Auf de türliche Zhle führte der Wusch ch iverse

Mehr

Taylor Formel: f(x)p(x)dx = f(c)

Taylor Formel: f(x)p(x)dx = f(c) Tylor Formel Die Tylorsche Formel liefert eie Approximtio eier Fuktio durch ei Polyom, gemeism mit eier Abschätzug des Fehlerterms. Zwischewertstz: Eie stetige Fuktio f : [, b] R immt jede Wert γ zwische

Mehr

Finanzierung: Übungsserie IV Aussenfinanzierung

Finanzierung: Übungsserie IV Aussenfinanzierung Them Dokumetrt Fizierug: Übugsserie IV Aussefizierug Lösuge Theorie im Buch "Itegrle Betriebswirtschftslehre" Teil: pitel: D Fizmgemet 2.4 Aussefizierug Fizierug: Übugsserie IV Aussefizierug Aufgbe Eie

Mehr

Analysis I Probeklausur 2

Analysis I Probeklausur 2 WS /2 Mriescu/ Ert Alysis I Probeklusur 2. Aufgbe Die Folge (x ) N sei rekursiv defiiert durch x =, x + = 2+x. () Beweise, dss die Folge (x ) N streg mooto wchsed ist. (b) Beweise, dss (x ) N durch 2 ch

Mehr

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen

Termin vereinbaren. Patient abrufen. Befund erstellen. Befund lesen Grphische Repräsettio vo Iterktiosusdrücke Christi Heilei, Abt. DBIS Jui 1997 1. Eileitug Dieser Bericht stellt eie eifche grphische Nottio für Iterktiosusdrücke vor, wie sie i de Berichte Grudlge vo Iterktiosusdrücke

Mehr

METHODEN DER SCHWANGERSCHAFTSVERHÜTUNG

METHODEN DER SCHWANGERSCHAFTSVERHÜTUNG METHODEN DER SCHWANGERSCHAFTSVERHÜTUNG Pille Sicherheit Pearl-Index 1 Bei richtiger Abwendung sehr sicher. Erbrechen, Durchfall oder Medikamente beeinträchtigen die Sicherheit. Hormon-Tabletten, verhindern

Mehr

VWA Köln SS 2006 Unternehmensfinanzierung

VWA Köln SS 2006 Unternehmensfinanzierung SS 26 Teil C Dozet: e-mil: pvhite@wiso.ui-koel.de Gliederug C C: Fizierugsetscheiduge. Fizierugsrte 2. xtere Fizierug 2. Fizierugstitel ud Märkte 2.2 Aspekte der Fizierugsbeziehug 2.3 Beteiligugsfizierug

Mehr

4 Deckungsrückstellung

4 Deckungsrückstellung eckugsrückstellug 33 4 eckugsrückstellug iel: erfhre zur Erittlug des Wertes eies ersicherugsvertrgs ud der zur eckug der Risike ötige Rückstelluge des ersicherugsuterehes. Proble: Präie werde kostt gezhlt,

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES

Messung 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Messug 3 MESSUNG EINES AUS OTTO MOTOR UND ELEKTRISCHEN GENERATOR BESTEHENDEN MASCHINENAGGREGATES Ziel der Meßübug: Besimmug des Bresoffverbrauchs, des spezifische Bresoffverbrauchs, Aggregawirkugsgrades,

Mehr

Formen der Arbeit mit mathematisch begabten Schülern in Russland 1

Formen der Arbeit mit mathematisch begabten Schülern in Russland 1 Boris Averboukh Forme der Arbeit mit mthemtisch begbte Schüler i Russld Eie Ursche der mthemtische ud techische Erfolge i Russld des 0. Jhrhuderts wr die ktive Arbeit mit mthemtisch begbte Kider, der viele

Mehr

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer

von Prof. Dr. Ing. Dirk Rabe FH Emden/Leer vo Prof. Dr. Ig. Dirk Rbe FH Emde/Leer Überblick: Folge ud Reihe Folge: Zhlefolge ( ) ; ; ; ist eie geordete Liste vo Zhle ( IN) : Glieder der Folge f(): Bildugsgesetz (eplizit i oder rekursiv) z.b.: (

Mehr

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement

Bericht zur Prüfung im Oktober 2006 über Finanzmathematik und Investmentmanagement Berich zur Prüfung im Okober 006 über Finnzmhemik und Invesmenmngemen Grundwissen Peer Albrech Mnnheim Am 07. Okober 006 wurde zum ersen Ml eine Prüfung im Fch Finnzmhemik und Invesmenmngemen nch PO III

Mehr

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion:

8. Abtastung. Kontinuierliches Signal: Signalspektrum: Abgetastetes Signal: ( t) Abtastfunktion: 1 f a. Spektrum der Abtastfunktion: Pro. Dr.-In. W.-P. Buchwld Sinl- und Sysemheorie 8. Absun Koninuierliches Sinl: u() Sinlspekrum: U() Abesees Sinl: ( ) = u( ) ( ) u Absunkion: + n= ( ) = δ ( n ) Spekrum der Absunkion: + n= Spekrum des

Mehr

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11

Marek Kubica, Diskrete Strukturen Übungsblatt 13 Gruppe 11 Mrek Kubic, kubic@i.tum.de Diskrete Strukture Übugsbltt Gruppe Pukteverteilug: Σ Aufgbe () 8 () 7 Der Grph B ht de Prüfer-Code,,,,, der zustde kommt, we m de kleiste Kote vom Grd streicht ud de dere, übrig

Mehr

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit

Dr. Günter Rothmeier Kein Anspruch auf Vollständigkeit Elementarmathematik (LH) und Fehlerfreiheit Uiversität Regesburg Nturwisseschftliche Fkultät I Didktik der Mthetik Dr. Güter Rotheier WS 008/09 Privte Vorlesugsufzeichuge Kei Aspruch uf Vollstädigkeit 5 7 Eleetrthetik (LH) ud Fehlerfreiheit. Zhlebereiche.5.

Mehr

Kapitel 1 Grundlagen für Echtzeitsysteme in der Automatisierung

Kapitel 1 Grundlagen für Echtzeitsysteme in der Automatisierung Kpiel Grudlge für Echeiyeme i der Auomiierug. Eiführug.. Echeideverrbeiug Viele echiche Proee ud echiche Syeme werde uer hre Zeibediguge vo ogee Echeiyeme geleie geeuer ud geregel. Bei Nich-Echeiyeme omm

Mehr

War Benjamin Franklin Magier?

War Benjamin Franklin Magier? Wr Bejmi Frkli Mgier? Zusmmefssug Es wird eie Methode etwickelt, ei (fst) mgisches Qudrt der Ordug 8 k ( k ) mit fsziierede Eigeschfte herzustelle. Eileitug I seiem überus leseswerte ud bwechslugsreiche

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl.

Algebra/Arithmetik. Eine Variable ist ein Platzhalter oder ein Stellvertreter für eine Zahl. Algebr/Arithmetik 1. Grudbegriffe Geometrie: Lehre vo de Rumgrösse Algebr: Lehre vo de Gleichuge Arithmetik: Lehre vo de Zhlegrösse (Zhle, Vrible) Defiitio: Eie Vrible ist ei Pltzhlter oder ei Stellvertreter

Mehr

Entwurf Haushalt 2013 und mittelfristige Finanzplanung bis 2016 - Vorlage zur LDK 2012 in Brandenburg H 2

Entwurf Haushalt 2013 und mittelfristige Finanzplanung bis 2016 - Vorlage zur LDK 2012 in Brandenburg H 2 Hushl ud mielfrisige Fizplug bis - Vrlge zur LDK 2012 i Brdeburg H 2 1 Hushlspse edgülig Pl 2012 zzgl. Zhluge Gejes NEU 2012 bslu Amerkuge HH- 6 e ch der LTW mi 8 MdL, ber ch he V 7 Spede Mdsrägerbeirg

Mehr

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Potenzen Teil 2. Trainingsheft. Alle Regeln Musterbeispiele - Trainingsaufgaben. Datei Nr INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Poteze Teil it egtive Expoete Triigsheft Alle Regel Musterbeispiele - Triigsufgbe Dtei Nr. 0 Std 9. Dezeber 0 Friedrich W. Buckel INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.the-cd.de 0 Potezreche

Mehr

Realitätsbezogener Mechanikunterricht durch Beiträge der Strömungsphysik

Realitätsbezogener Mechanikunterricht durch Beiträge der Strömungsphysik Regioale Forbildug für Schule i Niedersachse i DLR_School_Lab Göige 4. Augus 00 Realiäsbezogeer Mechaikuerrich durch Beiräge der Sröugsphysik Beobachug, Aalyse ud Beschreibug o reale Fallbeweguge Refere:

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 12 Mthemtisches Istitut der Uiversität Müche Prof. Dr. Peter Otte WiSe 203/4 Lösug 2 2.0.204 Aufgbe 2. [8 Pute] Übuge zur Alysis für Iformtier ud Sttistier Lösug zu Bltt 2 Für eie Teilmege Ω R, sei {, flls

Mehr

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1?

c) Wir betrachten alle möglichen Potenzen der natürlichen Zahlen. In welchen Fällen endet das Ergebnis einer Potenz immer auf eine 1? Aufge : Poteze ) We die Zhl elieig oft mit sich selst multipliziert wird, d edet ds Ergeis immer uf eie. Git es och mehr Zhle, die diese Eigeschft esitze? ) Welche Edziffer esitzt die ute stehede Summe?

Mehr

- 1 - VB Inhaltsverzeichnis

- 1 - VB Inhaltsverzeichnis - - VB 2004 Ihltsverzeichis Ihltsverzeichis... Folge ud Grezwerte... 2 Aäherug eie Grezwert... 2 Die Fläche des 5 Ecks... 3 Nährugsweise Berechug vo Pi... 4 Die Folge... 5 Defiitio der Folge... 5 Beispiele

Mehr

5.7. Prüfungsaufgaben zu Folgen

5.7. Prüfungsaufgaben zu Folgen 5.. Prüfugsufgbe zu Folge Aufgbe : Explizite Drstellug () 5 5 ) Bestimme die explizite Drstellug der Folge ( ) mit 0,,,, ud 5 () 9 5 b) Bestimme de Grezwert der Folge. () Lösug ( ) mit lim Aufgbe b: Explizite

Mehr

3 Leistungsbarwerte und Prämien

3 Leistungsbarwerte und Prämien Leisugsbarwere ud Prmie 23 3 Leisugsbarwere ud Prmie Zie: Rechemehode zur Ermiug der Barwere ud Prmie bei übiche Produe der Lebesversicherug. 3. Eemeare Barwere ud Kommuaioszahe Barwer eier Erebesfaeisug

Mehr

Übungsblatt Nr. 1. Lösungsvorschlag

Übungsblatt Nr. 1. Lösungsvorschlag Istitut für Kryptogrphie ud Sicherheit Prof. Dr. Jör Müller-Qude Dirk Achebch Tobis Nilges Vorlesug Theoretische Grudlge der Iformtik Übugsbltt Nr. 1 svorschlg Aufgbe 1 (K) (4 Pukte): Edliche Automte ud

Mehr

Mit Ideen begeistern. Mit Freude schenken.

Mit Ideen begeistern. Mit Freude schenken. Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug

Mehr

Musterlösung zur Musterprüfung 1 in Mathematik

Musterlösung zur Musterprüfung 1 in Mathematik Musterlösug zur Musterprüfug i Mthemtik Diese Musterlösug ethält usführliche Lösuge zu lle Aufgbe der Musterprüfug i Mthemtik sowie Hiweise zum Selbstlere. Literturhiweise ) Bosch: Brückekurs Mthemtik,

Mehr

Simulationsbasierte stochastisch dynamische Programmierung

Simulationsbasierte stochastisch dynamische Programmierung Simulaiobaiere ochaich dyamiche Programmierug OLIVER MUßHOFF, BERLIN NORBERT HIRSCHAUER, BERLIN Abrac Deciio ree, repreeig he backward recurive dyamic programmig approach, are ofe o flexible eough o aalyze

Mehr

Terme und Formeln Potenzen II

Terme und Formeln Potenzen II Terme ud Formel Poteze II Die eizige schriftliche Überlieferug der Mthemtik der My stmmt us dem Dresder Kodex. Ds Zhlesystem der Mys beruht uf der Bsis 0. Als Grud dfür wird vermutet, dss die Vorfhre der

Mehr

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren

Klasse 10 Graphen von ganzrationalen Funktionen skizzieren Klsse 0 Grphe vo grtiole Fuktioe skiiere Nr.3-4.4.06 Ausggslge Vorwisse Die SuS kee Grudfuktioe ud ihre Grphe: f() = ²; ³; ⁴ f() = ; f() = Die SuS kee bei Grudfuktioe folgede Veräderuge: g() = f() Der

Mehr

D i e a k t i e n r e c h t l i c h e K a p i t a l e r h ö h u n g

D i e a k t i e n r e c h t l i c h e K a p i t a l e r h ö h u n g D i e k t i e r e c h t l i c h e p i t l e r h ö h u g I. Grudlge 1. Motive der pitlbeschffug pitlerhöhuge ufsse sätliche Mßhe der Aktiegesellschft, Eigeoder Fredkpitl zu beschffe. Motive für eie pitlbeschffug

Mehr

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel

ALGEBRA. Potenzen und Wurzeln. Grundlagen. Manuskript zur Wiederholung. Datei Nr Dezember Friedrich W. Buckel ALGEBRA Poteze ud Wurzel Grudlge Muskript zur Wiederholug Dtei Nr. Dezember 00 Friedrich W. Buckel Itertsgymsium Schloß Torgelow Ihlt Poteze mit türliche Expoete Potezgesetze Poteze mit egtive gze Expoete

Mehr

Statistik I/Empirie I

Statistik I/Empirie I Vor zwei Jahre wurde ermittelt, dass Elter im Durchschitt 96 Euro für die Nachhilfe ihrer schulpflichtige Kider ausgebe. I eier eue Umfrage uter 900 repräsetativ ausgewählte Elter wurde u erhobe, dass

Mehr

1. Übungsblatt zur Analysis II

1. Übungsblatt zur Analysis II Fchereich Mthemtik Prof Dr Steffe Roch Nd Sissouo WS 9/ 69 Üugsltt zur Alysis II Gruppeüug Aufge G Bestimme Sie für jede der folgede Fuktioe f : [, ] R ds utere ud oere Itegrl ud etscheide Sie, o die Fuktio

Mehr

qu.j. an = a 0 q unterjährlich wobei Zinsen in m gleiche zeitliche Abstände innerhalb eines Jahrs (n). = q -n a 0 = a n q -n

qu.j. an = a 0 q unterjährlich wobei Zinsen in m gleiche zeitliche Abstände innerhalb eines Jahrs (n). = q -n a 0 = a n q -n cd. rer. oec. Brzosk Zusefssug Fzerug ud Iveso cd. rer. oec. Mr T. ocybk A. Ivesosrechug I. Fzhesche Zsrechug (BvC/L, F., S. 8 S. 39) Aufzsugsfkor: ( ) + q q Erreche, welche Edwer ( ) ee elge Ezhlug eer

Mehr

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2

Hamburg Kernfach Mathematik Zentralabitur 2013 Erhöhtes Anforderungsniveau Analysis 2 Hmburg Kernfch Mhemik Zenrlbiur 2013 Erhöhes Anforderungsniveu Anlysis 2 Smrphones Die Mrkeinführung eines neuen Smrphones vom Elekronikherseller PEAR wird ses ufgereg erwre. Zur Modellierung der Enwicklung

Mehr

Formelblatt Finanzmanagement

Formelblatt Finanzmanagement www.bwl-olie.ch hema Dokumear heorie im uch "Iegrale eriebswirschafslehre" Formel Fiazmaageme Checklise eil: D Fiazmaageme Kapiel: verschiedee Formelbla Fiazmaageme ilazsrukur Eigekapial E igefiazierugsgrad(equiy

Mehr

Versuchsprotokoll zum Versuch Nr. 4

Versuchsprotokoll zum Versuch Nr. 4 I diesem Versuch geht es drum, die Temperturbhäigkeit vo Widerstäde zu bestimme. Dies erfolgt mit folgeder Aordug: Folgede Geräte wurde dbei verwedet Gerät Bezeichug/Hersteller Ivetrummer Schleifdrhtbrücke

Mehr

Haushalt 2011. Dezernat II. - Sozialamt - Jugendamt - Gesundheitsamt - Beratungsstelle für Schulund Familienfragen - Amt proarbeit

Haushalt 2011. Dezernat II. - Sozialamt - Jugendamt - Gesundheitsamt - Beratungsstelle für Schulund Familienfragen - Amt proarbeit Husht Dezert II - Sozimt - Jugedmt - Gesudheitsmt - Bertugsstee für Schuud Fmiiefrge - Amt proarbeit Summe der Amtsbudgets: eröse ufweduge Zuschuss (-) Überschuss (+) 156.511.183 45.63.019-89.10.836-145

Mehr

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen

Thema 8 Konvergenz von Funktionen-Folgen und - Reihen Them 8 Kovergez vo Fuktioe-Folge ud - Reihe Defiitio Sei (f ) eie Folge vo Fuktioe vo D R i R. Wir sge, dß f puktweise gege eie Fuktio f kovergiert, flls gilt: f () f() für jedes D. Dies ist der türliche

Mehr

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums? Vorwort... 2

- Goldener Schnitt - Nur ein Teilungsverhältnis oder fundamentales Geheimnis des Universums? Vorwort... 2 Ihltsverzeichis Kpitel Seite Vorwort.... Mthemtische Grudlge des Goldee Schittes... Ws ist der Goldee Schitt?..... Nähere Betrchtug des Teilugsverhältisses Herleitug der Zhle τ ud ρ..3. Die Zhle τ ud ρ...3..

Mehr

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst

4.1 G sei Gruppe (mit multiplikativ geschriebener Verknüpfung) und a G. Dann heißt. falls a k 1 G k 1 ord(a) := k 1 a k = 1 G sonst 15 Wichtige Sätze ud Defiitioe zu 4: Ds qudrtische Rezirozitätsgesetz us der Vorlesug: LV-NR 150 39 Verstltug Diskrete Mthemtik II, 4.0 std Dozet Holtkm, R. 4.1 G sei Grue (mit multiliktiv geschriebeer

Mehr

Therapiebegleiter Kopfschmerztagebuch

Therapiebegleiter Kopfschmerztagebuch Vornme & Nchnme Therpieegleiter Kopfschmerztgeuch Liee Ptientin, lieer Ptient, Wie Können sie helfen? Bitte führen Sie regelmäßig euch m esten täglich. Trgen Sie in die Splten die jeweiligen Informtionen

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkomme zur der Aufgbesmmlug Um sich schell ierhlb der c. 0.000 Mthemtikufgbe zu orietiere, beutze Sie ubedigt ds Lesezeiche Ihres Acrobt Reders: Ds Ico fide Sie i der liks stehede Leiste. Bitte

Mehr

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück.

Teilfolgen aus und fragen nach deren Rekursionsformel. Die Ideen gehen auf Édouard Lucas zurück. Hs Wlser, [0090331] Teilfolge der Fibocci-Folge 1 Worum geht es? Wir wähle us der Fibocci-Folge 1 3 4 5 6 7 8 9 10 11 1 13 14 1 1 3 5 8 13 1 34 55 89 144 33 377 Teilfolge us ud frge ch dere Rekursiosformel.

Mehr

Vektorrechnung. Ronny Harbich, 2003

Vektorrechnung. Ronny Harbich, 2003 Vektorrechug Ro Hrich, 2003 Eiführug Ihlt Defiitio Betrg Sklrmultipliktio Nullvektor Gegevektor Eiheitsvektor Additio Sutrktio Gesetze Defiitio Ei Vektor ist eie Mege vo Pfeile, die gleichlg (kogruet),

Mehr

x mit Hilfe eines linearen, zeitinvarianten

x mit Hilfe eines linearen, zeitinvarianten Übug &Prktiku zu Digitle Sigle ud Systee The: Fltug Diskrete Fltug Wird ei zeitdiskretes Sigl ( T ) x it Hile eies liere, zeitivrite Siglverrbeitugssystes verrbeitet, so lässt sich ds Verhlte des verrbeitede

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2 1 Vorkurs Mthemtik Fchhochschule Frkfurt, Fchbereich 1 Reche mit Poteze N bezeichet die Mege der türliche Zhle, Q die Mege der rtiole Zhle ud R die Mege der reelle Zhle. N bedeutet: ist eie türliche Zhl.

Mehr

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I

Lösungen der Aufgaben zur Vorbereitung auf die Klausur Mathematik für Informatiker I Uiversität des Saarlades Fakultät für Mathematik ud Iformatik Witersemester 2003/04 Prof. Dr. Joachim Weickert Dr. Marti Welk Dr. Berhard Burgeth Lösuge der Aufgabe zur Vorbereitug auf die Klausur Mathematik

Mehr

FDP.de. Stand 11. Juni 201. Nur mit uns.

FDP.de. Stand 11. Juni 201. Nur mit uns. FDP.de t k l p e t d i d K e i i l Richt 3 1 0 2 l h w s g t s e d u B 3 Std 11. Jui 201 Nur mit us. Ihltsverzeichis Kdidteplkt Richtliie Kdidteplkt Formt A0 & A1 Seite 3 Bestdteile Textbox & Text Foto

Mehr

( 3) k ) = 3) k 2 3 für k gerade

( 3) k ) = 3) k 2 3 für k gerade Aufgbe : ( Pute Zeige Sie mithilfe des Biomische Lehrstzes: ( 3 ( 3 ist für lle N eie türliche Zhl Lösug : Nch dem biomische Lehrstz gilt: ( 3 Somit ergibt sich ( 3 ( 3 ( ( 3 bzw ( 3 ( ( 3 ( ( 3 ( ( 3

Mehr

Geld. Frühlingsputz für Ihre Finanzen. Leckere Oster-Lämmchen. Tolle Vorteile für werdende Muttis. April 2011

Geld. Frühlingsputz für Ihre Finanzen. Leckere Oster-Lämmchen. Tolle Vorteile für werdende Muttis. April 2011 Geld Lebe Editio s a Wom April 2011 Frühligsputz für Ihre Fiaze Leckere Oster-Lämmche Tolle Vorteile für werdede Muttis Frühligsputz für Ihre Fiaze Versicheruge: welche sid ihr Geld wert? Das Thema Sicherheit

Mehr

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV

LS Retail. Die Branchenlösung für den Einzelhandel auf Basis von Microsoft Dynamics NAV LS Retail Die Brachelösug für de Eizelhadel auf Basis vo Microsoft Dyamics NAV akquiet Focus auf das Wesetliche User Focus liegt immer auf der Wirtschaftlichkeit: So weig wie möglich, soviel wie ötig.

Mehr

2. Einführung in die Geometrische Optik

2. Einführung in die Geometrische Optik 2. Eiührug i die Geometrische Optik 2. Allgemeie Prizipie 2.. Licht ud Materie Optische Ssteme werde ür de Spektralbereich zwische dem extreme Ultraviolette ( m) ud dem thermische Irarote (Q-Bad bei 2

Mehr

Überblick: Teil C Systemnahe Softwareentwicklung. Speicherorganisation. Speicherorganisation (Forts.) 12 Programmstruktur und Module

Überblick: Teil C Systemnahe Softwareentwicklung. Speicherorganisation. Speicherorganisation (Forts.) 12 Programmstruktur und Module Üerlik: Teil C Systehe Softwreetwiklug 12 Progrstruktur ud Module 13 Zeiger ud Felder 14 µc-systerhitektur 15 Neeläufigkeit 16 Speiherorgistio 17 Zusefssug Speiherorgistio it ; it = 1; ost it = 2; void

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrstuhl für Fiazwirtschaft Lösuge zu Kotrollfrage Fiazwirtschaft Prof. Dr. Thorste Poddig Fachbereich 7: Wirtschaftswisseschaft 2 Forme der Fremdfiazierug (Kapitel 6) Allgemeier Überblick 89. Ma ka die

Mehr

Unternehmensfinanzierung

Unternehmensfinanzierung Uterehmesfizierug VWA öl Witersemester 24 / 25 Georg Bogdow Hommelsheimstrße 532 Brühl Uterehmesfizierug WiSe 24 / 25 Dr. uth Mrtes Ihlt:. Der Fizbereich des Uterehmes... 2 2. Die Fizierugsbeziehug us

Mehr

Flächenberechnung. Flächenberechnung

Flächenberechnung. Flächenberechnung Itegrlrechug Gegee sei eie Fuktio. 1 Itegrlrechug Gesucht ist die Fläche zwische der Kurve vo 0 is 1 ud der -Achse. 0 1 2 197 Wegeer Mth/5_Itegrl_k Mittwoch 04.04.2007 18:38:48 Itegrlrechug Wir eee 1 um

Mehr

Grundwissen Mathematik Klasse 9

Grundwissen Mathematik Klasse 9 Grudwisse Mthetik Klsse Reelle Zhle: Qudrtwurzel: ist die icht-egtive Lösug der Gleichug:. Merke: heißt Rdikd ud drf icht egtiv sei! Bsp.: 7 6, 7 7 Irrtiole Zhle: Jede Zhl, die sich icht ls Bruch drstelle

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Carmichaelzahlen und andere Pseudoprimzahlen

Carmichaelzahlen und andere Pseudoprimzahlen Crmichelzhle ud dere Pseudoprimzhle Christi Glus 26.05.2008 1 Der fermtsche Primzhltest Erierug 1 (Kleier Stz vo Fermt). Für p prim, Z, ggt(, p) 1 gilt: p 1 1 (mod p) Algorithmus 2 (Fermtscher Primzhltest).

Mehr

Elektrostatische Lösungen für mehr Wirtschaftlichkeit

Elektrostatische Lösungen für mehr Wirtschaftlichkeit Elektrostatische Lösuge für mehr Wirtschaftlichkeit idustrie für igeieure, profis ud techiker i etwicklug, produktio ud motage. www.kerste.de Elektrostatische Lösuge kerste ist seit über 40 Jahre der führede

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Formelsammlung für Investition und Finanzierung

Formelsammlung für Investition und Finanzierung Formelsammlug für Ivesiio ud Fiazierug (Sad: 3.2.22) Seie vo 8 Formelsammlug für Ivesiio ud Fiazierug INHALSVERZEICHNIS. Mahemaische Grudlage...3 a) Auflösug quadraischer Gleichuge mi der pq-formel...3

Mehr

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t

T t Tilgungsrate im Jahr t Z t Kreditzinsen im Jahr t. Weitere S Kredit bei t = 0 ( ursprüngliche Schuld ) Symbole: RS t 6. Tilggsrechg 6.. Eiführg Gegesad der Tilggsrechg is die Feslegg der Rückzahlge für eimalig asgezahle Kredie eischließlich der Kredizise d -gebühre eweder a) am Fälligkeisag i eier mme (sog. gesamfällige

Mehr

Ausbildung zum Passagement-Consultant

Ausbildung zum Passagement-Consultant M & MAICONSULTING Mngementbertung Akdemie M MAICONSULTING Mngementbertung & Akdemie MAICONSULTING GmbH & Co. KG Hndschuhsheimer Lndstrße 60 D-69121 Heidelberg Telefon +49 (0) 6221 65024-70 Telefx +49 (0)

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

Wir feiern 25jähriges Jubiläum feiern Sie mit!

Wir feiern 25jähriges Jubiläum feiern Sie mit! W f 25jähgs Juläum f S mt Zhlch Juläums-Akto, gussoll Vkostug, Fchtug, Gwspl ud l gut Lu wt S d Edlwss-Apothk. Ut dm Motto GESUND VON KOPF BIS FUSS wd 1.2.2014 gz Woch lg usgg gft. Nütz S us Juläumswoch

Mehr

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $

6 Folgen. 6.4 Folgen reeller Zahlen. Mathematik für Informatiker B, SS 2012 Dienstag 5.6. $Id: folgen.tex,v /06/05 11:12:18 hk Exp $ Mathematik für Iformatiker B, SS 0 Diestag 5.6 $Id: folge.tex,v. 0/06/05 ::8 hk Exp $ 6 Folge 6.4 Folge reeller Zahle I der letzte Sitzug habe wir de Begriff des Grezwerts eier Folge i eiem metrische Raum

Mehr

Verhütung. Bild-Quelle: http://www.prou.at/upload/image/verhuetungsmittel_start1.jpg. Von Joe, M9b

Verhütung. Bild-Quelle: http://www.prou.at/upload/image/verhuetungsmittel_start1.jpg. Von Joe, M9b Verhütung http://www.prou.at/upload/image/verhuetungsmittel_start1.jpg Von Joe, M9b Gliederung Mittel Sicherheit Funktion Vorteile Beachtenswert Kosten Für wen zu empfehlen? Bild Anti-Baby-Pille Sicherheit:

Mehr

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt

7.5. Aufgaben zu Skalarprodukt und Vektorprodukt 7.. Aufgbe zu Sklrprodukt ud Vektorprodukt Aufgbe : Sklrprodukt Bereche die folgede Produkte: ) Aufgbe : Läge eies Vektors Bestimme die Läge ud de etsprechede Eiheitsvektor der folgede Vektore. =, b =,

Mehr

Brückenkurs Mathematik Dr. Karl TH Nürnberg

Brückenkurs Mathematik Dr. Karl TH Nürnberg Brükekurs Mthemtik Dr. Krl TH Nürerg Qudrtishe Gleihuge Ugleihuge Copyright : Huert Krl Alle Rehte vorehlte. Diese Puliktio drf ohe die usdrüklihe shriftlihe Geehmigug des Autors weder gz oh uszugsweise

Mehr

Die Logarithmusfunktion

Die Logarithmusfunktion Ihltsverzeichis Ihltsverzeichis...1 Die Logrithusfuktio...2 Eiführug...2 Eiige Beispiele...2 Spezielle Logrithe...3 Die Ukehrfuktio der Epoetilfuktio...3 Die Eigeschfte der Logrithusfuktio...4 Defiitiosereich

Mehr

Haushalt 2011. Dezernat I

Haushalt 2011. Dezernat I Husht Dezert I - Zesus - Hupt- ud ersomt - ersort - Geichsteugsstee - Rechts- ud Ordugsmt - Strßeverkehrsmt - Schumt Summe der Amtsbudgets: eröse ufweduge Zuschuss (-) Überschuss (+) 15.86.143 30.809.564-14.983.41-9

Mehr

Potenzen, Wurzeln und ihre Rechengesetze

Potenzen, Wurzeln und ihre Rechengesetze R. Brik http://rik-du.de Seite 9.0.00 Poteze, Wurzel ud ihre Rechegesetze Der Potezegriff Defiitio: Eie Potez ist eie Multipliktio gleicher Fktore (Bsis), ei der der Epoet die Azhl der Fktore git. : =...

Mehr

Nachwachsende Rohstoffe Werkstoffe der Zukunft?

Nachwachsende Rohstoffe Werkstoffe der Zukunft? Nachwachsede Rohstoffe Werkstoffe der Zukuft? Clemes Neuma, BMELV VLI-Herbsttagug am 22.10.2009 im Jagdschloss Kraichstei Folie 1 2 Stoffliche Nutzug achwachseder Rohstoffe Etwa 17 Mio. t fossile ud 2,7

Mehr

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij:

MATRIZENRECHNUNG A = Matrix: m Zeilen, n Spalten. Allgemein: A = heißt Komponente der Matrix (Element der Matrix) aij: MATRIZENRECHNUNG Mtri: 3 5 4 5 A = 3 5 5 7 8 3 8 Allgeei: A = 3 3 3 Zeile, Splte ij: heißt Kopoete der Mtri (Eleet der Mtri) ij ist Kopoete der i-te Zeile, j-te Splte Mtri der Ordug, ( -Mtri): A(,) oder

Mehr

1.1 Eindimensionale, geradlinige Bewegung

1.1 Eindimensionale, geradlinige Bewegung 1 Kiemaik 1. Ieio Or, Geschwidigkei ud Beschleuigug eies Körpers zu jedem Zeipuk beschreibe. y z e y e z e r () Orsvekor: r () R. Girwidz 1 1 Kiemaik 1.1 Eidimesioale, geradliige Bewegug Eidimesioales

Mehr

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt

Gegebenenfalls heisst die Zahl s. der Reihe, und man schreibt Prof. Dr. Berd Dreseler 6 Reihe 6.1 Kovergez vo Reihe Gegebe sei eie Folge s 1 1, 2 1 2 3 1 2 3... s s, s..., 1 2 1, wird der Folge eie weitere Folge omplexer Zhle. Durch s zugeordet. www.berd-dreseler.de

Mehr

Analytische Geometrie

Analytische Geometrie Pives Gymsim Mies J Mhemik Alyishe Geomeie Ueihsfzeihe de Mhemikleisskse / i de Shljhe / d / Noe Mez Am Solz He Ihlsvezeihis LÄNG BTRAG) INS VKTORS INHITSVKTOR SKALARPRODUKT WINKL ZWISCHN ZWI VKTORN NORMALNFORM

Mehr

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK

Prognoseverfahren. 3.4 Aufgaben... 121 ÜBERBLICK Progoseverfahre. Eiführug....................................... 8.. Wisseschafliche Progose.................... 8.. Daebasis ud saisische Progosemodelle......... Beispiel: Umsazprogose........................

Mehr

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt.

7.1 Einführung Unter der n-ten Wurzel aus a versteht man eine Zahl x, die mit n potenziert a ergibt. Rdiziere 7 Rdiziere 7.1 Eiführug Uter der -te Wurzel us versteht eie Zhl x, die it poteziert ergibt. x x für 0 9 3 3 9 * : Wurzelexpoet, N ud 1 : Rdikd, 0 x: Wurzel(wer) t Poteziere: Bsis ud Expoet sid

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

5.7. Aufgaben zu Folgen und Reihen

5.7. Aufgaben zu Folgen und Reihen 5.7. Aufgbe zu Folge ud Reihe Aufgbe : Lieres ud beschrätes Wchstum Aus eiem Qudrt mit der Seiteläge dm gehe uf die rechts gedeutete Weise eue Figure hervor. Die im -te Schritt gefügte Qudrte sid jeweils

Mehr

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable

Allgemeine Lösungen der n-dimensionalen Laplace-Gleichung und ihre komplexe Variable Allgemeie Lösuge der -dimesioale Laplace-Gleichug ud ihre komplexe Variable Dr. rer. at. Kuag-lai Chao Göttige, de 4. Jauar 01 Abstract Geeral solutios of the -dimesioal Laplace equatio ad its complex

Mehr

4 DIGITAL-ANALOG UMSETZUNG, ANALOG-DIGITAL UMSETZUNG

4 DIGITAL-ANALOG UMSETZUNG, ANALOG-DIGITAL UMSETZUNG Prof. Dr.. Schwelleberg, Vorlesug: Messechik 4 4 DIGITALAALOG MSETZG, AALOGDIGITAL MSETZG 4. ALLGEMEIES Im Zeialer der echer werde heuzuage die gemessee ichelekrische oder elekrische Größe i viele Fälle

Mehr

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG)

DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) 26. November 2007 DIE ZUTEILUNGSREGELN 2008 2012: BRANCHENBEISPIEL PAPIER- UND ZELLSTOFFERZEUGUNG (TÄTIGKEITEN XIV UND XV TEHG) Informion zur Anwendung der gesezlichen Regelungen zur Zueilung von Kohlendioxid-Emissionsberechigungen

Mehr

Vorlesung Informationssysteme

Vorlesung Informationssysteme Saarbrücke, 2.05.205 Iformatio Systems Group Vorlesug Iformatiossysteme Vertiefug Kapitel 4: Vo (E)ER is Relatioemodell Erik Buchma (buchma@cs.ui-saarlad.de) Foto: M. Strauch Aus de Videos wisse Sie......welche

Mehr

Übersicht Integralrechnung

Übersicht Integralrechnung Vorbemerkug Übersicht Itegrlrechug Diese Übersicht fßt wesetliche Pukte der Vorlesug zusmme. Sie ersetzt icht die usführliche Vorlesugsmitschrift, weil die dort behdelte Beispiele ud Erläuteruge für die

Mehr

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils

Physikalische Analyse der Dimensionierungsgrundlagen zur Entwicklung einer Methode zur Konzipierung und Optimierung eines Elektromobils Physikalische Aalyse der Dimesioierugsgrudlage zur Ewicklug eier ehode zur Kozipierug ud Opimierug eies Elekromobils Auore: K. Brikma, W. Köhler Lehrgebie Elekrische Eergieechik Feihsraße 140, Philipp-eis-Gebäude,

Mehr