O01. Linsen und Linsensysteme

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "O01. Linsen und Linsensysteme"

Transkript

1 O0 Linsen und Linsensysteme In optischen Systemen spielen Linsen eine zentrale Rolle. In diesem Versuch werden Verahren zur Bestimmun der Brennweite und der Hauptebenen von Linsen und Linsensystemen vorestellt.. Theoretische Grundlaen. Allemeine Grundlaen Linsen sind Körper aus einer lichtbrechenden Substanz, die von zwei meist kuelörmien Flächen berenzt werden. Die Verbindunslinie der Mittelpunkte dieser Flächen heißt optische Achse. Ein au die Linse allender Lichtstrahl wird entsprechend dem Brechunsesetz ebrochen. Beschränkt man sich au Strahlen, die nur kleine Winkel mit der optischen Achse bilden, so vereinit eine Linse alle von einem Geenstandspunkt G ausehenden Strahlen in einem Bildpunkt B. Das Bild heißt reell, wenn sich die Strahlen im Bildpunkt wirklich schneiden, es heißt virtuell, wenn sich nur die rückwärtien Verlänerunen der Strahlen schneiden. Bild : Bildkonstruktion bei einer dünnen Sammellinse (a) und einer Zerstreuunslinse (b) B,G: Bild- bzw. Geenstandsröße b,: Bild- bzw. Geenstandsweite Zunächst werden nur dünne Linsen betrachtet. Bei diesen kann man sich die zweimalie Brechun des Lichtes durch eine einzie Brechun an der Mittelebene der Linse ersetzt denken. Sammellinsen (Konvexlinsen) sind in der Mitte dicker, Zerstreuunslinsen (Konkavlinsen) dünner als am Rand. Parallel zur optischen Achse einallendes Licht wird von einer Sammellinse im Brennpunkt F vereinit; der Abstand des Brennpunktes von der Mittelebene ist die Brennweite der Linse. Der reziproke Wert D/ wird als Brechkrat bezeichnet und in Dioptrien emessen (Dioptrie m - ). Bei Zerstreuunslinsen werden parallel zur optischen Achse einallende Strahlen so ebrochen, als kämen sie von einem Brennpunkt F ; auch hier ist der Abstand des Brennpunktes von der Mittelebene die Brennweite. Sammellinsen haben also reelle, Zerstreuunslinsen virtuelle Brennpunkte (Bild). Beinden sich die beiden brechenden Flächen einer Linse im leichen umebenden Medium, so sind objekt- und bildseitie Brennweite leich. Für die eometrische Konstruktion des Bildes benutzt man (Bild ) den Mittelpunktstrahl, der seine Richtun nicht ändert, den Parallelstrahl, der zum Brennpunktstrahl durch F wird und den Brennpunktstrahl durch F, der zum Parallelstrahl wird. Das Verhältnis von Bildröße B zu Geenstandsröße G bezeichnet man als linearen Abbildunsmaßstab A. Mit Hile des Strahlensatzes eribt sich aus Bild a 05

2 O0 Linsen und Linsensysteme Man erhält auch B b A. () G G B, woraus die Linsenleichun olt: b + b b () + b Bei virtuellen Bildern bzw. Brennpunkten sind b bzw. neativ einzusetzen. Zwei im Abstand d voneinander aneordnete Sammellinsen mit den Einzelbrennweiten und ereben eine resultierende Gesamtbrennweite, die sich aus d + (3) berechnen lässt. Ist der Abstand d klein eenüber den Brennweiten, so addieren sich die Brechkräte: + (3a) Bild : Bildkonstruktion bei einer dicken Sammellinse Bei dicken Linsen oder Linsenruppen kann man sich die zweimalie Brechun der Lichtstrahlen an den Linsenlächen nicht mehr durch eine einzie Brechun an der Mittelebene ersetzt denken. Man hilt sich durch die Einührun der eenstandsseitien Hauptebene H und der bildseitien Hauptebene H (Bild ), an denen man sich die Strahlen ebrochen denkt. Die Bildkonstruktion ist nach olender Vorschrit auszuühren: Zwischen H und H lauen alle Strahlen parallel zur Achse. Der Parallelstrahl wird an der Hauptebene H ebrochen und wird zum Brennpunktstrahl durch den zu H ehörenden Brennpunkt F. Der Brennpunktstrahl durch den zu H ehörenden Brennpunkt F wird zum Parallelstrahl. Der Mittelpunktstrahl 3 wird ledilich parallel verschoben. Bezieht man, b und au die zuehörien Hauptebenen, so elten die Gleichunen () und () auch ür dicke Linsen und Linsenruppen. Die Lae der Hauptebenen lässt sich nach dem in Abschnitt.3 beschriebenen Verahren von Abbe bestimmen. - -

3 O0 Linsen und Linsensysteme. Brennweitenmessun.. Bestimmun aus Geenstands- und Bildweitenmessun Die Brennweite von Sammellinsen misst man am einachsten aus Geenstands- und Bildweite, indem man das Bild eines leuchtenden Geenstandes (beleuchteter Glasmaßstab) au einem Schirm auänt und die entsprechenden Abstände zum Linsenmittelpunkt misst. Aus der Gleichun () berechnet man daraus die Brennweite. Das Verahren hat den Nachteil, dass bei eassten Linsen die Lae der Mittelebene nicht enau bekannt ist... Besselsches Verahren Bei estem Abstand s zwischen Geenstand und Schirm (Bild 3) erhält man bei zwei symmetrischen Linsenstellunen und schare reelle Bilder au dem Schirm (in Stellun ein verrößertes, in Stellun ein verkleinertes), wenn der Abstand s rößer als die vierache Brennweite der Linse ist. Ist die Größe der Verschiebun von Stellun nach Stellun leich e, so ilt ween der Symmetrie der Linsenstellunen ( b, b ) e b bzw. e b (4) s + b bzw. s + b (4a) Bild 3: Besselsche Methode der Brennweitenbestimmun Löst man nach und b au und setzt in die Linsenleichun () ein, so eribt sich e s 4 s. (5)..3 Zerstreuunslinsen Da die Abbildun mit Zerstreuunslinsen nur virtuelle Bilder lieert, muss deren Brennweite indirekt emessen werden. Man setzt zu diesem Zweck die Zerstreuunslinse, deren Brennweite Z zu messen ist, mit einer Sammellinse bekannter Brennweite S zu einem zentrierten Linsensystem zusammen. Ist der Linsenabstand zu vernachlässien, so eribt sich nach Gleichun (3a) ür die Brennweite des Systems +, S Z wobei Z neativ ist. Wählt man die Brennweite der Sammellinse kleiner als den Betra der Brennweite der Zerstreuunslinse, so überwiet die sammelnde Wirkun, und das System hat eine positive Brennweite, die sich nach den beschriebenen Methoden messen lässt. Aus S und eribt sich Z S (6) S - 3 -

4 O0 Linsen und Linsensysteme.3 Brennweite und Hauptebenen eines Linsensystems Die Messun der Brennweite und die Bestimmun der Lae der Hauptebenen eines Linsensystems erolt nach dem Verahren von Abbe, das au der Messun des Abbildunsmaßstabes reeller Bilder beruht. Kombiniert man die Gleichunen () und () miteinander, so eribt sich + (7a) A und b + A. (7b) ( ) Die Krümmunsmittelpunkte K, K der sich erebenden Flächen beinden sich bei einem optischen zentrierten System au einer Geraden. Diese wird im Allemeinen als optische Achse bezeichnet. Für die Brennweiten und kann esat werden, wenn links und rechts der Linse die leiche Brechzahl n vorliet, dann ilt: ' (8) ansonsten ilt: Bild 4: Messun der Hauptebenenlae nach Abbe n. (9) ' n' Die Brechun erolt eientlich an ekrümmten Flächen der Linsen. Zur Vereinachun werden aber die ekrümmten Flächen durch Ebenen ersetzt und diese als Hauptebene bezeichnet, wobei sich die Hauptebene H au der Geenstandsseite und die Hauptebene H au der Bildseite beindet. Der Hauptebenenabstand d beträt typischerweise /3 der Linsendicke. Bei einer dünnen Linse allen die Hauptebenen zusammen. Es ibt nur eine Hauptebene H. Die Geenstandsweite und die Bildweite b sind nicht direkt messbar. Da die Lae der Hauptebenen H und H noch unbekannt ist, misst man zunächst die Enternunen M und b M von einer beliebi am Linsensystem anebrachten Ablesemarke M. Man erhält somit M + γ und b M b + β (0) Setzt man die Gleichunen (7a) und (7b) in die Gleichun (0) ein so erhält man: M + A γ bzw. b M ( + A) β () Es kann vorkommen, dass γ oder β neativ sind. Ein neatives γ bedeutet, dass die Hauptebene H rechts von der Ablesemarke M liet. Ein neatives β bedeutet, dass H links von M liet. Die Brennweite kann ebenalls neativ werden. In diesem Falle liet der eenstandsseitie Brennpunkt F rechts von H, der bildseitie Brennpunkt F links von H

5 O0 Linsen und Linsensysteme Beispiel: Bestimmun von Brennweiten und Hauptebenen eines Linsensystems Messun M / dm b M / dm A 3,4 6,6,0 6,4 3,6 0,5 Berechnun des Abbildunsmaßstabes A bm 6,6 β A,0 M 3,4 γ 6,6 β,0(3,4 γ ) β,0γ 0, bm 3,6 β A 0,5 M 6,4 γ 3,6 β 0,5(6,4 γ ) β 0,5γ + 0,4 β 0,6dm γ 0,4dm Bestimmun der Brennweite sowie von b und in einer Messreihe + b B b A M + γ b M b + β G M b b ( / b + b / b) ( / A) + A A M + γ + ( + γ ) M über autraen Anstie Absolutlied: + γ A A b M b + b b b ( / + b / ) + ( A) ( ) b M b + β A + + β bm über A autraen Anstie ( A + ) A b + Absolutlied: + β Bild 5a: Enternun M über inversen Abbildunsmaßstab Bild 5b: Enternun b M über Abbildunsmaßstab - 5 -

6 O0 Linsen und Linsensysteme.Versuch. Vorbetrachtun Auabe : Beschreiben Sie mit eienen Worten die Heranehensweise ür die Ermittlun der Brennweite zweier Sammellinsen nach den Auaben a) und b). Auabe : Wie kann man den Abbildunsmaßstab A eines Linsensystems bestimmen?. Versuchsdurchührun.. Verwendete Geräte Optische Bank mit Reitern, Lampe, verschiedenen Linsen, Fotoobjektiv, Abbildunsmaßstab, Lineal.. Versuchshinweise Auabe : Ermittlun der Brennweite zweier Sammellinsen a) durch die Bestimmun von Geenstandsweite und Bildweite b sowie b) nach dem Besselschen Verahren Führen Sie jeweils drei Messunen pro Linse und Bestimmunsverahren durch. Auabe a: Bestimmun von Geenstands- und Bildweite Um den Bankmaßstab zur Messun nutzen zu können, empiehlt sich die Messun von Geenstandsort l, Linsenort l und Bildort l 3 (siehe Bild 6). Bestimmen Sie aus diesen Werten die Geenstands- und Bildweiten. Auabe b: Verahren nach Bessel Messen Sie die Größen s und e direkt. Bild 6: Bestimmun von und b Auabe : Brennweite einer Zerstreuunslinse Bestimmen Sie die Brennweite einer Zerstreuunslinse. Wählen Sie die daür notwendie Sammellinse selbständi aus Messen Sie das Linsensystem nach dem Besselschen Verahren. Führen Sie drei Messunen bei einem unterschiedlichen Abstand zwischen Geenstand und Bild durch. Auabe 3: kompaktes Linsensystem Die Messun erolt analo zur Auabe a Messen Sie bei jeder Einzelmessun den Abbildunsmaßstab mit. Messen Sie dazu die Bildröße B am Schirm mit einem Lineal aus. Der als Geenstand G einesetzte Glasmaßstab besitzt eine Millimeterteilun. Bestimmen Sie ür das kompakte Linsensystem (Fotoobjektiv) die Brennweite und die Lae der Hauptebenen relativ zu einer willkürlich ewählten Markierun M. Führen Sie 6 Messunen bei einem unterschiedlichen Abstand von Geenstandsort l, Linsenort l und Bildort l 3 durch

7 O0 Linsen und Linsensysteme.3 Versuchsauswertun Auabe : Ermittlun der Brennweite zweier Sammellinsen durch die Bestimmun von Geenstandsund Bildweite sowie nach dem Besselschen Verahren Auabe a: Bestimmun von Geenstands- und Bildweite Welche Vorteile hat dieses Vorehen in Bezu au die Messunsicherheit? Prüen Sie die Messenauikeit bei der Brennweitenbestimmun durch die Ermittlun von Geenstandsweite und Bildweite b. Stellen Sie dazu die Wertepaare von und b in einem Diaramm der Funktion b () raphisch dar (Siehe Bild 7)und verbinden Sie die zusammenehörien Punkte miteinander. Die sich daraus erebenden drei Geraden einer Linse sollen sich in einem Punkt P schneiden. Fällen Sie von P aus Lote au die Koordinatenachsen. Sie erhalten so die Brennweite einer Linse. Bestimmen Sie die Messunsicherheit durch Bild 7: Graphische Bestimmun der Brennweiten eine Fehlerrechnun ür beide Methoden am Beispiel einer Messun. Diskutieren Sie das Erebnis. Kann die ermittelte relative Messunsicherheit au alle durcheührten Messunen bezoen werden? Auabe : Brennweite einer Zerstreuunslinse Berechnen Sie die Messunsicherheit (absolut und relativ) durch eine Fehlerrechnun ür die Brennweite der Zerstreuunslinse unter Verwendun der in Auabe bestimmten relativen Abweichunen des Besselschen Verahrens. Auabe 3: kompaktes Linsensystem Stellen Sie in je einem Diaramm die raphische Funktion von M (/A) sowie b M (A) dar. Die sich daraus erebenden Anstiee entsprechen der Brennweite. Ermitteln Sie die Hauptebenen H und H, skizzieren Sie das Linsensystem und zeichnen Sie die ermittelten Hauptebenen relativ zur Markierun M und den Brennpunkten maßstabserecht ein. 3. Eränzun 3. Eränzende Bemerkunen Linsenehler Die Aussae, dass sich achsenparallele Strahlen in einem Punkt, dem Brennpunkt der Linse, schneiden, ist nur ür Strahlen mit kleinem Abstand zur optischen Achse in uter Näherun erüllt. Je achsenerner der Strahl im Geenstandsraum verläut, umso näher rückt im Bildraum sein Schnittpunkt mit der optischen Achse an die Linse. Die Brennweite ür achsenerne Strahlen ist also eriner als diejenie ür achsennahe Strahlen (sphärische Abberation)

8 O0 Linsen und Linsensysteme Die Ausbreitunseschwindikeit von Licht in Materie mit dem Brechunsindex n ist wellenlänenabhäni (Dispersion). Rotes Licht wird an den Grenzlächen schwächer ebrochen als blaues Licht, die Brennweite einer Linse ist also ür rotes Licht rößer als ür blaues Licht (chromatische Abberation). Ein weiterer Abbildunsehler macht sich bemerkbar bei parallelen Lichtbündeln, die unter roßem Winkel een die optische Achse einallen. Als Bild eribt sich in zwei verschiedenen Enternunen von der Linse je ein Strich. Die beiden Striche sind zueinander senkrecht (Astimatismus schieer Bündel). Neben den enannten ibt es weitere Linsenehler (z.b. Koma, Bildwölbun, Verzeichnun), au die hier nicht eineanen werden soll. Linsenehler können weitehend kompensiert werden durch eeinete Kombination mehrerer Linsen mit unterschiedlichen Krümmunsradien und aus verschiedenen Glassorten mit unterschiedlicher Dispersion. Eine Korrektur der chromatischen Abberation zumindest ür zwei Farben erreicht man durch Kombination einer Sammellinse mit einer Zerstreuunslinse aus zwei Glassorten mit eeinetem Brechunsindex (Achromat). Weitehende Korrekturen machen kompliziertere Linsensysteme mit mehreren Linsen erorderlich. Hinweis: Bei symmetrischem Schli lieen die Hauptebenen innerhalb der Linse, typischerweise beträt der Hauptlinsenabstand /3 der Linsendicke. Bei stark asymmetrischem Schli können die Hauptebenen auch außerhalb der Linse lieen. Bild 8: Einie Linsenbeispiele mit einetraenen Hauptebenen - 8 -

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau

Versuchsziel. Literatur. Grundlagen. Physik-Labor Fachbereich Elektrotechnik und Informatik Fachbereich Mechatronik und Maschinenbau Physik-Labor Fachbereich Elektrotechnik und Inormatik Fachbereich Mechatronik und Maschinenbau O Physikalisches Praktikum Brennweite von Linsen Versuchsziel Es sollen die Grundlaen der eometrischen Optik

Mehr

Dünne Linsen und Spiegel

Dünne Linsen und Spiegel Versuch 005 Dünne Linsen und Spieel Ral Erleach Auaen. Charakterisieren der drei eeenen Linsen mittels Bildweiten-, Bessel- und Autokollimationsverahren.. Bestätien der Linsenleichun. 3. Bestimmen des

Mehr

11.1 Allgemeine Theorie

11.1 Allgemeine Theorie Kapitel Linsen .. ALLGEMEINE THEORIE 3. Allemeine Theorie.. Geometrische Optik Die eometrische Optik (oder Strahlenoptik) umfasst denjenien Bereich der Optik, welcher durch die Vernachlässiun der endlichen

Mehr

Brennweite und Hauptebenen eines Linsensystems

Brennweite und Hauptebenen eines Linsensystems 1 Augabenstellung Seite 1 1.1 Die Brennweite und die Lagen der Hauptebenen eines sind nach der Methode von Abbe zu bestimmen, die geundenen Ergebnisse in einer maßstabsgerechten Skizze darzustellen. 1.

Mehr

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode

Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Physikalische Grundlagen Grundbegriffe Brechungsgesetz Abbildungsgleichung Brechung an gekrümmten Flächen Sammel- und Zerstreuungslinsen Besselmethode Linsen sind durchsichtige Körper, die von zwei im

Mehr

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung)

Theoretische Grundlagen Physikalisches Praktikum. Versuch 5: Linsen (Brennweitenbestimmung) Theoretische Grundlagen hysikalisches raktikum Versuch 5: Linsen (Brennweitenbestimmung) Allgemeine Eigenschaften von Linsen sie bestehen aus einem lichtdurchlässigem Material sie weisen eine oder zwei

Mehr

Fehlerrechnung in der Optik

Fehlerrechnung in der Optik HTL Saalfelden Fehlerrechnun in der Optik Seite von 6 Heinrich Schmidhuber heinrich_schmidh@hotmail.com Fehlerrechnun in der Optik Mathematische / Fachliche Inhalte in Stichworten: Fehlerarten, Fehlerfortplanzun,

Mehr

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker

Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik. von Sören Senkovic & Nils Romaker Physikalisches Grundpraktikum II Versuch 1.1 Geometrische Optik von Sören Senkovic & Nils Romaker 1 Inhaltsverzeichnis Theoretischer Teil............................................... 3 Grundlagen..................................................

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. O0 Optik: Abbildung mit dünnen Linsen (Pr_PhI_O0_Linsen_6, 5.06.04). Name Matr.

Mehr

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009

O1 Linsen. Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Versuchsprotokoll von Markus Prieske und Sergej Uschakow (Gruppe 22mo) Münster, 27. April 2009 Email: Markus@prieske-goch.de; Uschakow@gmx.de Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Linsentypen.......................................

Mehr

Protokoll O 4 - Brennweite von Linsen

Protokoll O 4 - Brennweite von Linsen Protokoll O 4 - Brennweite von Linsen Martin Braunschweig 27.05.2004 Andreas Bück 1 Aufgabenstellung Die Brennweite dünner Linsen ist nach unterschiedlichen Verfahren zu bestimmen, Abbildungsfehler sind

Mehr

Linsen und Linsensysteme

Linsen und Linsensysteme 1 Ziele Linsen und Linsensysteme Sie werden hier die Brennweiten von Linsen und Linsensystemen bestimmen und dabei lernen, wie Brillen, Teleobjektive und andere optische Geräte funktionieren. Sie werden

Mehr

Versuch 50. Brennweite von Linsen

Versuch 50. Brennweite von Linsen Physikalisches Praktikum für Anfänger Versuch 50 Brennweite von Linsen Aufgabe Bestimmung der Brennweite durch die Bessel-Methode, durch Messung von Gegenstandsweite und Bildweite, durch Messung des Vergrößerungsmaßstabs

Mehr

Sammellinse Zerstreuungslinse Abb. 6 - Linsen

Sammellinse Zerstreuungslinse Abb. 6 - Linsen PS - PTIK P. Rendulić 2007 LINSEN 3 LINSEN 3. Linsenarten Eine Linse ist ein rotationssymmetrischer Körper der meist aus las oder transparentem Kunststo herestellt ist. Die Linse ist von zwei Kuellächen

Mehr

Physikalisches Praktikum I. Optische Abbildung mit Linsen

Physikalisches Praktikum I. Optische Abbildung mit Linsen Fachbereich Physik Physikalisches Praktikum I Name: Optische Abbildung mit Linsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: ruppennummer: Endtestat: Dieser Fragebogen muss

Mehr

Optische Abbildung (OPA)

Optische Abbildung (OPA) Seite 1 Themengebiet: Optik Autor: unbekannt geändert: M. Saß (30.03.06) 1 Stichworte Geometrische Optik, Lichtstrahl, dünne und dicke Linsen, Linsensysteme, Abbildungsgleichung, Bildkonstruktion 2 Literatur

Mehr

Versuch 17: Geometrische Optik/ Mikroskop

Versuch 17: Geometrische Optik/ Mikroskop Versuch 17: Geometrische Optik/ Mikroskop Mit diesem Versuch soll die Funktionsweise von Linsen und Linsensystemen und deren Eigenschaften untersucht werden. Dabei werden das Mikroskop und Abbildungsfehler

Mehr

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!)

C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) C. Nachbereitungsteil (NACH der Versuchsdurchführung lesen!) 4. Physikalische Grundlagen 4. Strahlengang Zur Erklärung des physikalischen Lichtverhaltens wird das Licht als Lichtstrahl betrachtet. Als

Mehr

Brennweite von Linsen

Brennweite von Linsen Brennweite von Linsen Einführung Brennweite von Linsen In diesem Laborversuch soll die Brennweite einer Sammellinse vermessen werden. Linsen sind optische Bauelemente, die ein Bild eines Gegenstandes an

Mehr

Versuch 320. Linsen, Linsensysteme und Projektionsapparat. 320.1 Erläuterungen. 320.1.1 Bildkonstruktion PN1101

Versuch 320. Linsen, Linsensysteme und Projektionsapparat. 320.1 Erläuterungen. 320.1.1 Bildkonstruktion PN1101 Versuch 30 Linsen, Linsensysteme und Projektionsapparat Lernziel: Der praktische Uman mit Linsen und Linsensystemen soll eüt werden. Die Näherunskonzepte der eometrischen Optik sollen ür dünne Linsen,

Mehr

BL Brennweite von Linsen

BL Brennweite von Linsen BL Brennweite von Linsen Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Geometrische Optik................... 2 2.2 Dünne Linse........................

Mehr

Einführung in die Fehlerrechnung (statistische Fehler und Fehlerfortpflanzung) anhand eines Beispielexperiments (Brennweitenbestimmung einer Linse)

Einführung in die Fehlerrechnung (statistische Fehler und Fehlerfortpflanzung) anhand eines Beispielexperiments (Brennweitenbestimmung einer Linse) Physiklabor Prof. Dr. M. Wülker Einführun in die Fehlerrechnun (statistische Fehler und Fehlerfortpflanzun) anhand eines Beispielexperiments (Brennweitenbestimmun einer Linse) Diese Einführun erläutert

Mehr

Brennweite von Linsen und Linsensystemen

Brennweite von Linsen und Linsensystemen - D1.1 - Versuch D1: Literatur: Stichworte: Brennweite von Linsen und Linsensystemen Demtröder, Experimentalphysik Bd. II Halliday, Physik Tipler, Physik Walcher, Praktikum der Physik Westphal, Physikalisches

Mehr

Brennweite und Abbildungsfehler von Linsen

Brennweite und Abbildungsfehler von Linsen c Doris Samm 2015 1 Brennweite und Abbildungsfehler von Linsen 1 Der Versuch im Überblick Wir sehen mit unseren Augen. Manchmal funktioniert das gut: Wir sehen alles gestochen scharf. Manchmal erscheinen

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #21 26/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Brechkraft Brechkraft D ist das Charakteristikum einer Linse D = 1 f! Einheit: Beispiel:! [ D]

Mehr

Geometrische Optik. Lichtbrechung

Geometrische Optik. Lichtbrechung Geometrische Optik Bei der Beschreibung des optischen Systems des Mikroskops bedient man sich der Gaußschen Abbildungstheorie. Begriffe wie Strahlengang im Mikroskop, Vergrößerung oder auch das Verständnis

Mehr

Praktikum I BL Brennweite von Linsen

Praktikum I BL Brennweite von Linsen Praktikum I BL Brennweite von Linsen Hanno Rein, Florian Jessen Betreuer: Gunnar Ritt 5. Januar 2004 Motivation Linsen spielen in unserem alltäglichen Leben eine große Rolle. Ohne sie wäre es uns nicht

Mehr

Luftdichte und Luftfeuchte

Luftdichte und Luftfeuchte M2 Luftdichte und Luftfeuchte Durch äun werden Masse und Volumen der Luft in einem Glaskolben bestimmt und unter Berücksichtiun des Luftdrucks und der Luftfeuchtikeit die Luftnormdichte berechnet. 1. Theoretische

Mehr

3.7 Linsengesetze 339

3.7 Linsengesetze 339 3.7 Linsengesetze 339 3.7. Linsengesetze Ziel Ziel des Versuches ist ein besseres Verständnis der optischen Abbildung durch Linsen, insbesondere durch zusammengesetzte Linsensysteme. Wesentlich ist dabei

Mehr

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis

Geometrische Optik. Versuch: P1-40. - Vorbereitung - Inhaltsverzeichnis Physikalisches Anfängerpraktikum Gruppe Mo-6 Wintersemester 2005/06 Julian Merkert (229929) Versuch: P-40 Geometrische Optik - Vorbereitung - Vorbemerkung Die Wellennatur des Lichts ist bei den folgenden

Mehr

Physik - Optik. Physik. Graz, 2012. Sonja Draxler

Physik - Optik. Physik. Graz, 2012. Sonja Draxler Wir unterscheiden: Geometrische Optik: Licht folgt dem geometrischen Strahlengang! Brechung, Spiegel, Brechung, Regenbogen, Dispersion, Linsen, Brillen, optische Geräte Wellenoptik: Beugung, Interferenz,

Mehr

Astronomie: gängige Einheit sind Lichtjahre, 1 Lj = 9,46 10 15 m (c t = 3 10 8 m/s 3,156 10 7 s)

Astronomie: gängige Einheit sind Lichtjahre, 1 Lj = 9,46 10 15 m (c t = 3 10 8 m/s 3,156 10 7 s) Optik: Allgemeine Eigenschaften des Lichts Licht: elektromagnetische Welle Wellenlänge: λ= 400 nm bis 700 nm Frequenz: f = 4,10 14 Hz bis 8,10 14 Hz c = f λ c: Lichtgeschwindigkeit = 2,99792458, 10 8 m/s

Mehr

I. Dokumenteninformationen

I. Dokumenteninformationen Seite 0 von 7 I. Dokumenteninformationen U-Werte eneiter Verlasunen Autoren Headline Subline Stichwörter 9815 Zeichen (esamt inkl. Leerzeichen), 3 Bilder Bilder Zeichen Titel/Rubrik Ausabe Seite 1 von

Mehr

Abriss der Geometrischen Optik

Abriss der Geometrischen Optik Abriss der Geometrischen Optik Rudolf Lehn Peter Breitfeld * Störck-Gymnasium Bad Saulgau 4. August 20 Inhaltsverzeichnis I Reflexionsprobleme 3 Reflexion des Lichts 3 2 Bilder am ebenen Spiegel 3 3 Gekrümmte

Mehr

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK

P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK P1-41 AUSWERTUNG VERSUCH GEOMETRISCHE OPTIK GRUPPE 19 - SASKIA MEIßNER, ARNOLD SEILER 1 Bestimmung der Brennweite 11 Naives Verfahren zur Bestimmung der Brennweite Es soll nur mit Maÿstab und Schirm die

Mehr

36. Linsen und optische Instrumente

36. Linsen und optische Instrumente 36. Linsen und optische Instrumente 36.. Brechung an Kugellächen Linsen besitzen aus ertigungstechnischen Gründen meist Kugellächen (Ausnahmen sind Spitzenobjektive, z. B. ür Projektionslithographie).

Mehr

Linsen und Augenmodell (O1)

Linsen und Augenmodell (O1) Linsen und Augenmodell (O) Ziel des Versuches Im ersten Versuchsteil werden Brennweiten von dünnen Sammel- und Zerstreuungslinsen mit zwei Verfahren, dem Besselverfahren und der Autokollimation, bestimmt.

Mehr

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein.

; 8.0 cm; 0.40. a) ; wenn g = 2f ist, muss auch b = 2f sein. Physik anwenden und vestehen: Lösunen 5.3 Linsen und optische Instumente 4 Oell Füssli Vela AG 5.3 Linsen und optischen Instumente Linsen 4 ; da die ildweite b vekleinet wid und die ennweite konstant ist,

Mehr

Physikalisches Grundpraktikum

Physikalisches Grundpraktikum Ernst-Moritz-Arndt-Universität Greifswald / Institut für Physik Physikalisches Grundpraktikum Praktikum für Mediziner O Lichtbrechung und Linsengesetze Name: Versuchsgruppe: Datum: Mitarbeiter der Versuchsgruppe:

Mehr

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz.

Geradlinige Ausbreitung des Lichts im homogenen und isotropen Medium, Reflexionsgesetz, Brechungsgesetz. O1 Geometrische Optik Stoffgebiet: Abbildung durch Linsen, Abbildungsgleichung, Bildkonstruktion, Linsensysteme, optische Instrumente ( Beleuchtungs- und Abbildungsstrahlengang im Projektionsapparat )

Mehr

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse).

1 Grundlagen der geometrischen Optik 1.1 Vorzeichenkonvention (nach DIN 1335) Die Lichtrichtung verläuft von links nach rechts (+z-achse). Physikalisches Praktikum II Abbildung mit Linsen (LIN) Stichworte: Geometrische Optik, Snellius'sches Brechungsgesetz, Abbildung eines Punktes durch Lichtstrahlen, Brennpunkte, auptpunkte, auptebene, reelle

Mehr

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion

Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion Samstag, 17. Januar 2015 Praktikum "Physik für Biologen und Zweifach-Bachelor Chemie" Protokoll zum 5.Versuchstag: Brechungsgesetz und Dispersion von Olaf Olafson Tutor: --- Einführung: Der fünfte Versuchstag

Mehr

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum

Protokoll. Mikroskopie. zum Modul: Physikalisches Grundpraktikum 2. bei. Prof. Dr. Heyne Sebastian Baum Protokoll Mikroskopie zum Modul: Physikalisches Grundpraktikum 2 bei Prof. Dr. Heyne Sebastian Baum am Fachbereich Physik Freien Universität Berlin Ludwig Schuster (ludwig.schuster@fu-berlin.de) Florian

Mehr

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen )

Geometrische Optik. Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) Geometrische Optik Beschreibung der Propagation durch Richtung der k-vektoren ( Lichtstrahlen ) k - Vektoren zeigen zu Wellenfronten für Ausdehnung D von Strukturen, die zu geometrischer Eingrenzung führen

Mehr

PROJEKTMAPPE. Name: Klasse:

PROJEKTMAPPE. Name: Klasse: PROJEKTMAPPE Name: Klasse: REFLEXION AM EBENEN SPIEGEL Information Bei einer Reflexion unterscheidet man: Diffuse Reflexion: raue Oberflächen reflektieren das Licht in jede Richtung Regelmäßige Reflexion:

Mehr

Geometrische Optik / Auge (Versuch AUG)

Geometrische Optik / Auge (Versuch AUG) Kapitel 1 Geometrische Optik / Auge (Versuch AUG) Name: Gruppe: Datum: Betreuer(in): Testat/Versuchsdurchführung: 1.1 Medizinischer Bezug und Ziel des Versuchs Grundkenntnisse in geometrischer Optik werden

Mehr

V 21 Linsengesetze und Linsenfehler

V 21 Linsengesetze und Linsenfehler V 21 Linsengesetze und Linsenfehler A) Stichworte zur Vorbereitung Geometrische Optik, Hauptebenen von Linsen, Brechungsgesetz, Dispersion des Lichts, Farbfehler, Öffnungsfehler, Astigmatismus. B) Literatur

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Arbeitsblätter für die Klassen 7 bis 9: Linsen und optische Geräte Das komplette Material finden Sie hier: School-Scout.de Thema:

Mehr

GEOMETRISCHE OPTIK I. Schulversuchspraktikum WS 2002 / 2003. Jetzinger Anamaria Mat.Nr. 9755276

GEOMETRISCHE OPTIK I. Schulversuchspraktikum WS 2002 / 2003. Jetzinger Anamaria Mat.Nr. 9755276 GEOMETRISCHE OPTIK I Schulversuchspraktikum WS 2002 / 2003 Jetzinger Anamaria Mat.Nr. 9755276 1. Mond und Sonnenfinsternis Inhaltsverzeichnis 1.1 Theoretische Grundlagen zur Mond und Sonnenfinsternis 1.1.1

Mehr

Schwingungen und Wellen Zusammenfassung Abitur

Schwingungen und Wellen Zusammenfassung Abitur Schwinunen und Wellen Zusammenfassun Abitur Raphael Michel 12. März 2013 1 Mechanische Schwinunen 1.1 Harmonische Schwinunen Die Federkraft ist definiert durch F = D s. Für die Elonation, Geschwindikeit

Mehr

Optische Instrumente

Optische Instrumente Optiche Intrumente Für die verchiedenten Anwendunen werden Kombinationen au n und anderen optichen Elementen eineetzt. In dieem Abchnitt werden einie dieer optichen Intrumente voretellt. In vielen Fällen

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Geometrische Optik mit ausführlicher Fehlerrechnung

Geometrische Optik mit ausführlicher Fehlerrechnung Protokoll zum Versuch Geometrische Optik mit ausführlicher Fehlerrechnung Kirstin Hübner Armin Burgmeier Gruppe 15 13. Oktober 2008 1 Brennweitenbestimmung 1.1 Kontrollieren der Brennweite Wir haben die

Mehr

Aufgabensammlung mit Lösungen zum Applet optische Bank

Aufgabensammlung mit Lösungen zum Applet optische Bank Aufgabensammlung mit Lösungen zum Applet optische Bank (LMZ, Bereich Medienbildung, OStR Gröber) http://webphysics.davidson.edu/applets/optics4/default.html I. Aufgaben für Mittelstufe 1. Abbilden mit

Mehr

Versuch P2: Optische Abbildungen und Mikroskop

Versuch P2: Optische Abbildungen und Mikroskop Physikalisches Praktikum für Pharmazeuten Gruppennummer Name Vortestat Endtestat Vorname Versuch A. Vorbereitungsteil (VOR der Versuchsdurchführung lesen!) 1. Kurzbeschreibung In diesem Versuch werden

Mehr

Warum kann es keine durchsichtigen Stoffe geben mit einem Brechungskoeffizient n < 1?

Warum kann es keine durchsichtigen Stoffe geben mit einem Brechungskoeffizient n < 1? 1 Optik 1.1 Lichtausbreitung, Reflexion und Brechung 1. Brechungskoeffizient n < 1? Warum kann es keine durchsichtigen Stoffe geben mit einem Brechungskoeffizient n < 1? c V n Stoff = c Stoff c V = Lichtgeschwindigkeit

Mehr

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll

Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Versuchsprotokoll Bestimmung der Brennweite dünner Linsen mit Hilfe der Linsenformel Tobias Krähling email: Homepage: 0.04.007 Version:. Inhaltsverzeichnis. Aufgabenstellung.....................................................

Mehr

Optik. Optik. Optik. Optik. Optik

Optik. Optik. Optik. Optik. Optik Nenne das Brechungsgesetz! Beim Übergang von Luft in Glas (Wasser, Kunststoff) wird der Lichtstrahl zum Lot hin gebrochen. Beim Übergang von Glas (Wasser...) in Luft wird der Lichtstrahl vom Lot weg gebrochen.

Mehr

Literatur: Mankiw, Kap. 31 und 32, Bofinger, kap. 16 bis 18, Arnold, Kap. V. Aufschwung: Wachstumsrate BIP steigt. Abschwung: Wachstumsrate BIP fällt

Literatur: Mankiw, Kap. 31 und 32, Bofinger, kap. 16 bis 18, Arnold, Kap. V. Aufschwung: Wachstumsrate BIP steigt. Abschwung: Wachstumsrate BIP fällt 1 12. Kurzfristie wirtschaftliche Schwankunen Literatur: Mankiw, Kap. 31 und 32, Bofiner, kap. 16 bis 18, Arnold, Kap. V Beriffe: Aufschwun: Wachstumsrate BIP steit Abschwun: Wachstumsrate BIP fällt Rezession:

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016. Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum ür Oberstuenlehrpersonen Geometrische Optik (GO) Frühjahrssemester 2016 Physik-Institut der Universität Zürich Inhaltsverzeichnis 7 Geometrische Optik (GO) 7.1 7.1 Einleitung........................................

Mehr

Laborversuche zur Physik 2 II - 1. Abbildungsgesetze für Linsen und einfache optische Instrumente

Laborversuche zur Physik 2 II - 1. Abbildungsgesetze für Linsen und einfache optische Instrumente FB Physik Laborversuche zur Physik 2 II - 1 Linsen und optische Systeme Reyher, 20.03.12 Abbildungsgesetze für Linsen und einfache optische Instrumente Ziele Anwendung und Vertiefung elementarer Gesetze

Mehr

DOWNLOAD. Optik: Linsen. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug. Ethikunterricht anschaulich und handlungsorientiert!

DOWNLOAD. Optik: Linsen. Grundwissen Optik und Akustik. Nabil Gad. Downloadauszug. Ethikunterricht anschaulich und handlungsorientiert! DOWNLOAD Nabil Gad Optik:.2011 12:08 Uhr Seite 1 Die Bergedorfer Produktpalette: Kopiervorlagen Unterrichtsideen Klammerkarten COLORCLIPS Lehrer- und Schülerkarteien Fachbücher Lernsoftware Bücherservice

Mehr

Instrumenten- Optik. Mikroskop

Instrumenten- Optik. Mikroskop Instrumenten- Optik Mikroskop Gewerblich-Industrielle Berufsschule Bern Augenoptikerinnen und Augenoptiker Der mechanische Aufbau Die einzelnen mechanischen Bauteile eines Mikroskops bezeichnen und deren

Mehr

[Dem06], [GKV86], [Kuc94], [Lin93], [Tip98], [Mey06], [Wal94], [Hau92]

[Dem06], [GKV86], [Kuc94], [Lin93], [Tip98], [Mey06], [Wal94], [Hau92] Tobias Krählin email: Homepae: 25.04.2008 Version: 1.2 Stichworte: Literatur: Doppelbrechun; optische Achse; Kristallhauptschnitt; ordentlicher und außerordentlicher

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 7. Übungsblatt - 6.Dezember 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Optische

Mehr

Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie?

Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie? Frage 55: Erklären Sie das Grundprinzip der Bilderzeugung der Ultraschall-Sonographie? Wie andere Verfahren (CT, PET, MRT usw.) findet Ultraschall als bildgebendes Verfahren eine breite Anwendung. Diese

Mehr

Staatliches Seminar für Didaktik und Lehrerbildung (Realschulen) in Reutlingen. Dokumentation für den

Staatliches Seminar für Didaktik und Lehrerbildung (Realschulen) in Reutlingen. Dokumentation für den Staatliches Seminar für Didaktik und Lehrerbildung (Realschulen) in Reutlingen Dokumentation für den Der Mensch biologisch, chemisch und physikalisch betrachtet am 20.07.2011 Thema: Ausgearbeitet von:

Mehr

SCHAEFER Didier REISER Yves PHYSIK 9 TE. 1. Optik

SCHAEFER Didier REISER Yves PHYSIK 9 TE. 1. Optik SCHAEFER Didier REISER Yves PHYSIK 9 TE 1. Optik Optik 1 Online Version: http://members.tripod.com/yvesreiser Inhaltsverzeichnis I. Das Licht 2 1. Lichtquellen 2 2. Beleuchtete Körper 3 3. Die Ausbreitung

Mehr

Die Linsengleichung. Die Linsengleichung 1

Die Linsengleichung. Die Linsengleichung 1 Die Linsengleichung 1 Die Linsengleichung In diesem Projektvorschlag wird ein bereits aus der Unterstufenphysik bekannter Versuch mit mathematischen Mitteln beschrieben, nämlich die Abbildung durch eine

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 2. Übung (KW 44) Schräger Wurf ) Bootsfahrt ) Physik ET, WS Aufaben mit Lösun. Übun (KW 44). Übun (KW 44) Aufabe (M.3 Schräer Wurf ) Ein Ball soll vom Punkt P (x, y ) (, ) aus unter einem Winkel α zur Horizontalen schrä nach oben eworfen werden. (a)

Mehr

I. DAS LICHT: Wiederholung der 9. Klasse.. S3

I. DAS LICHT: Wiederholung der 9. Klasse.. S3 STRAHLENOPTIK Strahlenoptik 13GE 013/14 S Inhaltsverzeichnis I. DAS LICHT: Wiederholung der 9. Klasse.. S3 II. DIE REFLEXION.. S3 a. Allgemeine Betrachtungen.. S3 b. Gesetzmäßige Reflexion am ebenen Spiegel..

Mehr

Grundkurs Physik OPTIK. Peter Ryder. Mai 2003. Universität Bremen Fachbereich 1

Grundkurs Physik OPTIK. Peter Ryder. Mai 2003. Universität Bremen Fachbereich 1 Grundkurs Physik OPTIK Peter Ryder Mai 2003 Universität Bremen Fachbereich 1 Vorwort Diese Einführung in die geometrische Optik und Wellenoptik entstand aus einem Vorlesungsskript, das für das zweite

Mehr

Physik-Vorlesung. Optik.

Physik-Vorlesung. Optik. Physik Optik 3 Physik-Vorlesung. Optik. SS 15 2. Sem. B.Sc. Oec. und B.Sc. CH Physik Optik 5 Themen Reflexion Brechung Polarisation Spektroskopie Physik Optik 6 Lehre vom Sehen (1/2) Was ist Sehen physikalisch?

Mehr

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie

Theoretische Grundlagen - Physikalisches Praktikum. Versuch 11: Mikroskopie Theoretische Grundlagen - Physikalisches Praktikum Versuch 11: Mikroskopie Strahlengang das Lichtmikroskop besteht aus zwei Linsensystemen, iv und Okular, die der Vergrößerung aufgelöster strukturen dienen;

Mehr

Mikroskopie: Einen Blick ins Mikrokosmos

Mikroskopie: Einen Blick ins Mikrokosmos Mikroskopie Stand: WS09/10 (MIK) Seite 1 Mikroskopie: Einen Blick ins Mikrokosmos Stichworte: Geometrische Optik, Dünne Linse, konvex, konkav, Brechung, Brennebene, Fokus, Brennweite, optische Achse, Zwischenbild,

Mehr

Inhalt Phototechnik 24.4.07

Inhalt Phototechnik 24.4.07 Inhalt Phototechnik 24.4.07 4.2.1.5 Abbildungsfehler Klassifikation der Abbildungsfehler Ursachen Fehlerbilder Versuch Projektion Ursachen für Abbildungsfehler Korrekturmaßnahmen 1 Paraxialgebiet Bisher:

Mehr

Geometrische Optik, optische Abbildung und Aberrationen

Geometrische Optik, optische Abbildung und Aberrationen 60 Carl von Ossietzky Universität Oldenburg - Fakultät V- Institut ür Physik Modul Grundpraktikum Physik Teil II Geometrische Optik, optische Abbildung und Aberrationen Stichworte: Linsenmacher-Gleichung,

Mehr

Sammel- und Streulinsen

Sammel- und Streulinsen Sammel- und Streulinsen Linsen können auch durchaus verschiedene Formen haben, je nachdem, was sie für eine Funktion erfüllen. Sammellinsen (a) sind konvex, Streulinsen sind konkav, ferner gibt es auch

Mehr

Grundkurs Physik OPTIK. Peter Ryder. Mai 2003. Universität Bremen Fachbereich 1

Grundkurs Physik OPTIK. Peter Ryder. Mai 2003. Universität Bremen Fachbereich 1 Grundkurs Physik OPTIK Peter Ryder Mai 2003 Universität Bremen Fachbereich 1 Vorwort Diese Einführung in die geometrische Optik und Wellenoptik entstand aus einem Vorlesungsskript, das für das zweite Semester

Mehr

Labor Technische Optik

Labor Technische Optik Labor Physik und Photonik Labor Technische Optik Melos 500 Prof. Dr. Alexander Hornberg, Dipl.-Phys. Hermann Bletzer Abb. 1. Autokollimationsfernrohr Melos 500 von Fa. Möller & Wedel Melos500_2010.doc

Mehr

Labor für Technische Physik

Labor für Technische Physik Hochschule Bremen City University of Applied Sciences Fakultät Elektrotechnik und Informatik Labor für Technische Physik Prof. Dr.-Ing. Dieter Kraus, Dipl.-Ing. W.Pieper 1. Versuchsziele Durch die Verwendung

Mehr

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks

1 mm 20mm ) =2.86 Damit ist NA = sin α = 0.05. α=arctan ( 1.22 633 nm 0.05. 1) Berechnung eines beugungslimitierten Flecks 1) Berechnung eines beugungslimitierten Flecks a) Berechnen Sie die Größe eines beugungslimitierten Flecks, der durch Fokussieren des Strahls eines He-Ne Lasers (633 nm) mit 2 mm Durchmesser entsteht.

Mehr

Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (13. OKTOBER 2014) MOTIVATION UND VERSUCHSZIELE

Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München Grundpraktika (13. OKTOBER 2014) MOTIVATION UND VERSUCHSZIELE Linsen (LIN) Fakultät für Physik der Ludwig-Maximilians-Universität München rundpraktika (13. OKTOER 2014) MOTIVATION UND VERSUCHSZIELE Die geometrische Optik beschreibt die Ausbreitung des Lichts unter

Mehr

Handout zur Veranstaltung Demonstrationsexperimente

Handout zur Veranstaltung Demonstrationsexperimente Handout zur Veranstaltung Demonstrationsexperimente Didaktik der Physik Universität Bayreuth Barbara Niedrig Vortrag vom 17. November 2006 Geometrische Optik: Brennweitenbestimmung von Sammellinsen mit

Mehr

3. Beschreibe wie eine Mondfinsternis entstehen kann. + möglichst exakte, beschriftete Skizze

3. Beschreibe wie eine Mondfinsternis entstehen kann. + möglichst exakte, beschriftete Skizze Probetest 1 1. Wann wird Licht für uns sichtbar? (2 Möglichkeiten) 2. Den Lichtkegel eines Scheinwerfers sieht man besser wenn a) Rauch in der Luft ist b) die Luft völlig klar ist c) Nebeltröpfchen in

Mehr

Rüdiger Kuhnke. Optik

Rüdiger Kuhnke. Optik Rüdiger Kuhnke Optik Dieses Skriptum deckt im wesentlichen den Inhalt der Lehrpläne für technisch orientierte berufsbildende Schulen ab, dies entspricht etwa dem Stoff der Sekundarstufe I. Version 0.2

Mehr

P1-31,40,41: Geometrische Optik

P1-31,40,41: Geometrische Optik Physikalisches Anfängerpraktikum (P1) P1-31,40,41: Geometrische Optik Benedikt Zimmermann, Matthias Ernst (Gruppe Mo-4) Karlsruhe, 18.1.010 Praktikumsprotokoll mit Fehlerrechung Ziel des Versuchs ist die

Mehr

Geometrische Optik II (4. Klasse AHS)

Geometrische Optik II (4. Klasse AHS) PHYSIKALISCHES SCHULVERSUCHSPRAKTIKUM WS 2002/03 (4. Klasse AHS) Versuche am: 31. Oktober 2002 07. November 2002 Lindenbauer Edith 0055478 Ennsdorf am 13. November 2002 Physikalisches Schulversuchspraktikum

Mehr

3. Physikschulaufgabe

3. Physikschulaufgabe Thema: Optik Lichtausbreitung, Licht und Schatten, Abbildung durch Linsen 1. Skizziere die drei möglichen Verlaufsformen von Lichtbündeln und benenne sie. 2. Gib zwei grundlegende Eigenschaften des Lichts

Mehr

> Vortrag: GL Optik > Christian Williges (christian.williges@dlr.de) Grundlagen der Optik. Eine kurze Einführung

> Vortrag: GL Optik > Christian Williges (christian.williges@dlr.de) Grundlagen der Optik. Eine kurze Einführung DLR.de Folie 1 Grundlagen der Optik Eine kurze Einführung DLR.de Folie 2 Agenda 1. Fotografie Bedeutung der Blendenwerte Blende und Schärfentiefe Blende und Helligkeit 2. Strahlenoptik (Paraxiale Optik)

Mehr

O14 Optische Abbildungen mit Linsen

O14 Optische Abbildungen mit Linsen Physikalisches Anfängerpraktikum Universität Stuttgart SS 204 Protokoll zum Versuch O4 Optische Abbildungen mit Linsen Johannes Horn, Robin Lang 3. Mai 204 Verfasser: Robin Lang (BSc. Mathematik) Mitarbeiter:

Mehr

Versuch 22 Mikroskop

Versuch 22 Mikroskop Physikalisches Praktikum Versuch 22 Mikroskop Praktikanten: Johannes Dörr Gruppe: 14 mail@johannesdoerr.de physik.johannesdoerr.de Datum: 28.09.2006 Katharina Rabe Assistent: Sebastian Geburt kathinka1984@yahoo.de

Mehr

Physikalisches Praktikum 3. Semester

Physikalisches Praktikum 3. Semester Torsten Leddig 18.Januar 2005 Mathias Arbeiter Betreuer: Dr.Hoppe Physikalisches Praktikum 3. Semester - Optische Systeme - 1 Ziel Kennenlernen grundlegender optischer Baugruppen Aufgaben Einige einfache

Mehr

B06A DAMPFDRUCK VON WASSER B06A

B06A DAMPFDRUCK VON WASSER B06A B06A DAMPFDRUCK VON WASSER B06A 1. ZIELE Wir aten euchtere Lut aus als ein. Müssen wir daür Enerie auwenden? Waru werden die Kartoeln in eine Dapdrucktop schneller ar? Was passiert, wenn Wasser verdapt?

Mehr

1.1 Auflösungsvermögen von Spektralapparaten

1.1 Auflösungsvermögen von Spektralapparaten Physikalisches Praktikum für Anfänger - Teil Gruppe Optik. Auflösungsvermögen von Spektralapparaten Einleitung - Motivation Die Untersuchung der Lichtemission bzw. Lichtabsorption von Molekülen und Atomen

Mehr

14 Linsen und optische Geräte

14 Linsen und optische Geräte 14 Linsen und optische Geräte Die Gesetze der Reflexion und Brechung sind die Grundlage zur Erklärung der Funktion vieler optischer Geräte. Wir diskutieren insbesondere das Vergrößerungsglas, das menschliche

Mehr

Staatsexamen im Unterrichtsfach Physik / Fachdidaktik. Prüfungstermin Herbst 1996, Thema Nr. 3. Linsen

Staatsexamen im Unterrichtsfach Physik / Fachdidaktik. Prüfungstermin Herbst 1996, Thema Nr. 3. Linsen Referentin: Carola Thoiss Dozent: Dr. Thomas Wilhelm Datum: 30.11.06 Staatsexamen im Unterrichtsfach Physik / Fachdidaktik Prüfungstermin Herbst 1996, Thema Nr. 3 Linsen Aufgaben: 1. Als Motivation für

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Farbe als Qualitätskriterium

Farbe als Qualitätskriterium Erschienen in Farbe & Lack, 119/5 (2013) 20 bis 27. Farbe als Qualitätskriterium Wie sich Ausreißer oder Fehlcharen durch Farbmessun finden lassen Geor Meichsner und Renate Hiesen, Hochschule Esslinen

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr