3. Lernen von Entscheidungsbäumen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3. Lernen von Entscheidungsbäumen"

Transkript

1 3. Lernen von Entscheidungsbäumen Entscheidungsbäume 3. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden. Ein Entscheidungsbaum liefert eine Entscheidung für die Frage, welcher Klasse ein betreffendes Objekt zuzuordnen ist. Beispiel 3.1. Gegeben seien die Beschreibungen von Bankkunden. Die Bankkunden können in die beiden Klassen kreditwürdig und nicht kreditwürdig eingeteilt werden. Ein Entscheidungsbaum soll eine Entscheidung liefern, ob ein Kunde kreditwürdig ist oder nicht. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Entscheidungsbäume Entscheidungsbaum Ein Entscheidungsbaum ist ein Baum mit den folgenden Eigenschaften: Ein Blatt repräsentiert eine der Klassen. Ein innerer Knoten repräsentiert ein Attribut. Eine Kante repräsentiert einen Test auf dem Attribut des Vaterknotens. Geht man von nur zwei Klassen aus, repräsentiert der Entscheidungsbaum eine boolsche Funktion. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 110

2 3. Lernen von Entscheidungsbäumen Entscheidungsbäume Klassifikation mit Entscheidungsbäumen Ein neues Objekt wird mit Hilfe eines Entscheidungsbaums klassifiziert, indem man ausgehend von der Wurzel jeweils die den Knoten zugeordneten Attribute überprüft und so lange den Kanten folgt, die mit den Attributwerten des Objekts markiert sind, bis man einen Blattknoten erreicht. Der dem Blattknoten zugeordnete Wert entspricht der Klasse, der das Objekt zugeordnet wird. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Entscheidungsbäume Beispiel 3.2. Ein Entscheidungsbaum zur Risikoabschätzung für eine KFZ-Versicherung: Autotyp = LKW <> LKW Risikoklasse = niedrig Alter > 60 <= 60 Risikoklasse = niedrig Risikoklasse = hoch Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 112

3 3. Lernen von Entscheidungsbäumen Entscheidungsbäume Soll man auf einen freien Tisch im Restaurant warten? Patrons? None Some Full No > Alternate? Reservation? Bar? Yes WaitEstimate? Fri/Sat? Hungry? No Yes Yes Alternate? Yes Yes Raining? Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Entscheidungsbäume Entscheidungsbäume und Regeln Entscheidungsbäume repräsentieren Regeln in kompakter Form. Jeder Pfad von der Wurzel zu einem Blattknoten entspricht einer logischen Formel in der Form einer if-then-regel. Beispiel 3.3. Der Entscheidungsbaum aus Beispiel 3.2 entspricht den folgenden Regeln: if Autotyp LKW then Risikoklasse = niedrig, if Autotyp LKW and Alter 60 then Risikoklasse = niedrig, if Autotyp LKW and Alter 60 then Risikoklasse hoch. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 114

4 3. Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Problem der Generierung von Entscheidungsbäumen Ziel ist es, aus einer Menge von Beispielen (der sogenannten Trainingsmenge) einen Entscheidungsbaum zu generieren. Ein Beispiel der Trainingsmenge besteht aus einer Menge von Attribut/Wert-Paaren zusammen mit der Klassifikation. Aus dieser Trainingsmenge ist ein Entscheidungsbaum aufzubauen, der die Beispiele richtig klassifiziert. Für so einen generierten Entscheidungsbaum hofft man, daß dieser auch Beispiele, die nicht aus der Trainingsmenge stammen, mit hoher Wahrscheinlichkeit richtig klassifiziert. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Beispiel 3.4. Trainingsmenge für den Baum aus Beispiel 3.2: ID Alter Autotyp Risikoklasse 1 23 Familie hoch 2 18 Sport hoch 3 43 Sport hoch 4 68 Familie niedrig 5 32 LKW niedrig Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 116

5 3. Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Naiver Ansatz der Generierung: Man entscheidet streng sequentiell anhand der Attribute. Jeder Baumebene ist ein Attribut zugeordnet. Der Baum wird dann konstruiert, in dem für jedes Beispiel ein Pfad erzeugt wird. Tafel. Keine sinnvolle Generalisierung auf andere Fälle Overfitting Entscheidungsbaum mit vielen Knoten Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Beispiel 3.5. Zwei Entscheidungsbäume für die Trainingsmenge aus Beispiel 3.4: Autotyp Alter = LKW <> LKW < 30 >= 30 and <= 60 > 60 Risikoklasse = niedrig Alter Risikoklasse = hoch Autotyp Risikoklasse = niedrig > 60 <= 60 <> LKW = LKW Risikoklasse = niedrig Risikoklasse = hoch Risikoklasse = hoch Risikoklasse = niedrig Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 118

6 3. Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Ziel der Generierung ist es, einen Baum aufzubauen, der die Beispiele der gegebenen Trainingsmenge korrekt klassifiziert und der möglichst kompakt ist. Bevorzuge die einfachste Hypothese, die konsistent mit allen Beobachtungen ist. Occam s Razor (William of Occam, engl. Philosoph ): One should not increase, beyond what is necessary, the number of entities required to explain anything. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Prinzip der Generierung Man teste das wichtigste Attribut zuerst! Die Wichtigkeit hängt von der Differenzierung der Beispielmenge ab. Die Beispielmenge wird gemäß der Attributwerte des ausgewählten Attributs auf die Söhne verteilt. Man setze dieses Prinzip in jedem Unterbaum für die diesem Unterbaum zugeordnete Beispielmenge fort. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 120

7 3. Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Trainingsmenge zum Thema Kinobesuch : Nr. Attr. Preis Loge Wetter Warten Bes. Kat. Land Res. Gr. Kino? 1 + $$ ja - ja + AC int ja F ja 2 o $ ja o nein o KO int nein P ja 3 o $ nein o ja o DR int nein F nein 4 - $ ja o ja o SF int nein a nein 5 o $ ja o nein o DR int nein P ja 6 + $$ ja + nein + SF int ja F ja 7 o $ ja - nein o KO nat nein F ja 8 o $ nein - ja o AC int nein F ja 9 - $ ja + nein o KO nat nein F nein 10 o $ ja + nein o KO int nein P nein 11 + $ ja o ja + DR int nein P ja 12 o $ nein - ja o AC nat nein a nein 13 + $$ ja o ja o SF int nein a nein 14 o $ ja + ja + DR int ja F nein 15 o $ ja - nein o AC int nein P ja Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Attributauswahl für das Kinoproblem: ja: 1, 2, 5, 6, 7, 8, 11, 15 nein: 3, 4, 9, 10, 12, 13, 14 Gruppe F a P ja: 1, 6, 7, 8 nein: 3, 9, 14 ja: nein: 4, 12, 13 ja: 2, 5, 11, 15 nein: 10 ja: 1, 2, 5, 6, 7, 8, 11, 15 nein: 3, 4, 9, 10, 12, 13, 14 Kategorie DR AC KO SF ja: 5, 11 nein: 3, 14 ja: 1, 8, 15 nein: 12 ja: 2, 7 nein: 9, 10 ja: 6 nein: 4, 13 Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 122

8 3. Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Bei der rekursiven Konstruktion können die folgenden Situationen auftreten: 1. Alle Beispiele zu einem Knoten haben die gleiche Klassifikation. Dann wird der Knoten mit der entsprechenden Klasse markiert und die Rekursion beendet. 2. Die Menge der Beispiele zu einem Knoten ist leer. In diesem Fall kann man eine Default-Klassifikation angeben. Man wählt zum Beispiel die Klasse, die unter den Beispielen des Vaters am häufigsten vorkommt. 3. Falls Beispiele mit unterschiedlicher Klassifikation existieren und es Attribute gibt, die noch nicht in den Vorgängerknoten verwendet wurden, dann wähle aus diesen Attributen ein Attribut gemäß seiner Wichtigkeit aus. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Generiere für jeden möglichen Attributwert einen Nachfolgerknoten und verteile die Beispiele auf die Nachfolger gemäß ihres Attributwerts. Setze das Verfahren für jeden Nachfolger fort. 4. Falls Beispiele mit unterschiedlicher Klassifikation existieren, es aber kein noch nicht verwendetes Attribut gibt, dann ist die Trainingsmenge inkonsistent. Inkonsistent bedeutet hier, daß keine funktionale Abhängigkeit der Klassifikation von den Attributen existiert. Beispiel 3.6. Kinoproblem: Als Grad für die Wichtigkeit eines Attributs nehme man die Anzahl der Beispiele, die damit endgültig klassifiziert werden. Tafel. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 124

9 3. Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Algorithmus zur Konstruktion Algorithmus 3.1. [Entscheidungsbaum-Konstruktion] Entscheidungsbaum( )! "! #$ % &('*)+ -,.,0/1 %32 45.! " markiere mit4! ; #$ 6! ". #$ markiere mit einer Default-Klasse; Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen. 7 mögliche Partition9 von "! 1: ;9 2 besser als<=/., %! <>/., % &? ;A9 2!!! Sei<=/, % ;9 2 Seien9CB.EDFDEDG9IH ;.8J die Teilmengen von9 &? KL NMO ; erzeuge Knoten'QP als Sohn von P &? % % ; fällt in9 P Entscheidungsbaum(RPS A'QP )! Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 126

10 3. Lernen von Entscheidungsbäumen Generierung von Entscheidungsbäumen Partitionen für Attribute Typen von Partitionen fuer nominale Attribute Attribut Attribut =a1 =a2 =a3 in A1 in A2 Attribut Attribut <a1 <=a2 <=a3 < a >= a Typen von Partitiionen fuer numerische Attribute Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Attributauswahl Die auf Algorithmus 3.1 basierenden Verfahren heißen Top-Down Induction of Decision Trees (TDIDT). Durch den schrittweisen Aufbau des Entscheidungsbaums wird die dadurch repräsentierte Hypothese schrittweise spezialisiert. Der Kern eines TDIDT-Verfahrens ist die Attributauswahl. Das Ziel bei der Attributauswahl ist es, den Baum möglichst klein zu halten. Ein ideales Attribut würde die verbleibende Beispielmenge exakt auf verschiedene Klassen aufteilen. Der ID3-Algorithmus formalisiert diese Idee durch die Berücksichtigung des Informationsgehaltes der Attribute. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 128

11 Informationsgehalt und Informationsgewinn Die mit einem Ereignis verbundene Information wird logarithmisch aus dessen Wahrscheinlichkeit berechnet. Den mittleren Informationsgehalt TU1:9 2 einer Wahrscheinlichkeitsverteilung9 über einer endlichen MengeV bezeichnet man als die Entropie von9 : 2 X"Y[Z\9]1_^ 2a`_b(cd 9e1f^ 2 Wir stellen uns vor, daß in einer beliebigen Trainigsmenge jedes Beispiel die gleiche Wahrscheinlichkeit hat. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Lernen von Entscheidungsbäumen 2 Die Algorithmen ID3 h und C4.5 Demnach ist der Informationsgehalt einer Beispielmenge miti positiven undm negativen Beispielen (genau zwei Klassen) g;1:h 2 &? T i ikj Mml M ikj M i inj M `fb(c d i ikj M M ikj M `_b(c d M ikj M bit Bei der Attributauswahl soll nun berücksichtigt werden, welchen Informationsgewinn man erhält, wenn man den Wert eines Attributs kennt. Dazu stellen wir fest, wieviel Information wir nach dem Test eines Attributs noch benötigen. Jedes Attribut teilt die Trainingsmenge h in o disjunkte Teilmenge hpb.gdgdgdghnq auf, wobei o die Anzahl der verschiedenen Werte 2 ist, die annehmen kann. TeilmengehmP habeisp positive undm P negative Beispiele. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 130

12 Der mittlere Informationsgehalt vonh P ist also 2 bit TU1 isp isptj M P l M P isptj M P Der mittlere Informationsgehalt der Antwort, nachdem wir Attribut getestet haben ist: bekannt2 q P+uvB rlp2 g;1:h\p2 q PxuvB isptj M P ikj M TW1 i[p isptj M P l M P isptj M P Um den Informationsgewinny" JzM 2 von Attribut zu quantifizieren, bilden wir die Differenz der ursprünglichen Information (vor dem Test von ) und der Restinformation (nach dem Test von ): y" JzM 2 &{ 2 bekannt2 2 bit Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Der ID3-Algorithmus Algorithmus 3.2. [ID3] Der ID3-Algorithmus ist eine Spezialisierung von Algorithmus 3.1, bei der die Relation besser für die Attributauswahl auf dem InformationsgewinnyR JzM 2 basiert. ID3 wählt als nächstes Attribut dasjenige aus, bei demy" JzM 2 maximal ist. Beispiel 3.7. Für die Wurzel des Kinoproblems haben wir yr JzM 1 Gruppe2 2 Gruppe bekannt2 ƒ 2j D{}(}(~( KG TW1 l KG TW1 l K 2 j D{ (}(~ ƒ KG TW1K l 2 Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 132

13 y" JzM 1 Kategorie2 2 Kategorie bekannt2 ƒ l D?}(}(~( KG TW1 K 2 j KG TW1 K l K D ~ ƒ 2 j KG TW1 K l K 2 j ƒ KG TW1 ƒk l ƒ 2 Beispiel 3.8. Man berechney" JzM 2 für alle Attribute und zeige damit, daß das Attribut Gruppe bei Anwendung von ID3 auf das Kinoproblem als Attribut für den Wurzelknoten selektiert würde. Tafel. Man berechne den Entscheidungsbaum gemäß ID3 für das Kinoproblem. Tafel. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Example Attributes Goal Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait X 1 Yes No Some $$$ French 0 10 Yes X 2 Yes No Full $ No No Thai No X 3 No No Some $ No No Burger 0 10 Yes X 4 Yes Yes Full $ No No Thai Yes X 5 Yes No Full $$$ French >60 No X 6 Some $$ Yes Yes Italian 0 10 Yes X 7 No No None $ Yes No Burger 0 10 No X 8 No No Some $$ Yes Yes Thai 0 10 Yes X 9 Yes No Full $ Yes No Burger >60 No X 10 Yes Yes Yes Yes Full $$$ Italian No X 11 No No No No None $ No No Thai 0 10 No X 12 Yes Yes Yes Yes Full $ No No Burger Yes Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 134

14 q Patrons? None Some Full Hungry? Type? No French Italian Thai Burger Yes No Fri/Sat? Yes Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Bemerkung 3.1. In der vorangegangenen Darstellung gingen wir stets von einer Beispielmenge mit zwei Klassen aus. Dies entspricht einer Bernoulli- Verteilung. Dies Konzept wird mit Hilfe der Entropie auf o Klassen verallgemeinert. isp Beispielen in Klasse'ˆP (M &? P+uvB isp ) ist dann: 2 &? q 2 q P+uvB isp `_bšc d i[p Der Informationsgehalt einer Beispielmengeh mito Klassen'QP und Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 136

15 B Beispiel 3.9. Gegeben sei die folgende Beispielmenge zur Klassifikation von Tieren: ID Größe Beine Tier F V M K P M K M Beine 2 K `fb(c d K bit Beine 2 `_b(c d B Œ `_b(c d Œ D?aK(K ƒ bit Beine 2 B `_b(c d B d `_b(c d d Œ Œ Œ Œ D?}aKG ƒ bit y" JzM 1 Beine2 2 K D?aK(K ƒ ƒ D?}tKG ƒ K(D? akgak bit Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Der C4.5-Algorithmus Der (absolute) InformationsgewinnyR JzM 2 hat den Nachteil, daß dieser Attribute mit zahlreichen Werten bevorzugt. Dies kann im Extremfall zu unsinnigen Ergebnissen führen. Beispiel Bei einer medizinischen Diagnose werde als eines der Attribute die PIN eines Patienten benutzt. Dieses Attribut habe soviele Werte, wie es Patienten in der Datei gibt. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 138

16 Das Attribut partitioniert die Beispielmenge daher in Teilmengen, die aus genau einem Patienten bestehen. Die bedingte mittlere Information ist also PIN bekannt2 q PxuvB TW1 l K 2 und damit ist der Informationsgewinn maximal. Für die Diagnose ist die PIN dagegen nutzlos. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/ Algorithmus 3.3. Der C4.5-Algorithmus ist eine Spezialisierung von Algorithmus 3.1, bei der die Relation besser für die Attributauswahl auf dem sogenannten normierten InformationsgewinnyR JzMŽ % Jz 2 basiert. y" JzM % Jz 2 y" JzM 2, ia)j%jzm Ž 2, ir)j%jzm 2 M Hierbei ist die Entropie des Attributs &{ h. Es sei die Kardinalität der Beispielmenge, es gebe verschiedene Werte für Attribut r P 2 sei die relative Häufigkeit von AttributwertrLP., ir)j%jzmž 2 &{ 2 Pxu B r P2a`_b(cd r P2 C4.5 wählt als nächstes Attribut demyr JzM % Jz 2 dasjenige aus, bei maximal ist. Wissensbasierte Systeme II FH Bonn-Rhein-Sieg, WS 03/04 140

2. Lernen von Entscheidungsbäumen

2. Lernen von Entscheidungsbäumen 2. Lernen von Entscheidungsbäumen Entscheidungsbäume 2. Lernen von Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch Attribut/Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse

Mehr

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum

4. Lernen von Entscheidungsbäumen. Klassifikation mit Entscheidungsbäumen. Entscheidungsbaum 4. Lernen von Entscheidungsbäumen Klassifikation mit Entscheidungsbäumen Gegeben sei eine Menge von Objekten, die durch /Wert- Paare beschrieben sind. Jedes Objekt kann einer Klasse zugeordnet werden.

Mehr

Künstliche Intelligenz Maschinelles Lernen

Künstliche Intelligenz Maschinelles Lernen Künstliche Intelligenz Maschinelles Lernen Stephan Schwiebert Sommersemester 2009 Sprachliche Informationsverarbeitung Institut für Linguistik Universität zu Köln Maschinelles Lernen Überwachtes Lernen

Mehr

Moderne Methoden der KI: Maschinelles Lernen

Moderne Methoden der KI: Maschinelles Lernen Moderne Methoden der KI: Maschinelles Lernen Prof. Dr.Hans-Dieter Burkhard Vorlesung Entscheidungsbäume Darstellung durch Regeln ID3 / C4.5 Bevorzugung kleiner Hypothesen Overfitting Entscheidungsbäume

Mehr

Maschinelles Lernen. Kapitel 5

Maschinelles Lernen. Kapitel 5 Kapitel 5 Maschinelles Lernen Im täglichen Leben begegnet uns das Lernen meist in einer Mischung aus den Aspekten der Vergrößerung von Wissen und der Verbesserung von Fähigkeiten. Beim Erlernen einer Fremdsprache

Mehr

12. Maschinelles Lernen

12. Maschinelles Lernen 12. Maschinelles Lernen Maschinelles Lernen dient der Herbeiführung vn Veränderungen im System, die adaptiv sind in dem Sinne, daß sie es dem System ermöglichen, dieselbe der eine ähnliche Aufgabe beim

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Paul Prasse Entscheidungsbäume Eine von vielen Anwendungen: Kreditrisiken Kredit - Sicherheiten

Mehr

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002)

3. Entscheidungsbäume. Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) 3. Entscheidungsbäume Verfahren zum Begriffslernen (Klassifikation) Beispiel: weiteres Beispiel: (aus Böhm 2003) (aus Morik 2002) (aus Wilhelm 2001) Beispiel: (aus Böhm 2003) Wann sind Entscheidungsbäume

Mehr

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen

x 2 x 1 x 3 5.1 Lernen mit Entscheidungsbäumen 5.1 Lernen mit Entscheidungsbäumen Falls zum Beispiel A = {gelb, rot, blau} R 2 und B = {0, 1}, so definiert der folgende Entscheidungsbaum eine Hypothese H : A B (wobei der Attributvektor aus A mit x

Mehr

Data Mining und Text Mining Einführung. S2 Einfache Regellerner

Data Mining und Text Mining Einführung. S2 Einfache Regellerner Data Mining und Text Mining Einführung S2 Einfache Regellerner Hans Hermann Weber Univ. Erlangen, Informatik 8 Wintersemester 2003 hans.hermann.weber@gmx.de Inhalt Einiges über Regeln und Bäume R1 ein

Mehr

3 Quellencodierung. 3.1 Einleitung

3 Quellencodierung. 3.1 Einleitung Source coding is what Alice uses to save money on her telephone bills. It is usually used for data compression, in other words, to make messages shorter. John Gordon 3 Quellencodierung 3. Einleitung Im

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Vorlesung Maschinelles Lernen Additive Modelle Katharina Morik Informatik LS 8 Technische Universität Dortmund 7.1.2014 1 von 34 Gliederung 1 Merkmalsauswahl Gütemaße und Fehlerabschätzung 2 von 34 Ausgangspunkt:

Mehr

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining

Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining Gliederung 1. Einführung 2. Grundlagen Data Mining Begriffsbestimmung CRISP-DM-Modell Betriebswirtschaftliche Einsatzgebiete des Data Mining Web Mining und Text Mining 3. Ausgewählte Methoden des Data

Mehr

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de

Datenbankanwendung. Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern. Wintersemester 2014/15. smichel@cs.uni-kl.de Datenbankanwendung Wintersemester 2014/15 Prof. Dr.-Ing. Sebastian Michel TU Kaiserslautern smichel@cs.uni-kl.de Wiederholung: Anfragegraph Anfragen dieses Typs können als Graph dargestellt werden: Der

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Data Warehousing und Data Mining

Data Warehousing und Data Mining Data Warehousing und Data Mining Klassifikation Ulf Leser Wissensmanagement in der Bioinformatik Inhalt dieser Vorlesung Einführung Problemstellung Evaluation Overfitting knn Klassifikator Naive-Bayes

Mehr

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12

Folge 19 - Bäume. 19.1 Binärbäume - Allgemeines. Grundlagen: Ulrich Helmich: Informatik 2 mit BlueJ - Ein Kurs für die Stufe 12 Grundlagen: Folge 19 - Bäume 19.1 Binärbäume - Allgemeines Unter Bäumen versteht man in der Informatik Datenstrukturen, bei denen jedes Element mindestens zwei Nachfolger hat. Bereits in der Folge 17 haben

Mehr

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014

Lernen von Entscheidungsbäumen. Volker Tresp Summer 2014 Lernen von Entscheidungsbäumen Volker Tresp Summer 2014 1 Anforderungen an Methoden zum Datamining Schnelle Verarbeitung großer Datenmengen Leichter Umgang mit hochdimensionalen Daten Das Lernergebnis

Mehr

15 Optimales Kodieren

15 Optimales Kodieren 15 Optimales Kodieren Es soll ein optimaler Kodierer C(T ) entworfen werden, welcher eine Information (z.b. Text T ) mit möglichst geringer Bitanzahl eindeutig überträgt. Die Anforderungen an den optimalen

Mehr

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder

Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder Programmieren in PASCAL Bäume 1 1. Baumstrukturen Eine Baumstruktur sei folgendermaßen definiert. Eine Baumstruktur mit Grundtyp Element ist entweder 1. die leere Struktur oder 2. ein Knoten vom Typ Element

Mehr

Tutorium Algorithmen & Datenstrukturen

Tutorium Algorithmen & Datenstrukturen June 16, 2010 Binärer Baum Binärer Baum enthält keine Knoten (NIL) besteht aus drei disjunkten Knotenmengen: einem Wurzelknoten, einem binären Baum als linken Unterbaum und einem binären Baum als rechten

Mehr

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau

Codierung. Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Codierung Auszug aus dem Skript von Maciej Liśkiewicz und Henning Fernau Ein bisschen Informationstheorie Betrachten wir das folgende Problem: Wie lautet eine sinnvolle Definition für das quantitative

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002)

6. Bayes-Klassifikation. (Schukat-Talamazzini 2002) 6. Bayes-Klassifikation (Schukat-Talamazzini 2002) (Böhm 2003) (Klawonn 2004) Der Satz von Bayes: Beweis: Klassifikation mittels des Satzes von Bayes (Klawonn 2004) Allgemeine Definition: Davon zu unterscheiden

Mehr

Algorithmen II Vorlesung am 15.11.2012

Algorithmen II Vorlesung am 15.11.2012 Algorithmen II Vorlesung am 15.11.2012 Kreisbasen, Matroide & Algorithmen INSTITUT FÜR THEORETISCHE INFORMATIK PROF. DR. DOROTHEA WAGNER KIT Universität des Landes Baden-Württemberg und Algorithmen nationales

Mehr

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining.

Motivation. Themenblock: Klassifikation. Binäre Entscheidungsbäume. Ansätze. Praktikum: Data Warehousing und Data Mining. Motivation Themenblock: Klassifikation Praktikum: Data Warehousing und Data Mining Ziel Item hat mehrere Attribute Anhand von n Attributen wird (n+)-tes vorhergesagt. Zusätzliches Attribut erst später

Mehr

Unterscheidung: Workflowsystem vs. Informationssystem

Unterscheidung: Workflowsystem vs. Informationssystem 1. Vorwort 1.1. Gemeinsamkeiten Unterscheidung: Workflowsystem vs. Die Überschneidungsfläche zwischen Workflowsystem und ist die Domäne, also dass es darum geht, Varianten eines Dokuments schrittweise

Mehr

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10

Idee: Wenn wir beim Kopfknoten zwei Referenzen verfolgen können, sind die Teillisten kürzer. kopf Eine Datenstruktur mit Schlüsselwerten 1 bis 10 Binäre Bäume Bäume gehören zu den wichtigsten Datenstrukturen in der Informatik. Sie repräsentieren z.b. die Struktur eines arithmetischen Terms oder die Struktur eines Buchs. Bäume beschreiben Organisationshierarchien

Mehr

Das Briefträgerproblem

Das Briefträgerproblem Das Briefträgerproblem Paul Tabatabai 30. Dezember 2011 Inhaltsverzeichnis 1 Problemstellung und Modellierung 2 1.1 Problem................................ 2 1.2 Modellierung.............................

Mehr

Funktionale Programmierung mit Haskell

Funktionale Programmierung mit Haskell Funktionale Programmierung mit Haskell Prof. Dr. Hans J. Schneider Lehrstuhl für Programmiersprachen und Programmiermethodik Friedrich-Alexander-Universität Erlangen-Nürnberg Sommersemester 2011 I. Die

Mehr

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell):

Was bisher geschah. deklarative Programmierung. funktionale Programmierung (Haskell): Was bisher geschah deklarative Programmierung funktional: Programm: Menge von Termgleichungen, Term Auswertung: Pattern matsching, Termumformungen logisch: Programm: Menge von Regeln (Horn-Formeln), Formel

Mehr

Maschinelles Lernen Entscheidungsbäume

Maschinelles Lernen Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Maschinelles Lernen Entscheidungsbäume Christoph Sawade /Niels Landwehr/Paul Prasse Dominik Lahmann Tobias Scheffer Entscheidungsbäume

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen

Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Fachschaft Informatik Informatik 11 Kapitel 2 - Rekursive Datenstrukturen Michael Steinhuber König-Karlmann-Gymnasium Altötting 15. Januar 2016 Folie 1/77 Inhaltsverzeichnis I 1 Datenstruktur Schlange

Mehr

Entscheidungsbaumverfahren

Entscheidungsbaumverfahren Entscheidungsbaumverfahren Allgemeine Beschreibung Der Entscheidungsbaum ist die Darstellung einer Entscheidungsregel, anhand derer Objekte in Klassen eingeteilt werden. Die Klassifizierung erfolgt durch

Mehr

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können.

Lernziele: Ausgleichstechniken für binäre Bäume verstehen und einsetzen können. 6. Bäume Lernziele 6. Bäume Lernziele: Definition und Eigenschaften binärer Bäume kennen, Traversierungsalgorithmen für binäre Bäume implementieren können, die Bedeutung von Suchbäumen für die effiziente

Mehr

Kapiteltests zum Leitprogramm Binäre Suchbäume

Kapiteltests zum Leitprogramm Binäre Suchbäume Kapiteltests zum Leitprogramm Binäre Suchbäume Björn Steffen Timur Erdag überarbeitet von Christina Class Binäre Suchbäume Kapiteltests für das ETH-Leitprogramm Adressaten und Institutionen Das Leitprogramm

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Entscheidungsbäume Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Entscheidungsbäume Christoph Sawade/Niels Landwehr Jules Rasetaharison, Tobias Scheffer Entscheidungsbäume Eine von vielen Anwendungen:

Mehr

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014

Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Übungsblatt LV Künstliche Intelligenz, Data Mining (1), 2014 Aufgabe 1. Data Mining a) Mit welchen Aufgabenstellungen befasst sich Data Mining? b) Was versteht man unter Transparenz einer Wissensrepräsentation?

Mehr

Klassische Themen der Computerwissenschaft Constraint Programming: Exercises. Gruppe: 100. Inhaltsverzeichnis

Klassische Themen der Computerwissenschaft Constraint Programming: Exercises. Gruppe: 100. Inhaltsverzeichnis Klassische Themen der Computerwissenschaft Constraint Programming: Exercises Gruppe: 100 Inhaltsverzeichnis 1 Exercise 1 1 2 Exercise 2 2 2.1 Backtracking........................... 2 2.2 Forward checking.........................

Mehr

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract:

Spezifikation der zulässigen Parameter. Bemerkungen: Bemerkungen: (2) Design by Contract: Spezifikation der zulässigen Parameter Bemerkungen: Bei jeder (partiellen) Funktion muss man sich überlegen und dokumentieren, welche aktuellen Parameter bei einer Anwendung zulässig sein sollen. Der Anwender

Mehr

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert.

Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. Anwendungen von Bäumen 4.3.2 Huffman Code Problem: Finde für Alphabet mit n Zeichen einen Binärcode, der die Gesamtlänge eines Textes (über diesem Alphabet) minimiert. => nutzbar für Kompression Code fester

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel

3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel 3.1 Konstruktion von minimalen Spannbäumen Es gibt zwei Prinzipien für die Konstruktion von minimalen Spannbäumen (Tarjan): blaue Regel rote Regel EADS 3.1 Konstruktion von minimalen Spannbäumen 16/36

Mehr

Kapitel 3: Etwas Informationstheorie

Kapitel 3: Etwas Informationstheorie Stefan Lucks 3: Informationstheorie 28 orlesung Kryptographie (SS06) Kapitel 3: Etwas Informationstheorie Komplexitätstheoretische Sicherheit: Der schnellste Algorithmus, K zu knacken erfordert mindestens

Mehr

368 4 Algorithmen und Datenstrukturen

368 4 Algorithmen und Datenstrukturen Kap04.fm Seite 368 Dienstag, 7. September 2010 1:51 13 368 4 Algorithmen und Datenstrukturen Java-Klassen Die ist die Klasse Object, ein Pfeil von Klasse A nach Klasse B bedeutet Bextends A, d.h. B ist

Mehr

Definition eines Spiels

Definition eines Spiels Definition eines piels 1. Einleitung 1.1 Einführung: Die mathematische pieltheorie beschäftigt sich nicht nur mit der Beschreibung und Analyse von pielen im üblichen inn, sondern allgemein mit Konfliktsituationen

Mehr

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten

Gliederung. Definition Wichtige Aussagen und Sätze Algorithmen zum Finden von Starken Zusammenhangskomponenten Gliederung Zusammenhang von Graphen Stark Zusammenhängend K-fach Zusammenhängend Brücken Definition Algorithmus zum Finden von Brücken Anwendung Zusammenhangskomponente Definition Wichtige Aussagen und

Mehr

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes.

4. Jeder Knoten hat höchstens zwei Kinder, ein linkes und ein rechtes. Binäre Bäume Definition: Ein binärer Baum T besteht aus einer Menge von Knoten, die durch eine Vater-Kind-Beziehung wie folgt strukturiert ist: 1. Es gibt genau einen hervorgehobenen Knoten r T, die Wurzel

Mehr

Data Mining Anwendungen und Techniken

Data Mining Anwendungen und Techniken Data Mining Anwendungen und Techniken Knut Hinkelmann DFKI GmbH Entdecken von Wissen in banken Wissen Unternehmen sammeln ungeheure mengen enthalten wettbewerbsrelevantes Wissen Ziel: Entdecken dieses

Mehr

DATENSTRUKTUREN UND ZAHLENSYSTEME

DATENSTRUKTUREN UND ZAHLENSYSTEME DATENSTRUKTUREN UND ZAHLENSYSTEME RALF HINZE Institute of Information and Computing Sciences Utrecht University Email: ralf@cs.uu.nl Homepage: http://www.cs.uu.nl/~ralf/ March, 2001 (Die Folien finden

Mehr

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur

Formeln. Signatur. aussagenlogische Formeln: Aussagenlogische Signatur Signatur Formeln Am Beispiel der Aussagenlogik erklären wir schrittweise wichtige Elemente eines logischen Systems. Zunächst benötigt ein logisches System ein Vokabular, d.h. eine Menge von Namen, die

Mehr

4 Greedy-Algorithmen (gierige Algorithmen)

4 Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen (gierige Algorithmen) Greedy-Algorithmen werden oft für die exakte oder approximative Lösung von Optimierungsproblemen verwendet. Typischerweise konstruiert ein Greedy-Algorithmus eine

Mehr

Vorlesung Maschinelles Lernen

Vorlesung Maschinelles Lernen Prof. Dr. phil. Dr. rer. nat. habil. M.Schenke Vorlesung Maschinelles Lernen Basierend auf der Vorlesung und dem Buch»Methoden wissensbasierter Systeme«von Christoph Beierle und Gabriele Kern-Isberner

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II

Grundlagen des Maschinellen Lernens Kap. 4: Lernmodelle Teil II 1. Motivation 2. Lernmodelle Teil I 2.1. Lernen im Limes 2.2. Fallstudie: Lernen von Patternsprachen 3. Lernverfahren in anderen Domänen 3.1. Automatensynthese 3.2. Entscheidungsbäume 3.3. Entscheidungsbäume

Mehr

Das Entity-Relationship-Modell

Das Entity-Relationship-Modell Das Entity-Relationship-Modell 1976 vorgeschlagen von Peter Chen Entities wohlunterschiedbare Dinge der realen Welt Beispiele: Personen, Autos weithin akzeptiertes Modellierungswerkzeug, denn ist unabhšngig

Mehr

Visualisierung der Imperfektion in multidimensionalen Daten

Visualisierung der Imperfektion in multidimensionalen Daten Visualisierung der Imperfektion in multidimensionalen Daten Horst Fortner Imperfektion und erweiterte Konzepte im Data Warehousing Betreuer: Heiko Schepperle 2 Begriffe (1) Visualisierung [Wikipedia] abstrakte

Mehr

1 topologisches Sortieren

1 topologisches Sortieren Wolfgang Hönig / Andreas Ecke WS 09/0 topologisches Sortieren. Überblick. Solange noch Knoten vorhanden: a) Suche Knoten v, zu dem keine Kante führt (Falls nicht vorhanden keine topologische Sortierung

Mehr

Anmerkungen zur Übergangsprüfung

Anmerkungen zur Übergangsprüfung DM11 Slide 1 Anmerkungen zur Übergangsprüfung Aufgabeneingrenzung Aufgaben des folgenden Typs werden wegen ihres Schwierigkeitsgrads oder wegen eines ungeeigneten fachlichen Schwerpunkts in der Übergangsprüfung

Mehr

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP

B-Bäume I. Algorithmen und Datenstrukturen 220 DATABASE SYSTEMS GROUP B-Bäume I Annahme: Sei die Anzahl der Objekte und damit der Datensätze. Das Datenvolumen ist zu groß, um im Hauptspeicher gehalten zu werden, z.b. 10. Datensätze auf externen Speicher auslagern, z.b. Festplatte

Mehr

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011

Graphen: Einführung. Vorlesung Mathematische Strukturen. Sommersemester 2011 Graphen: Einführung Vorlesung Mathematische Strukturen Zum Ende der Vorlesung beschäftigen wir uns mit Graphen. Graphen sind netzartige Strukturen, bestehend aus Knoten und Kanten. Sommersemester 20 Prof.

Mehr

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x),

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x), Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. August 2014 Programmier-Labor 04. + 05. Übungsblatt Aufgabe 21: a) Schreiben Sie eine Methode

Mehr

Erzeugung zufälliger Graphen und Bayes-Netze

Erzeugung zufälliger Graphen und Bayes-Netze Erzeugung zufälliger Graphen und Bayes-Netze Proseminar Algorithmen auf Graphen Georg Lukas, IF2000 2002-07-09 E-Mail: georg@op-co.de Folien: http://op-co.de/bayes/ Gliederung 1. Einleitung 2. einfache

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume

Effiziente Algorithmen und Datenstrukturen I. Kapitel 9: Minimale Spannbäume Effiziente Algorithmen und Datenstrukturen I Kapitel 9: Minimale Spannbäume Christian Scheideler WS 008 19.0.009 Kapitel 9 1 Minimaler Spannbaum Zentrale Frage: Welche Kanten muss ich nehmen, um mit minimalen

Mehr

Auswahl von Klauseln und Atomen in Prolog

Auswahl von Klauseln und Atomen in Prolog 5.6 Prolog... ist die bekannteste Implementierung einer LP-Sprache; wurde Anfang der 1970er von Alain Colmerauer (Marseille) und Robert Kowalski (Edinburgh) entwickelt. konkretisiert den vorgestellten

Mehr

Kombinatorische Optimierung

Kombinatorische Optimierung Juniorprof. Dr. Henning Meyerhenke 1 Henning Meyerhenke: KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Vorlesung 1 Programm des

Mehr

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Binary Decision Diagrams. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS / KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz Association

Mehr

Übung 6 - Planen, Schliessen unter Unsicherheit, Logik. Aufgabe 1 - Block-Welt-Planung Gegeben sei das nachfolgende Planungsproblem aus der Blockwelt:

Übung 6 - Planen, Schliessen unter Unsicherheit, Logik. Aufgabe 1 - Block-Welt-Planung Gegeben sei das nachfolgende Planungsproblem aus der Blockwelt: Theoretischer Teil - Planen, Schliessen unter Unsicherheit, Logik Aufgabe 1 - Block-Welt-Planung Gegeben sei das nachfolgende Planungsproblem aus der Blockwelt: B A Anfangszustand A B Zielzustand 1. Stellen

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2007 4. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Traversierung Durchlaufen eines Graphen, bei

Mehr

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion

Was bisher geschah. Aufgaben: Diagnose, Entscheidungsunterstützung Aufbau Komponenten und Funktion Was bisher geschah Daten, Information, Wissen explizites und implizites Wissen Wissensrepräsentation und -verarbeitung: Wissensbasis Kontextwissen Problemdarstellung fallspezifisches Wissen repräsentiert

Mehr

Algorithmen und Datenstrukturen 2

Algorithmen und Datenstrukturen 2 Algorithmen und Datenstrukturen 2 Sommersemester 2006 3. Vorlesung Peter F. Stadler Universität Leipzig Institut für Informatik studla@bioinf.uni-leipzig.de Algorithmen für Graphen Fragestellungen: Suche

Mehr

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2

w a is die Anzahl der Vorkommen von a in w Beispiel: abba a = 2 1 2 Notation für Wörter Grundlagen der Theoretischen Informatik Till Mossakowski Fakultät für Informatik Otto-von-Guericke Universität Magdeburg w a is die Anzahl der Vorkommen von a in w Beispiel: abba

Mehr

GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen. Teil 1: Einführung: Wissensbasis und Ontologie.

GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen. Teil 1: Einführung: Wissensbasis und Ontologie. GI-Technologien zur Umsetzung der EU-Wasserrahmenrichtlinie (WRRL): Wissensbasen Teil 1: Einführung: Wissensbasis und Ontologie Was ist eine Wissensbasis? Unterschied zur Datenbank: Datenbank: strukturiert

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Seminar Business Intelligence Teil II: Data-Mining und Knowledge-Discovery

Seminar Business Intelligence Teil II: Data-Mining und Knowledge-Discovery Seminar usiness Intelligence Teil II: Data-Mining und Knowledge-Discovery Thema : Vortrag von Philipp reitbach. Motivation Übersicht. rundlagen. Entscheidungsbauminduktion. ayes sche Klassifikation. Regression.

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 Bäume robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische Grundprinzipien 3. Sortierverfahren 4. Halden

Mehr

Binäre Bäume Darstellung und Traversierung

Binäre Bäume Darstellung und Traversierung Binäre Bäume Darstellung und Traversierung Name Frank Bollwig Matrikel-Nr. 2770085 E-Mail fb641378@inf.tu-dresden.de Datum 15. November 2001 0. Vorbemerkungen... 3 1. Terminologie binärer Bäume... 4 2.

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen

Kapitel ML: I. I. Einführung. Beispiele für Lernaufgaben Spezifikation von Lernproblemen Kapitel ML: I I. Einführung Beispiele für Lernaufgaben Spezifikation von Lernproblemen ML: I-8 Introduction c STEIN/LETTMANN 2005-2010 Beispiele für Lernaufgaben Autoeinkaufsberater Welche Kriterien liegen

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Eine vorprozessierte Variante von Scatter/Gather

Eine vorprozessierte Variante von Scatter/Gather Universität Duisburg-Essen, Standort Duisburg Institut für Informatik und interaktive Systeme Fachgebiet Informationssysteme Ausarbeitung zum Blockseminar Invisible Web Eine vorprozessierte Variante von

Mehr

riskkv Scorenalyse riskkv Scoring Seite 1 von 9

riskkv Scorenalyse riskkv Scoring Seite 1 von 9 riskkv Scorenalyse riskkv Scoring Seite 1 von 9 Das Modul dient der flexiblen Erstellung, Auswertung und Verwendung von Scores. Durch vordefinierte Templates können in einer Einklicklösung bspw. versichertenbezogene

Mehr

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti

6 Baumstrukturen. Formale Grundlagen der Informatik I Herbstsemester 2012. Robert Marti 6 Baumstrukturen Formale Grundlagen der Informatik I Herbstsemester 2012 Robert Marti Vorlesung teilweise basierend auf Unterlagen von Prof. emer. Helmut Schauer Beispiel: Hierarchisches File System 2

Mehr

Randomisierte Algorithmen

Randomisierte Algorithmen Randomisierte Algorithmen Kapitel 2 Markus Lohrey Universität Leipzig http://www.informatik.uni-leipzig.de/~lohrey/rand WS 2005/2006 Markus Lohrey (Universität Leipzig) Randomisierte Algorithmen WS 2005/2006

Mehr

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn

Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Seminarvortag zum Thema Virtual Private Network Design im Rahmen des Seminars Network Design an der Universität Paderborn Ein 5.55-Approximationsalgorithmus für das VPND-Problem Lars Schäfers Inhalt Einführung:

Mehr

Grundlagen der Programmierung 2. Bäume

Grundlagen der Programmierung 2. Bäume Grundlagen der Programmierung 2 Bäume Prof. Dr. Manfred Schmidt-Schauÿ Künstliche Intelligenz und Softwaretechnologie 24. Mai 2006 Graphen Graph: Menge von Knoten undzugehörige (gerichtete oder ungerichtete)

Mehr

Algorithmentheorie. 13 - Maximale Flüsse

Algorithmentheorie. 13 - Maximale Flüsse Algorithmentheorie 3 - Maximale Flüsse Prof. Dr. S. Albers Prof. Dr. Th. Ottmann . Maximale Flüsse in Netzwerken 5 3 4 7 s 0 5 9 5 9 4 3 4 5 0 3 5 5 t 8 8 Netzwerke und Flüsse N = (V,E,c) gerichtetes Netzwerk

Mehr

6. Algorithmen der Computer-Geometrie

6. Algorithmen der Computer-Geometrie 6. Algorithmen der Computer-Geometrie 1. Einführung 2. Schnitt von zwei Strecken 3. Punkt-in-Polygon-Test 4. Schnitt orthogonaler Strecken 5. Punkteinschlussproblem Geo-Informationssysteme 146 6.1 Computer-Geometrie

Mehr

Logische Programmierung

Logische Programmierung Logische Programmierung B-82 Deklaratives Programmieren in Prädikatenlogik: Problem beschreiben statt Algorithmus implementieren (idealisiert). Grundlagen: Relationen bzw. Prädikate (statt Funktionen);

Mehr

Kapitel 8: Physischer Datenbankentwurf

Kapitel 8: Physischer Datenbankentwurf 8. Physischer Datenbankentwurf Seite 1 Kapitel 8: Physischer Datenbankentwurf Speicherung und Verwaltung der Relationen einer relationalen Datenbank so, dass eine möglichst große Effizienz der einzelnen

Mehr

Data Mining - Wiederholung

Data Mining - Wiederholung Data Mining - Wiederholung Norbert Fuhr 9. Juni 2008 Problemstellungen Problemstellungen Daten vs. Information Def. Data Mining Arten von strukturellen Beschreibungen Regeln (Klassifikation, Assoziations-)

Mehr

Algorithmen und Datenstrukturen Bereichsbäume

Algorithmen und Datenstrukturen Bereichsbäume Algorithmen und Datenstrukturen Bereichsbäume Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Überblick Einführung k-d Baum BSP Baum R Baum Motivation

Mehr

AutoSPARQL. Let Users Query Your Knowledge Base

AutoSPARQL. Let Users Query Your Knowledge Base AutoSPARQL Let Users Query Your Knowledge Base Christian Olczak Seminar aus maschinellem Lernen WS 11/12 Fachgebiet Knowledge Engineering Dr. Heiko Paulheim / Frederik Janssen 07.02.2012 Fachbereich Informatik

Mehr

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes

1. Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 1 Woche: Einführung in die Codierungstheorie, Definition Codes, Präfixcode, kompakte Codes 5/ 44 Unser Modell Shannon

Mehr

Die versteckten Fallen der "Jahr-2000"-Fähigkeit von Software am Beispiel von REXX

Die versteckten Fallen der Jahr-2000-Fähigkeit von Software am Beispiel von REXX Die versteckten Fallen der "Jahr-2000"-Fähigkeit von Software am Beispiel von REXX Zusammenfassung: Autorin/Autor: Um Software "Jahr-2000"-fähig zu machen, müssen Programmierer auch auf Fallen achten,

Mehr