Grundlagen der Programmierung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Grundlagen der Programmierung"

Transkript

1 Grundlagen der Programmierung Algorithmen und Datenstrukturen Die Inhalte der Vorlesung wurden primär auf Basis der angegebenen Literatur erstellt. Darüber hinaus sind viele Teile direkt aus der Vorlesung von Prof. Dr.-Ing. Faustmann (ebenfalls FHW Berlin) übernommen worden. Für die Bereitstellung dieses Vorlesungsmaterials möchte ich mich an dieser Stelle noch einmal recht herzlich bedanken Prof. Dr. Andreas Schmietendorf 1

2 Übersicht zur Vorlesung und Literaturempfehlungen Prof. Dr. Andreas Schmietendorf 2

3 Übersicht zur Vorlesung I Komplexität und Aufwand eines Algorithmus - Analyse von Algorithmen - Die O-Notation - Weiterführende Aspekte Arbeiten mit Dateien (Files) - Verzeichnis- und Dateizugriff - Sequentieller Zugriff auf Dateien - Beliebiger (wahlfreier Zugriff auf Dateien) Prof. Dr. Andreas Schmietendorf 3

4 Übersicht zur Vorlesung II Verkettete Listen und Bäume - Verkettete Listen in Java - Manipulieren verketteter Listen - Verwendung von Bäumen Rekursive Algorithmen - Rekursion vs. Iteration - Rekursive Lösungen (z.b. Türme von Hanoi) Prof. Dr. Andreas Schmietendorf 4

5 Übersicht zur Vorlesung III Such- und Sortieralgorithmen - Sequenzielle Suche - Binäre Suche - Hashfunktion - Vergleich von Sortieralgorithmen Zusammenfassung und Ausblick - Wiederholdung ausgewählter Themenstellungen - Objektorientierte Softwareentwicklung - Die Idee der J2EE Architektur Prof. Dr. Andreas Schmietendorf 5

6 Literatur Sedgewick, R.: Algorithmen in Java: Pearson Studium Addison Wesley, 2003 (ISBN ) Krüger, G.: Handbuch der Java-Programmierung 3. Auflage, Addison Wesley (ISBN ) Dumke, R.: Java-Tutorial, Webauftritt der AG Softwaretechnik am Institut für verteilte Systeme, Universität Magdeburg, (ivs.cs.unimagdeburg.de) Prof. Dr. Andreas Schmietendorf 6

7 Komplexität und Aufwand Prof. Dr. Andreas Schmietendorf 7

8 Die Komplexität eines Algorithmus sei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch als rechnerische Komplexität bezeichnet. Die Form der Abschätzung beruht zumeist auf dem Zählen, wie häufig bestimmte Operationen des Algorithmus ausgeführt werden Prof. Dr. Andreas Schmietendorf 8

9 // liefert Summe der Zahlen von 1 bis n */ public static long summe(long n){ long erg = 0; for (int i = 1; i<=n; i++){ erg += i; } return erg; } - Wie gut ist der Algorithmus summe? - Wie viel Zeit braucht summe in Abhängigkeit von n? Prof. Dr. Andreas Schmietendorf 9

10 n Zeit in ms Summe Vermessung der dargestellten Methode zur Berechnung der Summe auf einem Rechnersystem mit 1,73 GHz, 512 MByte RAM unter WindowsXP. Für die Vermessung wurde die Methode System.currentTimeMillis()verwendet Prof. Dr. Andreas Schmietendorf 10

11 - Schrittanzahl ist 3+3*n, wobei die Schrittdauer unklar ist. Wir nennen die Angabe der (realen) Schrittanzahl analytische Betrachtung der Komplexität. - Die Größenordnung der Schrittanzahl bei diesem Algorithmus steigt linear mit dem Eingabewert n, d.h. O(n) (=linear) Prof. Dr. Andreas Schmietendorf 11

12 Die Aufwandsschätzung unterscheidet folgende Fälle: - Der günstigste Fall best case - Den schlechtesten Fall worst case - Den durchschnittlichen Fall average case Häufig interessiert man sich für den asymptotischen Aufwand eines Algorithmus (d.h. was passiert wenn n läuft) Ggf. kann ein Algorithmus mit schlechteren asymptotischen Aufwand für kleine n besser sein (sog. break even points berücksichtigen) Prof. Dr. Andreas Schmietendorf 12

13 O-Notation -gebräuchliche Komplexitätsklassen: O(2 n ) > O(n 2 ) > O(n*log n) > O(n) > O(log n) > O(1) - O(1) konstanter Aufwand (z.b. Ausdrucksberechnungen) - O(log n) logarithmischer Aufwand (z.b. allg. Suchverfahren) - O(n) linearer Aufwand (z.b. syntaktische Programmanalyse) - O(n log n) quasilinearer Aufwand (z.b. Sortierung) - O(n 2 ) quadratischer Aufwand (z.b. Vektormultiplikation) - O(2 n ) exponentieller Aufwand (z.b. rekursive Algorithmen) Prof. Dr. Andreas Schmietendorf 13

14 Anweisung Ausführunganzahl (Schritte) x = x +1; for(int i=1; i<n; i++){ x = x +1; } einmal (n-1)-mal d.h. O(1) d.h. O(n) for(int i=1; i<n; i++){ for(int k=1; k<n; k++){ x = x +1; } } for(int i=n; i>0; i/=10){ x = x +1; } (n-1) 2 -mal d.h. O(n 2 ) (1+log n) mal d.h. O(log n) Prof. Dr. Andreas Schmietendorf 14

15 Primitive Operationen gehen nicht in die Aufwandsschätzung ein! Wertzuweisung zu einer Variablen Aufruf einer Klassenmethode Berechnung von arithmetischen Termen Indexberechnung von Feldelementen Auflösung einer Objektreferenz Rückkehr von einer Klassenmethode Prof. Dr. Andreas Schmietendorf 15

16 Übung: Für die folgenden Algorithmen (Aufgabe 1-7) sind: - die analytische Schrittanzahl in Bezug auf die Elementaranweisung s, - und die Größenordnung der Komplexität an (O-Notation) zu bestimmen! - Analysieren Sie die Algorithmen zuerst ohne Verwendung von Eclipse. - Testen Sie die Anzahl der Schritte mit Hilfe eines Java-Programms Bem: Komplexität als Funktion der Eingabe von n Prof. Dr. Andreas Schmietendorf 16

17 1. for(int i=2*n; i>=0; i--){s;} 2. for(int i=1; i<n; i++){s; s; s; s;} 3. for(int i=1; i<=n; i++){s;} for(int j=1; j<=n; j++){s;} 4. for(int i=1; i<=n; i++){ for(int j=1; j<=n; j++){ s;}} Prof. Dr. Andreas Schmietendorf 17

18 5. for(int i=n; i>0; i/=10){s;} 6. for(int i=1; i<=n; i++){ s; for(int j=1; j<=n; j++){ s; } s;} 7. long f10(long n){ s; if (n>1) { f10(n-1); f10(n-1); } } Prof. Dr. Andreas Schmietendorf 18

19 Ein für eine Schrittanzahl analytisch ermitteltes Polynom a m n m + a m-1 n m a 2 n 2 + a 1 n + a 0 hat die Komplexitätsklasse O(n m ). Für Anwendungssysteme ist die Verwendung von Algorithmen mit einem Aufwand größer als n*log n (also quadratisch oder sogar exponentiell) nicht erwünscht. Bestimmte Probleme sind jedoch nicht mit geringerem Aufwand lösbar (bzw. wurde bis heute noch kein Algorithmus einer besseren Aufwandsklasse gefunden) Prof. Dr. Andreas Schmietendorf 19

20 n log n n log n n 2 2 n Prof. Dr. Andreas Schmietendorf 20

21 Übung (optional): Welchen Aufwand hat das Suchen nach einem Eintrag im Telefonbuch? Gehen Sie zur Beantwortung der Frage wie folgt vor: Versuchen Sie, für diese Suche einen Algorithmus in Pseudocode zu formulieren. Ermitteln Sie den Aufwand dieses Algorithmus. Welcher Datenstruktur entspricht ein Telefonbuch? Warum ist eine (sortierte) verkettete Liste gar nicht und ein (sortiertes) Array nur eingeschränkt geeignet zur Speicherung? Prof. Dr. Andreas Schmietendorf 21

22 Übung: Analysieren Sie das Zeitverhalten der Aufgabe 7 (rekursive Funktion) - Messen Sie Dauer der Ausführung - Verwenden Sie für die Messung folgende Java-Methode: long startmesswert = System.currentTimeMillis(); - Nehmen Sie eine entsprechende Kennlinie bis ms auf - Beobachten Sie die Systemauslastung mit Hilfe des Windows Task-Manager Auflösung orientiert sich meist an der Auflösung des System-Timers Mögliche Auflösung lässt sich bestimmen siehe dazu Krüger, G. S Prof. Dr. Andreas Schmietendorf 22

23 Weitere Komplexitätsformen: Die Raumkomplexität bezieht sich auf die Aufwandsabschätzung für die Speicherung der Daten bzw. Informationen zu einem Algorithmus hinsichtlich seiner Realisierung. Die psychologische Komplexität ist der Aufwand für das Verständnis bzw. die Handhabung eines Algorithmus speziell in einer Realisierungsform als Programm Prof. Dr. Andreas Schmietendorf 23

24 Übung - Optional: Der Kurs einer Aktie hat an zehn aufeinander folgenden Tagen die folgenden Werte gewonnen bzw. verloren: Frage: Wie viel Gewinn hätte man innerhalb dieser Zeitspanne maximal machen können? Problem: Es ist mühevoll für längere Zeitabschnitte einen günstigsten Kauf- bzw. Verkaufstermin zu finden! Prof. Dr. Andreas Schmietendorf 24

Überblick. Lineares Suchen

Überblick. Lineares Suchen Komplexität Was ist das? Die Komplexität eines Algorithmus sei hierbei die Abschätzung des Aufwandes seiner Realisierung bzw. Berechnung auf einem Computer. Sie wird daher auch rechnerische Komplexität

Mehr

Sortierverfahren für Felder (Listen)

Sortierverfahren für Felder (Listen) Sortierverfahren für Felder (Listen) Generell geht es um die Sortierung von Daten nach einem bestimmten Sortierschlüssel. Es ist auch möglich, daß verschiedene Daten denselben Sortierschlüssel haben. Es

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen

Uebersicht. Webpage & Ilias. Administratives. Lehrbuch. Vorkenntnisse. Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Uebersicht Administratives Einleitung Ein einführendes Beispiel Matthias Zwicker Universität Bern Frühling 2010 2 Administratives Dozent Prof. Zwicker, zwicker@iam.unibe.ch

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Rekursion. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Rekursion Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-12-13/infoeinf WS12/13 Aufgabe 1: Potenzfunktion Schreiben Sie eine Methode, die

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen -

Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - Grundlagen der Informatik 2 (GdI2) - Algorithmen und Datenstrukturen - 2) Algorithmenanalyse Prof. Dr. Anja Schanzenberger FH Augsburg, Fakultät für Informatik Kontakt: anja.schanzenberger@hs-augsburg.de

Mehr

Java Kurs für Anfänger Einheit 5 Methoden

Java Kurs für Anfänger Einheit 5 Methoden Java Kurs für Anfänger Einheit 5 Methoden Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 22. Juni 2009 Inhaltsverzeichnis Methoden

Mehr

Programmierkurs Java

Programmierkurs Java Programmierkurs Java Dr. Dietrich Boles Aufgaben zu UE16-Rekursion (Stand 09.12.2011) Aufgabe 1: Implementieren Sie in Java ein Programm, das solange einzelne Zeichen vom Terminal einliest, bis ein #-Zeichen

Mehr

Algorithmen & Datenstrukturen 1. Klausur

Algorithmen & Datenstrukturen 1. Klausur Algorithmen & Datenstrukturen 1. Klausur 7. Juli 2010 Name Matrikelnummer Aufgabe mögliche Punkte erreichte Punkte 1 35 2 30 3 30 4 15 5 40 6 30 Gesamt 180 1 Seite 2 von 14 Aufgabe 1) Programm Analyse

Mehr

Laufzeit und Komplexität

Laufzeit und Komplexität Laufzeit und Komplexität Laufzeit eines Algorithmus Benchmarking versus Analyse Abstraktion Rechenzeit, Anzahl Schritte Bester, Mittlerer, Schlechtester Fall Beispiel: Lineare Suche Komplexitätsklassen

Mehr

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7)

Übersicht. Datenstrukturen und Algorithmen. Übersicht. Divide-and-Conquer. Vorlesung 9: Quicksort (K7) Datenstrukturen und Algorithmen Vorlesung 9: (K7) Joost-Pieter Katoen Lehrstuhl für Informatik 2 Software Modeling and Verification Group http://www-i2.rwth-aachen.de/i2/dsal0/ Algorithmus 8. Mai 200 Joost-Pieter

Mehr

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung

Kapitel 6. Komplexität von Algorithmen. Xiaoyi Jiang Informatik I Grundlagen der Programmierung Kapitel 6 Komplexität von Algorithmen 1 6.1 Beurteilung von Algorithmen I.d.R. existieren viele Algorithmen, um dieselbe Funktion zu realisieren. Welche Algorithmen sind die besseren? Betrachtung nicht-funktionaler

Mehr

SOI 2013. Die Schweizer Informatikolympiade

SOI 2013. Die Schweizer Informatikolympiade SOI Die Schweizer Informatikolympiade Lösung SOI Wie schreibe ich eine gute Lösung? Bevor wir die Aufgaben präsentieren, möchten wir dir einige Tipps geben, wie eine gute Lösung für die theoretischen

Mehr

Numerische Verfahren und Grundlagen der Analysis

Numerische Verfahren und Grundlagen der Analysis Numerische Verfahren und Grundlagen der Analysis Rasa Steuding Hochschule RheinMain Wiesbaden Wintersemester 2011/12 R. Steuding (HS-RM) NumAna Wintersemester 2011/12 1 / 16 4. Groß-O R. Steuding (HS-RM)

Mehr

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann

Einführung in die Informatik für Hörer aller Fakultäten II. Andreas Podelski Stephan Diehl Uwe Waldmann Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann 1 Einführung in die Informatik für Hörer aller Fakultäten II Andreas Podelski Stephan Diehl Uwe Waldmann

Mehr

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff

Programmieren in C. Rekursive Funktionen. Prof. Dr. Nikolaus Wulff Programmieren in C Rekursive Funktionen Prof. Dr. Nikolaus Wulff Rekursive Funktionen Jede C Funktion besitzt ihren eigenen lokalen Satz an Variablen. Dies bietet ganze neue Möglichkeiten Funktionen zu

Mehr

Programmierung 1 für Wirtschaftsinformatik Wintersemester 2013/14

Programmierung 1 für Wirtschaftsinformatik Wintersemester 2013/14 Programmierung 1 für Wirtschaftsinformatik Wintersemester 2013/14 Prof. Dr.-Ing. habil. Peter Sobe Fakultät Informatik / Mathematik Programmierung 1: Programmierung 1 - Ziele Vermittlung von Grundkenntnissen

Mehr

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik

Teil 2 - Softwaretechnik. Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2. Übersicht. Softwaretechnik Grundlagen der Programmierung 1 Modul: Programmierung B-PRG Grundlagen der Programmierung 1 Teil 2 Softwaretechnik Prof. Dr. O. Drobnik Professur Architektur und Betrieb verteilter Systeme Institut für

Mehr

1. Grundlegende Konzepte in Java (6 Punkte)

1. Grundlegende Konzepte in Java (6 Punkte) 1. Grundlegende Konzepte in Java (6 Punkte) a) Welches der folgenden Literale ist korrekt und wenn ja, von welchem Typ ist es? "true" nicht korrekt X korrekt vom Typ String 'true' X nicht korrekt korrekt

Mehr

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel.

Einführung Datentypen Verzweigung Schleifen Funktionen Dynamische Datenstrukturen. Java Crashkurs. Kim-Manuel Klein (kmk@informatik.uni-kiel. Java Crashkurs Kim-Manuel Klein (kmk@informatik.uni-kiel.de) May 7, 2015 Quellen und Editoren Internet Tutorial: z.b. http://www.java-tutorial.org Editoren Normaler Texteditor (Gedit, Scite oder ähnliche)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dipl. Inform. Andreas Wilkens 1 Organisatorisches Freitag, 05. Mai 2006: keine Vorlesung! aber Praktikum von 08.00 11.30 Uhr (Gruppen E, F, G, H; Vortestat für Prototyp)

Mehr

BEISPIELKLAUSUR Softwareentwicklung:

BEISPIELKLAUSUR Softwareentwicklung: Prof. Dr. Andreas Fink Institut für Informatik Fakultät für Wirtschafts- und Sozialwissenschaften Helmut-Schmidt-Universität / Universität der Bundeswehr Hamburg BEISPIELKLAUSUR Softwareentwicklung: Objektorientierte

Mehr

Einführung in die Informatik

Einführung in die Informatik Einführung in die Informatik Jochen Hoenicke Software Engineering Albert-Ludwigs-University Freiburg Sommersemester 2014 Jochen Hoenicke (Software Engineering) Einführung in die Informatik Sommersemester

Mehr

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2007/2008

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2007/2008 PIWIN I Kap. 7 Objektorientierte Programmierung - Einführung 1 PIWIN I Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I Vorlesung 3 SWS WS 2007/2008 FB Informatik

Mehr

Datenstrukturen. Mariano Zelke. Sommersemester 2012

Datenstrukturen. Mariano Zelke. Sommersemester 2012 Datenstrukturen Mariano Zelke Sommersemester 2012 Mathematische Grundlagen: Das Handwerkszeug Mariano Zelke Datenstrukturen 2/26 Formeln: n - i = n (n+1) 2 und - i=1 k i=0 a i = ak+1 1 a 1, falls a 1 Rechnen

Mehr

Einführung in die Wirtschaftsinformatik - WIN

Einführung in die Wirtschaftsinformatik - WIN Einführung in die Wirtschaftsinformatik - WIN Part 1 Übersicht zur Vorlesung und Einführung Die Inhalte der Vorlesung wurden primär auf Basis der jeweils angegebenen Literatur erstellt. Darüber hinaus

Mehr

Nino Simunic M.A. Computerlinguistik, Campus DU

Nino Simunic M.A. Computerlinguistik, Campus DU Vorlesung Grundlegende Programmiertechniken Wintersemester 2007/2008 Dozent Nino Simunic M.A. Computerlinguistik, Campus DU Überblick > Administratives > Inhalte > Verwendete/Benötigte Software > Literatur

Mehr

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15

Übersicht. Schleifen. Schleifeninvarianten. Referenztypen, Wrapperklassen und API. 9. November 2009 CoMa I WS 08/09 1/15 Übersicht Schleifen Schleifeninvarianten Referenztypen, Wrapperklassen und API CoMa I WS 08/09 1/15 CoMa I Programmierziele Linux bedienen Code umschreiben strukturierte Datentypen Anweisungen und Kontrollstrukturen

Mehr

1. Einführung Einführung in die Programmierung (fbw) Sommersemester 2008 Prof. Dr. Bernhard Humm Hochschule Darmstadt, fbi

1. Einführung Einführung in die Programmierung (fbw) Sommersemester 2008 Prof. Dr. Bernhard Humm Hochschule Darmstadt, fbi 1. Einführung Einführung in die Programmierung (fbw) Sommersemester 2008 Prof. Dr. Bernhard Humm Hochschule Darmstadt, fbi 1 Prof. Dr. Bernhard Humm, Hochschule Darmstadt, FB Informatik: Einführung in

Mehr

Modulbeschreibung Fakultät Gebäudetechnik und Informatik gültig ab WS 2010/11. Niveaustufe: Bachelor

Modulbeschreibung Fakultät Gebäudetechnik und Informatik gültig ab WS 2010/11. Niveaustufe: Bachelor Modul-Nr.: BA-VI-1030 Modulname: Programmierung Grundlagen (PRG) Niveaustufe: Bachelor Empfohlenes Semester: 1./2. Studiensemester : Grundkonzepte der Programmierung (GKP) Objektorientierte Programmmierung

Mehr

Objektorientierte Programmierung

Objektorientierte Programmierung Objektorientierte Programmierung 1 Geschichte Dahl, Nygaard: Simula 67 (Algol 60 + Objektorientierung) Kay et al.: Smalltalk (erste rein-objektorientierte Sprache) Object Pascal, Objective C, C++ (wiederum

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015. Vorlesung 5, Donnerstag, 20. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 5, Donnerstag, 20. November 2014 (Wie baut man eine Hash Map, Universelles Hashing)

Mehr

Suchen in Listen und Hashtabellen

Suchen in Listen und Hashtabellen Kapitel 12: Suchen in Listen und Hashtabellen Einführung in die Informatik Wintersemester 2007/08 Prof. Bernhard Jung Übersicht Einleitung Lineare Suche Binäre Suche (in sortierten Listen) Hashverfahren

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

SEP 325. Notwendigkeit. häufige Situation: Programm funktioniert im Prinzip fehlerfrei, aber nicht mit gewünschter Performanz

SEP 325. Notwendigkeit. häufige Situation: Programm funktioniert im Prinzip fehlerfrei, aber nicht mit gewünschter Performanz Optimierungen SEP 325 Notwendigkeit häufige Situation: Programm funktioniert im Prinzip fehlerfrei, aber nicht mit gewünschter Performanz Symptome des Mangels an Performanz: OutOfMemoryError wird geworfen

Mehr

EndTermTest PROGALGO WS1516 A

EndTermTest PROGALGO WS1516 A EndTermTest PROGALGO WS1516 A 14.1.2016 Name:................. UID:.................. PC-Nr:................ Beachten Sie: Lesen Sie erst die Angaben aufmerksam, genau und vollständig. Die Verwendung von

Mehr

EINI WiMa/LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12

EINI WiMa/LW. Einführung in die Informatik für Naturwissenschaftler und Ingenieure. Vorlesung 2 SWS WS 11/12 EINI WiMa/LW Einführung in die Informatik für Naturwissenschaftler und Ingenieure Vorlesung 2 SWS WS 11/12 Fakultät für Informatik Technische Universität Dortmund lars.hildebrand@udo.edu http://ls1-www.cs.uni-dortmund.de

Mehr

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert

1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert Inhalt Einführung 1. Arrays 1. Array unsortiert 2. Array sortiert 3. Heap 2. Listen 1. Einfach verkettete Liste unsortiert 2. Einfach verkettete Liste sortiert 3. Doppelt verkettete Liste sortiert 3. Bäume

Mehr

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung

Einfache Arrays. Annabelle Klarl. Einführung in die Informatik Programmierung und Softwareentwicklung Annabelle Klarl Zentralübung zur Vorlesung Einführung in die Informatik: http://www.pst.ifi.lmu.de/lehre/wise-13-14/infoeinf WS13/14 Action required now 1. Smartphone: installiere die App "socrative student"

Mehr

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1

3.2 Binäre Suche. Usr/local/www/ifi/fk/menschen/schmid/folien/infovk.ppt 1 3.2 Binäre Suche Beispiel 6.5.1: Intervallschachtelung (oder binäre Suche) (Hier ist n die Anzahl der Elemente im Feld!) Ein Feld A: array (1..n) of Integer sei gegeben. Das Feld sei sortiert, d.h.: A(i)

Mehr

Entwurf von Algorithmen - Kontrollstrukturen

Entwurf von Algorithmen - Kontrollstrukturen Entwurf von Algorithmen - Kontrollstrukturen Eine wichtige Phase in der Entwicklung von Computerprogrammen ist der Entwurf von Algorithmen. Dieser Arbeitsschritt vor dem Schreiben des Programmes in einer

Mehr

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung)

Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) Wintersemester 2007/08 Einführung in die Informatik für Naturwissenschaftler und Ingenieure (alias Einführung in die Programmierung) (Vorlesung) Prof. Dr. Günter Rudolph Fakultät für Informatik Lehrstuhl

Mehr

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block

Sortieralgorithmen. Inhalt: InsertionSort BubbleSort QuickSort. Marco Block Inhalt: InsertionSort BubbleSort QuickSort Block M.: "Java-Intensivkurs - In 14 Tagen lernen Projekte erfolgreich zu realisieren", Springer-Verlag 2007 InsertionSort I Das Problem unsortierte Daten in

Mehr

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm

Programmieren ++ Begleitende Übungen zu Veranstaltungen + Umsetzen des Algorithmus in ein lauffähiges Programm Studienanforderungen Studiengang Maschinenbau Programmieren Begleitende Übungen zu Veranstaltungen Umsetzen des Algorithmus in ein lauffähiges Programm Studiengang Bauingenieurwesen Programmieren Begleitende

Mehr

Suchen und Sortieren (Die klassischen Algorithmen)

Suchen und Sortieren (Die klassischen Algorithmen) Suchen und Sortieren (Die klassischen Algorithmen) Lineare Suche und Binäre Suche (Vorbedingung und Komplexität) Sortieralgorithmen (allgemein) Direkte Sortierverfahren (einfach aber langsam) Schnelle

Mehr

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 1. Einführung und Grundbegriffe

Einführung in die Informatik: Programmierung und Software-Entwicklung, WS 11/12. Kapitel 1. Einführung und Grundbegriffe 1 Kapitel 1 2 Ziele Begriffsbildungen: Informatik, Algorithmus, Programm, Compiler, Einordnung von Java Ein einfaches Java-Programm erstellen, übersetzen und ausführen Java-Programme dokumentieren 3 Informatik

Mehr

SWE1 / Übung 2 (19.10.2011)

SWE1 / Übung 2 (19.10.2011) SWE1 / Übung 2 (19.1.211) Simulation von Algorithmen Testen, Testplan Beispiel arithmetische Ausdrücke Handsimulation von Algorithmen Man versteht einen Algorithmus (insbesonders einen "Fremden"), wenn

Mehr

Große Übung Praktische Informatik 1

Große Übung Praktische Informatik 1 Große Übung Praktische Informatik 1 2005-12-08 fuessler@informatik.uni-mannheim.de http://www.informatik.uni-mannheim.de/pi4/people/fuessler 1: Announcements / Orga Weihnachtsklausur zählt als Übungsblatt,

Mehr

1. Formulieren Sie den Algorithmus nach den oben genannten Kriterien.

1. Formulieren Sie den Algorithmus <Bedienung eines Getränkeautomaten> nach den oben genannten Kriterien. Java 1 Einführung Grundlegende Übungsaufgaben Arbeitsauftrag 1.1 1. Formulieren Sie den Algorithmus nach den oben genannten Kriterien. Beispiel: Bedienung eines Getränkeautomaten

Mehr

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort.

Name: Seite 2. Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Name: Seite 2 Beantworten Sie die Fragen in den Aufgaben 1 und 2 mit einer kurzen, prägnanten Antwort. Aufgabe 1 (8 Punkte) 1. Wie viele negative Zahlen (ohne 0) lassen sich im 4-Bit-Zweierkomplement darstellen?

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Der hat die früher handschriftlichen Folien lesbar gemacht. Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Heutige Themen Hello World!

Mehr

Eine Klasse beschreibt Objekte mit gleichen Attributen und Methoden.

Eine Klasse beschreibt Objekte mit gleichen Attributen und Methoden. Grundwissen Informatik Objekt Attribut Methoden Als Objekte bezeichnet man alle Gegenstände, Dinge, Lebewesen, Begriffe oder Strukturen unserer Welt ( Autos, Räume, Bakterien, Lehrer, Schüler, Kunden,

Mehr

Programmiertechnik II

Programmiertechnik II Bäume Symboltabellen Suche nach Werten (items), die unter einem Schlüssel (key) gefunden werden können Bankkonten: Schlüssel ist Kontonummer Flugreservierung: Schlüssel ist Flugnummer, Reservierungsnummer,...

Mehr

Institut für Telematik Universität zu Lübeck. Programmieren. Kapitel 0: Organisatorisches. Wintersemester 2008/2009. Prof. Dr.

Institut für Telematik Universität zu Lübeck. Programmieren. Kapitel 0: Organisatorisches. Wintersemester 2008/2009. Prof. Dr. Institut für Telematik Universität zu Lübeck Programmieren Kapitel 0: Organisatorisches Wintersemester 2008/2009 Prof. Dr. Christian Werner 1-2 Überblick Ziele Inhaltsüberblick Ablauf der Veranstaltung

Mehr

Die Java Stream API. Funktionale Programmierung mit der Stream API des JDK 1.8. Prof. Dr. Nikolaus Wulff

Die Java Stream API. Funktionale Programmierung mit der Stream API des JDK 1.8. Prof. Dr. Nikolaus Wulff Die Java Stream API Funktionale Programmierung mit der Stream API des JDK 1.8 Prof. Dr. Nikolaus Wulff Funktionale Programmierung Neben der Collection API mit default Methoden ist als weitere Neuerung

Mehr

Mächtigkeit von WHILE-Programmen

Mächtigkeit von WHILE-Programmen Mächtigkeit von WHILE-Programmen Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 26. November 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit

Mehr

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen...

1. Grundlagen... 2. 2. Sortieren... 6. 1.1. Vertauschen... 13. 1.2. Selektion... 16. 1.3. Einfügen... 19. 1.4. Quicksort... 22. 3. Suchen... Suchen und Sortieren In diesem Kapitel behandeln wir Algorithmen zum Suchen und Sortieren Inhalt 1. Grundlagen... 2 2. Sortieren... 6 1.1. Vertauschen... 13 1.2. Selektion... 16 1.3. Einfügen... 19 1.4.

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Kap. 4.2: Binäre Suchbäume

Kap. 4.2: Binäre Suchbäume Kap. 4.2: Binäre Suchbäume Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 11. VO DAP2 SS 2009 26. Mai 2009 1 Zusätzliche Lernraumbetreuung Morteza Monemizadeh:

Mehr

Einführung in die Informatik 1

Einführung in die Informatik 1 Einführung in die Informatik 1 Datenorganisation und Datenstrukturen Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00

Mehr

1. Übung zu "Numerik partieller Differentialgleichungen"

1. Übung zu Numerik partieller Differentialgleichungen 1. Übung zu "Numerik partieller Differentialgleichungen" Simon Gawlok, Eva Treiber Engineering Mathematics and Computing Lab 22. Oktober 2014 1 / 15 1 Organisatorisches 2 3 4 2 / 15 Organisatorisches Ort:

Mehr

Primitive Datentypen

Primitive Datentypen Primitive Datentypen 2 Arten von Datentypen: primitive Datentypen (heute) Objekte (später) Java ist streng typisiert, d.h. für jede Variable muß angegeben werden was für eine Art von Wert sie aufnimmt.

Mehr

Codes und Informationsgehalt

Codes und Informationsgehalt Aufgaben 2 Codes und Informationsgehalt Auf wie viele Dezimalziffern genau können vorzeichenlose ganze Zahlen in einem binären Code der Länge 32 bit dargestellt werden? 2 Codes und Informationsgehalt Auf

Mehr

Vorlesung Informatik II

Vorlesung Informatik II Vorlesung Informatik II Universität Augsburg Wintersemester 2011/2012 Prof. Dr. Bernhard Bauer Folien von: Prof. Dr. Robert Lorenz Lehrprofessur für Informatik 02. JAVA: Erstes Programm 1 Das erste Java-Programm

Mehr

Algorithmen und Berechnungskomplexität I

Algorithmen und Berechnungskomplexität I Institut für Informatik I Wintersemester 2010/11 Organisatorisches Vorlesung Montags 11:15-12:45 Uhr (AVZ III / HS 1) Mittwochs 11:15-12:45 Uhr (AVZ III / HS 1) Dozent Professor für theoretische Informatik

Mehr

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging.

Algorithmische Kernsprache. Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Algorithmische Kernsprache Zuweisung, einfache und bedingte Anweisung, Blöcke, Schleifen, return, debugging. Ausdrücke Anweisungen Ausdrücke bezeichnen einen Wert Kontext stellt Werte von Variablen Werte

Mehr

Programmiervorkurs. Organisation: Steffen Gebert, Alexander Wolff. Tutoren: Jürgen Zöller, Jonathan Stoll. Wintersemester 2012/2013

Programmiervorkurs. Organisation: Steffen Gebert, Alexander Wolff. Tutoren: Jürgen Zöller, Jonathan Stoll. Wintersemester 2012/2013 Programmiervorkurs Wintersemester 2012/2013 Organisation: Steffen Gebert, Alexander Wolff Tutoren: Jürgen Zöller, Jonathan Stoll Kontakt (für Organisatorisches, Fehler auf Folien...): Steffen Gebert steffen.gebert@informatik.uni-wuerzburg.de

Mehr

Problemstellung. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 24: Reflection 1. IDE und automatische Tests.

Problemstellung. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 24: Reflection 1. IDE und automatische Tests. Universität Osnabrück 1 Problemstellung 3 - Objektorientierte Programmierung in Java Vorlesung 24: Reflection 1 SS 2006 Prof. Dr. Frank M. Thiesing, FH Osnabrück Um ein Objekt anzulegen, eine seiner Methoden

Mehr

Programmieren I. Kontrollstrukturen. Heusch 8 Ratz 4.5. www.kit.edu. Institut für Angewandte Informatik

Programmieren I. Kontrollstrukturen. Heusch 8 Ratz 4.5. www.kit.edu. Institut für Angewandte Informatik Programmieren I Kontrollstrukturen Heusch 8 Ratz 4.5 KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Arten von Kontrollstrukturen

Mehr

Grenzen der Berechenbarkeit

Grenzen der Berechenbarkeit M. Jakob Gymnasium Pegnitz 3. Mai 2015 Inhaltsverzeichnis Experimentelle Laufzeitabschätzung ausgewählter Algorithmen Historische Kryptographie Moderne Kryptographie Das Halteproblem In diesem Abschnitt

Mehr

Effiziente Java Programmierung

Effiziente Java Programmierung Effiziente Java Programmierung Seminar Implementierung moderner virtueller Maschinen am Beispiel von Java SS 2009 von Reinhard Klaus Losse 20. Mai 2009 Gliederung Definition Effizienz Werkzeuge zum Messen

Mehr

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08

Parallele Algorithmen mit OpenCL. Universität Osnabrück, Henning Wenke, 2013-05-08 Parallele Algorithmen mit OpenCL Universität Osnabrück, Henning Wenke, 2013-05-08 Aufräumen Ressourcen in umgekehrter Abhängigkeitsreihenfolge freigeben Objekte haben Reference-Count (RC), initial 1 clrelease

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 4 Anweisungen... 4-2 4.1 Strukturierte Programmierung... 4-2 4.1.1 Geschichte... 4-2 4.1.2 Strukturierung im Kleinen... 4-2 4.2 Einige Beispielanwendungen... 4-4 4.2.1 Addierer (do-schleife)...

Mehr

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v)

Der linke Teilbaum von v enthält nur Schlüssel < key(v) und der rechte Teilbaum enthält nur Schlüssel > key(v) Ein Baum T mit Knotengraden 2, dessen Knoten Schlüssel aus einer total geordneten Menge speichern, ist ein binärer Suchbaum (BST), wenn für jeden inneren Knoten v von T die Suchbaumeigenschaft gilt: Der

Mehr

Java Programmierung auf der Konsole / unter Eclipse

Java Programmierung auf der Konsole / unter Eclipse Fakultät Informatik, HFU Brückenkurs Programmieren 1 Java Programmierung auf der Konsole / unter Eclipse Allgemeine Begriffe Programmiersprache: künstliche Sprache zur Notation von Programmen Programm:

Mehr

Die Komplexitätsklassen P und NP

Die Komplexitätsklassen P und NP Die Komplexitätsklassen P und NP Prof. Dr. Berthold Vöcking Lehrstuhl Informatik 1 Algorithmen und Komplexität RWTH Aachen 3. Dezember 2009 Berthold Vöcking, Informatik 1 () Vorlesung Berechenbarkeit und

Mehr

Inf 12 Aufgaben 14.02.2008

Inf 12 Aufgaben 14.02.2008 Inf 12 Aufgaben 14.02.2008 Übung 1 (6 Punkte) Ermitteln Sie eine mathematische Formel, die die Abhängigkeit der Suchzeit von der Anzahl der Zahlen N angibt und berechnen Sie mit Ihrer Formel die durchschnittliche

Mehr

Inhaltsverzeichnis. Fritz Jobst. Programmieren in Java ISBN: 978-3-446-41771-7. Weitere Informationen oder Bestellungen unter

Inhaltsverzeichnis. Fritz Jobst. Programmieren in Java ISBN: 978-3-446-41771-7. Weitere Informationen oder Bestellungen unter sverzeichnis Fritz Jobst Programmieren in Java ISBN: 978-3-446-41771-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41771-7 sowie im Buchhandel. Carl Hanser Verlag, München

Mehr

Kapitel 5: Dynamisches Programmieren Gliederung

Kapitel 5: Dynamisches Programmieren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Dr. Monika Meiler. Inhalt

Dr. Monika Meiler. Inhalt Inhalt 5 Referenzdatentypen - Felder... 5-2 5.1 Eindimensionale Felder - Vektoren... 5-3 5.1.1 Vereinbarung... 5-3 5.1.2 Referenzen sind keine Felder... 5-4 5.1.3 Kopieren eindimensionaler Felder... 5-6

Mehr

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x),

Institut für Programmierung und Reaktive Systeme 25. August 2014. Programmier-Labor. 04. + 05. Übungsblatt. int binarysearch(int[] a, int x), Technische Universität Braunschweig Dr. Werner Struckmann Institut für Programmierung und Reaktive Systeme 25. August 2014 Programmier-Labor 04. + 05. Übungsblatt Aufgabe 21: a) Schreiben Sie eine Methode

Mehr

6-1 A. Schwill Grundlagen der Programmierung II SS 2005

6-1 A. Schwill Grundlagen der Programmierung II SS 2005 6-1 A. Schwill Grundlagen der Programmierung II SS 25 6. Suchen Suchen = Tätigkeit, in einem vorgegebenen Datenbestand alle Objekte zu ermitteln, die eine best. Bedingung, das Suchkriterium, erfüllen und

Mehr

Informatik für Ingenieure

Informatik für Ingenieure Informatik für Ingenieure Eine Einführung Von Prof. Dr. rer. nat. Wolfgang Merzenich Universität-Gesamthochschule Siegen und Prof. Dr.-Ing. Hans Christoph Zeidler Universität der Bundeswehr Hamburg B.

Mehr

Einführung in die Programmierung

Einführung in die Programmierung Name, Vorname Matrikelnummer Probeklausur zur Vorlesung Einführung in die Programmierung WS 2008/09 Dauer: 2 Stunden Hinweise: Schreiben Sie Ihren Namen und Ihre Matrikelnummer auf dieses Deckblatt und

Mehr

Schulinternes Curriculum im Fach Informatik

Schulinternes Curriculum im Fach Informatik Schulinternes Curriculum im Fach Informatik Unterricht in EF : 1. Geschichte der elektronischen Datenverarbeitung (3 Stunden) 2. Einführung in die Nutzung von Informatiksystemen und in grundlegende Begriffe

Mehr

Programmieren I + II

Programmieren I + II Programmieren I + II Werner Struckmann Institut für Programmierung und Reaktive Systeme Wintersemester 2015/2016 Sommersemester 2016 Was ist Informatik? Die Informatik ist die Wissenschaft von Aufbau,

Mehr

Vorkurs Informatik WiSe 15/16

Vorkurs Informatik WiSe 15/16 Java 1 Dr. Werner Struckmann / Stephan Mielke, Jakob Garbe, 12.10.2015 Technische Universität Braunschweig, IPS Überblick Organisatorisches Arbeitsablauf Hello! 12.10.2015 Dr. Werner Struckmann / Stephan

Mehr

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou

Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Ideen der Informatik Suchen und Sortieren [Ordnung muss sein ] Kurt Mehlhorn Adrian Neumann viele Folien von Kostas Panagiotou Suchen Welche Telefonnummer hat Kurt Mehlhorn? Wie schreibt man das Wort Equivalenz?

Mehr

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen?

Entscheidungsbäume. Definition Entscheidungsbaum. Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Entscheidungsbäume Frage: Gibt es einen Sortieralgorithmus mit o(n log n) Vergleichen? Definition Entscheidungsbaum Sei T ein Binärbaum und A = {a 1,..., a n } eine zu sortierenden Menge. T ist ein Entscheidungsbaum

Mehr

Die Programmiersprache C

Die Programmiersprache C Die Programmiersprache C höhere Programmiersprache (mit einigen Assembler-ähnlichen Konstrukten) gut verständliche Kommandos muss von Compiler in maschinenlesbaren Code (Binärdatei) übersetzt werden universell,

Mehr

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2008/2009

PIWIN I. Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I. Vorlesung 3 SWS WS 2008/2009 PIWIN I Kap. 8 Objektorientierte Programmierung - Vererbung 1 PIWIN I Praktische Informatik für Wirtschaftsmathematiker, Ingenieure und Naturwissenschaftler I Vorlesung 3 SWS WS 2008/2009 FB Informatik

Mehr

Java Kurs für Anfänger Einheit 4 Klassen und Objekte

Java Kurs für Anfänger Einheit 4 Klassen und Objekte Java Kurs für Anfänger Einheit 4 Klassen und Ludwig-Maximilians-Universität München (Institut für Informatik: Programmierung und Softwaretechnik von Prof.Wirsing) 13. Juni 2009 Inhaltsverzeichnis klasse

Mehr

Einführung in die Java- Programmierung

Einführung in die Java- Programmierung Einführung in die Java- Programmierung Dr. Volker Riediger Tassilo Horn riediger horn@uni-koblenz.de WiSe 2012/13 1 Rückblick Schleifen while do-while for Methoden Verfahren: Intervallschachtelung 2 Wo

Mehr

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems

13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13 Java 4 - Entwurfsmuster am Beispiel des Rucksackproblems 13.1 Modellierung des Rucksackproblems 13.2 Lösung mit Greedy-Algorithmus 13.3 Lösung mit Backtracking 13.4 Lösung mit Dynamischer Programmierung

Mehr

Vorwort Objektorientierte Programmierung

Vorwort Objektorientierte Programmierung iii Vorwort Willkommen im Kurs Objektorientierte Programmierung. Der Kurs führt Sie in die Grundlagen der Programmierung mit Objekten, kurz objektorientierte Programmierung oder OOP, ein. Diese Programmiertechnik

Mehr

Etablierung serviceorientierter Architekturen mit Web Services

Etablierung serviceorientierter Architekturen mit Web Services Etablierung serviceorientierter Architekturen mit Web Services Vorlesung im (Entwicklung von Serviceangeboten) 1 Agenda Einsatzbereiche von Web Service basierten Angeboten Übersicht zur Java-System Application

Mehr

Drei-Schichten-Architektur. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 17: 3-Schichten-Architektur 2

Drei-Schichten-Architektur. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 17: 3-Schichten-Architektur 2 Universität Osnabrück 1 3 - Objektorientierte Programmierung in Java Zur Erinnerung: Aufteilung der Schichten GUI Vorlesung 17: 3-Schichten-Architektur 2 Fachkonzept Fachkonzept - Datenhaltung Datenhaltung

Mehr

Wave-Datei-Analyse via FFT

Wave-Datei-Analyse via FFT Wave-Datei-Analyse via FFT Wave-Dateien enthalten gesampelte Daten, die in bestimmten Zeitabständen gespeichert wurden. Eine Fourier-Transformation über diesen Daten verrät das Frequenz-Spektrum der zugrunde

Mehr