Motor Generator (AHS 7. Klasse)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Motor Generator (AHS 7. Klasse)"

Transkript

1 Physikalisches Schulversuchspraktikum Motor Generator 1/12 Übungsdatum: Abgabetermin: Physikalisches Schulversuchspraktikum Motor Generator (AHS 7. Klasse) Mittendorfer Stephan Matr. Nr

2 Physikalisches Schulversuchspraktikum Motor Generator 2/12 INHALT... 3 Lernziele & Voraussetzungen... 4 Generator mit Permanentmagnet (a)... 5 Generator mit Permanentmagnet (b)... 6 Außenpolgenerator... 7 Innenpolgenerator... 8 ANHANG... 9 Zusatzinformationen Elektromotoren & Generatoren... 10

3 Physikalisches Schulversuchspraktikum Motor Generator 3/12 I N H A L T

4 Physikalisches Schulversuchspraktikum Motor Generator 4/12 Lernziele Wie kommt Wechselstrom zustande Wie kann man mit einem Generator Gleichstrom erzeugen Bei welcher Rotorstellung wird am meisten Strom erzeugt Weshalb wird im Alltag seltenst ein Außenpolgenerator, oft aber ein Innenpolgenerator verwendet Voraussetzung Magnetfeld Lorentz-Kraft-Gesetz Induktion

5 Physikalisches Schulversuchspraktikum Motor Generator 5/12 Generator mit Permanentmagnet (a) Man benötigt: 1 Grundbrett mit Bürstenbrücke und zwei Schrauben 1 Tischklemme 2 Bürsten 1 Paar Scheibenmagnete 2 Breite Polschuhe ohne Ansatz 1 Zweipolrotor 1 Vorgelege mit Handantrieb 2 Experimentierkabel 1 Amperemeter Man baut den Versuch wie in der schematischen Abbildung gezeigt auf. Wenn man jetzt an der Kurbel dreht, wird der Zweipolrotor in dem durch die Scheibenmagneten erzeugten Magnetfeld bewegt. Die Leiterschleifen werden von den magnetischen Feldlinien geschnitten und es wird eine Spannung induziert. Bei dieser Versuchsanordnung oszilliert der Strom. Sein Maximum kann gemessen werden, wenn der Zweipolrotor wie in der Abbildung in einer Linie mit den Permanentmagneten steht. Dreht man den Rotor um 90 Grad, erreicht der Strom seinen Nullpunkt. Dreht man den Roter nochmals um 90 Grad, kann wiederum ein Maximum gemessen werden. Dieses Mal fließt der Strom allerdings in die entgegengesetzte Richtung. Wenn man mit großer Frequenz die Kurbel antreibt, gelingt es, Ströme bis zu 3 Ampere zu erreichen.

6 Physikalisches Schulversuchspraktikum Motor Generator 6/12 Generator mit Permanentmagnet (b) Man benötigt: 1 Grundbrett mit Bürstenbrücke und zwei Schrauben 1 Tischklemme 2 Bürsten 1 Paar Scheibenmagnete 2 Breite Polschuhe ohne Ansatz 1 Zweipolrotor 1 Vorgelege mit Handantrieb 2 Experimentierkabel 1 Amperemeter Bei diesem Versuch wird die gleiche Versuchsanordnung wie bei Generator mit Permanentmagnet (a) verwendet. Lediglich die zwei Kohlebürsten werden anders und zwar am Kollektor, der aus zwei gegeneinander isolierten Ringhälften besteht, angebracht. Wenn man jetzt das Amperemeter bei sehr langsamem Drehen betrachtet, kann man beobachten, dass es wiederum zwei Maxima gibt, dieses Mal aber beide in derselben Richtung. Die zweite Halbphase des Wechselstromes wird also umgeklappt. Man nennt diesen Strom einen pulsierenden Gleichstrom.

7 Physikalisches Schulversuchspraktikum Motor Generator 7/12 Generator mit Elektromagnet (Außenpolgenerator) Man benötigt: 1 Grundbrett mit Bürstenbrücke und zwei Schrauben 1 Tischklemme 2 Bürsten 2 Spulen mit 250 Windungen 2 Breite Polschuhe ohne Ansatz 1 Zweipolrotor 1 Vorgelege mit Handantrieb 5 Experimentierkabel 1 Amperemeter 1 Kleinspannungsstelltransformator Man baut den Versuch wie in der schematischen Abbildung gezeigt auf. Wenn man die Kurbel langsam dreht kann man dasselbe wie bei dem Versuch Generator mit Permanentmagnet (a) beobachten. Der Versuchsaufbau unterscheidet sich aber darin, dass wir jetzt keine Permanentmagneten mehr verwenden, sondern anstatt dessen zwei Elektromagnete, die von einem Gleichspannungstransformator gespeist werden. Da aber der erzeugte Strom bei diesem Generator (Außenpolgenerator) noch immer über die Bürsten abgegriffen wird, und diese bei hohen Stromstärken und Spannungen schnell verschleißen, hat dieser technisch keine große Bedeutung.

8 Physikalisches Schulversuchspraktikum Motor Generator 8/12 Generator mit Elektromagnet (Innenpolgenerator) Man benötigt: 1 Grundbrett mit Bürstenbrücke und zwei Schrauben 1 Tischklemme 2 Bürsten 2 Spulen mit 250 Windungen 2 Breite Polschuhe ohne Ansatz 1 Zweipolrotor 1 Vorgelege mit Handantrieb 5 Experimentierkabel 1 Amperemeter 1 Kleinspannungsstelltransformator Fortsetzung zu Versuch Generator mit Elektromagnet (Außenpolgenerator) Um diesem Umstand abzuhelfen verwendet man einen Innenpolgenerator bei dem der Zweipolrotor von einem Gleichstromnetzgerät gespeist wird, und der entstehende Strom bei den Induktionsspulen abgegriffen wird.

9 Physikalisches Schulversuchspraktikum Motor Generator 9/12 A N H A N G

10 Physikalisches Schulversuchspraktikum Motor Generator 10/12 Zusatzinformation - Elektromotoren und Generatoren Elektromotoren und Generatoren, allgemeine Bezeichnung für elektrische Maschinen, mit denen sich elektrische Energie in mechanische Energie bzw. umgekehrt mechanische Energie in elektrische Energie umwandeln lässt. Ein Generator wandelt mit Hilfe elektromagnetischer Induktion mechanische Energie in elektrische Energie um. Im Gegensatz dazu läuft in einem Elektromotor der umgekehrte Prozess ab. Der Wirkungsweise von Elektromotoren und Generatoren liegen zwei verwandte physikalische Vorgänge zugrunde. Im Fall des Generators handelt es sich um die elektromagnetische Induktion, die erstmals Michael Faraday 1831 experimentell nachweisen konnte. Wenn ein Leiter durch ein Magnetfeld bewegt wird, induziert (erzeugt) dieser Vorgang eine elektrische Spannung in dem Leiter. Den genau umgekehrten Fall, dass ein elektrischer Strom ein Magnetfeld beeinflusst, konnte André Marie Ampère im Jahr 1820 erstmals beobachten Ampère untersuchte dabei die Ablenkung einer Magnetnadel durch elektrischen Strom. Befindet sich ein elektrischer Leiter in einem Magnetfeld und wird dieser zusätzlich von einem elektrischen Strom durchflossen, übt das Magnetfeld eine mechanische Kraft auf den Leiter aus. Eine einfache elektrische Maschine ist beispielsweise der so genannte Scheibendynamo von Faraday. Er besteht im Wesentlichen aus einer Kupferscheibe, die so montiert ist, dass sich ein Teil der Scheibe von Mittelpunkt bis zum Rand zwischen den Polen eines Hufeisenmagneten befindet. Wenn die Scheibe in Drehung versetzt wird, entsteht durch die Wirkung des Magnetfeldes zwischen dem Mittelpunkt und dem Rand der Scheibe ein elektrischer Strom (siehe Induktion). In diesem Falle arbeitet die Apparatur nach dem Prinzip eines Generators. Auch der umgekehrte Fall ist mit dem Scheibendynamo möglich. Dazu legt man zwischen dem Rand und dem Mittelpunkt der Scheibe eine elektrische Spannung an, wobei sich die Scheibe aufgrund der induzierten Kraft dreht. Das Magnetfeld eines Dauermagneten reicht nur für den Betrieb eines kleinen Dynamos (siehe Werner von Siemens) oder Motors aus. Deshalb werden für große Maschinen Elektromagneten verwendet. Sowohl Motoren als auch Generatoren bestehen aus zwei grundlegenden Einheiten: zum einen aus dem Elektromagneten mit seinen Spulen und zum anderen aus dem Anker, der die Leiter trägt. Letztere schneiden das Magnetfeld und erzeugen praktisch bei einem Generator den induzierten Strom bzw. bei einem Motor den Antriebsstrom. Der Ankerkern besteht meist aus Weicheisen, um den Leitungsdrähte in Form einer Spule gewickelt sind. GLEICHSTROMGENERATOREN Dreht sich der Anker des Generators zwischen zwei stationären Feldpolen, fließt der elektrische Strom im Anker einen halbe Umdrehung lang in eine Richtung und eine halbe Umdrehung lang in die entgegengesetzte Richtung. Um Gleichstrom zu erhalten, ist eine Vorrichtung außerhalb des Generators erforderlich, welche die Stromrichtung umkehrt und praktisch nur eine Fließrichtung zulässt. Diese Umkehrung ermöglicht der so genannte Kollektor (Stromwender oder Kommutator). In der primitivsten Ausführung besteht der Kollektor eines Gleichstromgenerator aus einem gespaltenen Metallring, der auf der Welle des Ankers montiert ist. Die beiden Hälften des Ringes sind voneinander getrennt und bilden die Enden der Ankerspule. Feststehende Metall- oder Kohlebürsten werden gegen den rotierenden Kollektor gedrückt und stellen den elektrischen Kontakt der Spule zu den Drähten außerhalb des Generators dar. Bei der Umdrehung des Ankers haben die Bürsten abwechselnd mit den Hälften des Kollektors Kontakt. In dem Augenblick, in dem der Strom in der Ankerspule seine Richtung ändert, tauschen auch die Kollektorhälften ihre Position. Daher fließt in dem Stromkreis, mit dem der Generator verbunden ist, ein Gleichstrom. Gleichstromgeneratoren werden meist mit ziemlich niedrigen Spannungen betrieben, um die Funkenbildung zwischen Bürsten und Kollektor zu vermeiden. Die höchste Spannung, die von solchen Generatoren erzeugt wird, beträgt meist Volt. Heutzutage besitzen Generatoren zur Gleichrichtung leistungsstärkere Vorrichtungen wie z. B. Diodengleichrichter.

11 Physikalisches Schulversuchspraktikum Motor Generator 11/12 Moderne Gleichstromgeneratoren besitzen trommelförmige Anker mit vielen Wicklungen. Diese sind mit entsprechenden Segmenten eines Mehrfachkollektors verbunden. In einem Anker mit nur einer Drahtschleife nimmt der erzeugte Strom leicht zu und ab, je nachdem, in welchem Teil des Magnetfeldes sich die Schleife bewegt. Ein Kollektor mit vielen Segmenten verbindet den äußeren Stromkreis immer mit einer Drahtschleife, die sich durch einen Bereich des Magnetfeldes bewegt. Als Folge bleibt der von den Ankerwindungen erzeugte Strom praktisch konstant. Die Felder moderner Generatoren besitzen zur Verstärkung des Magnetfeldes meist vier oder mehr Pole. Kleinere Zwischenpole gleichen Verzerrungen des Magnetfeldes aus, die durch die magnetische Wirkung des Ankers verursacht werden. Gleichstromgeneratoren werden häufig nach der Art der Bereitstellung des Stromes für das Magnetfeld unterschieden. Das Magnetfeld eines seriell gewickelten Generators steht in Reihenschaltung mit dem Anker. Ein Nebenschlussgenerator hat ein Feld, das parallel zum Anker geschaltet ist. So genannte Verbund- oder Doppelschlussgeneratoren haben einen Teil ihrer Felder in Reihe und einen Teil parallel. Sowohl Nebenschluss- als auch Verbundgeneratoren haben den Vorteil, bei unterschiedlicher elektrischer Last eine verhältnismäßig gleichmäßige Spannung zu liefern. Seriell gewickelte Generatoren werden hauptsächlich zur Erzeugung eines gleichmäßigen Stromes mit schwankender Spannung eingesetzt. (Zu Reihen- und Parallelschaltung siehe elektrischer Stromkreis) GLEICHSTROMMOTOREN Im Großen und Ganzen sind Gleichstrommotoren ähnlich aufgebaut wie Gleichstromgeneratoren. In einem Gleichstrommotor wird bei Stromfluss durch den Anker ein Drehmoment erzeugt, das den Anker in Drehbewegung versetzt. Die Funktion des Kollektors und die Verbindung der Feldspulen des Motors sind genauso wie beim Generator. Die Drehung des Ankers induziert eine Spannung in den Ankerwicklungen. Diese induzierte Spannung ist der von außen an den Anker angelegten Spannung entgegengesetzt und wird daher auch als Gegenspannung bezeichnet. Sie kann bei schneller laufendem Motor fast so groß werden, wie die angelegte Spannung. In diesem Fall ist die Stromstärke sehr gering und der Motor läuft mit konstanter Geschwindigkeit. Im Lastbetrieb wird der Anker langsamer. Als Folge nimmt die Gegenspannung ab und der Stromfluss durch den Anker zu. Dadurch ist der Motor in der Lage, mehr Leistung aufzunehmen und mehr mechanische Arbeit zu verrichten. Weil die Rotationsgeschwindigkeit die Stromstärke im Anker steuert, sind zum Starten eines Gleichstrommotors spezielle Vorrichtungen erforderlich. Wird bei stillstehendem Anker die normale Arbeitsspannung angelegt, fließt ein sehr starker Strom, der den Kollektor und die Ankerwicklungen beschädigen kann. Zur Vermeidung solcher Schäden wird meist ein Widerstand vor den Anker geschaltet der so genannte Vorwiderstand. Dieser reduziert die Stromstärke bis der Motor eine ausreichende Gegenspannung aufgebaut hat. Während der Beschleunigungsphase wird die Wirkung des Vorwiderstandes langsam verkleinert. Diese Verringerung kann entweder von Hand oder automatisch erfolgen. Die Geschwindigkeit, mit welcher der Gleichstrommotor läuft, hängt von der Stärke des auf den Anker wirkenden Magnetfeldes und von der Stromstärke im Anker ab. Je stärker das Magnetfeld, desto geringer die Drehzahl, mit der die Gegenspannung erzeugt wird. WECHSELSTROMGENERATOREN Wie oben beschrieben erzeugt ein einfacher Generator ohne Kollektor einen elektrischen Strom, dessen Richtung sich mit der Drehung des Ankers ändert. Da Wechselstrom Vorteile bei der Übertragung von elektrischer Energie hat, erzeugen die meisten großen Generatoren Wechselstrom. Die einfachste Form des Wechselstromgenerators unterscheidet sich von einem Gleichstromgenerator nur in zwei Punkten: die Ankerwicklungen enden in durchgehenden Ringen an der Welle des Generators und nicht an einem Kollektor, und die Feldspulen werden von einer externen Gleichstromquelle und nicht vom Generator selbst mit Strom versorgt. Langsam laufende Wechselstromgeneratoren haben bis zu 100 Pole, wodurch ihr Wirkungsgrad gesteigert wird und die gewünschte Frequenz leichter erzielt werden kann.

12 Physikalisches Schulversuchspraktikum Motor Generator 12/12 Wechselstromgeneratoren, die von Hochgeschwindigkeitsturbinen angetrieben werden, sind häufig mit zwei Polen ausgestattet. Die Frequenz des von Wechselstromgeneratoren erzeugten Stromes ist die Hälfte des Produkts aus der Anzahl der Pole und der Anzahl der Umdrehungen des Ankers pro Sekunde. Vorteilhaft ist die Induktion einer möglichst hohen Spannung. Umlaufende Anker sind für solche Anwendungen wenig geeignet, da es an den Bürsten zu Funkenbildung kommen kann und mechanische Defekte zu Kurzschlüssen führen können (siehe auch elektrischer Stromkreis). Wechselstromgeneratoren haben daher einen feststehenden Anker, in dem sich ein Rotor mit Feldmagneten dreht. Der induzierte Strom in Wechselstromgeneratoren steigt abwechselnd auf einen positiven Spitzenwert, sinkt auf Null, fällt auf einen negativen Spitzenwert und steigt wieder auf Null. Dieser Wechsel erfolgt, je nach der Frequenz, für die der Generator ausgelegt ist, mehrmals pro Sekunde. Man bezeichnet so einen Strom als einphasigen Wechselstrom. Besitzt der Anker zwei Wicklungen, die im rechten Winkel zueinander stehen und zwei getrennte Anschlüsse haben, werden zwei Wechselströme erzeugt, die jeweils dann ihr Maximum erreichen, wenn der andere seinen Nulldurchgang hat. Dieser Strom nennt man auch Zweiphasenwechselstrom. Besitzt der Anker drei Wicklungen, die in einem Winkel von 120 Grad zueinander stehen, entsteht ein Strom, der einer dreifachen Welle entspricht. Man erhält den so genannten Dreiphasenwechselstrom kurz auch als Drehstrom bezeichnet. Durch weitere Anzahlzunahme der Ankerwicklungen lassen sich weitere Phasen erzielen. Der heute am häufigsten verwendete Generator ist der Drehstromgenerator. Er wird normalerweise für die Erzeugung von elektrischem Strom verwendet. Die von Wechselstromgeneratoren erzeugten Spannungen betragen üblicherweise bis zu Volt. WECHSELSTROMMOTOREN Für den Betrieb mit mehrphasigem Wechselstrom gibt es zwei Arten von Motoren: Drehstromsynchronmotoren und Induktionsmotoren (auch Drehstromasynchronmotoren). Die Feldmagnete beim Drehstromsynchronmotor sind auf dem Rotor montiert und werden durch Gleichstrom angeregt. Die Ankerwicklung ist in drei Teile unterteilt und wird, wie der Name bereits andeutet, mit Drehstrom betrieben. Die wellenförmige Änderung der drei Ströme im Anker bewirkt eine sich ändernde magnetische Wechselwirkung mit den Polen der Feldmagnete. Dadurch dreht sich das Feld mit einer konstanten Geschwindigkeit, die durch die Frequenz des Antriebsstromes bestimmt wird. In Einsatzgebieten, wo die mechanische Last des Motors sehr groß wird, können jedoch keine Drehstromsynchronmotoren eingesetzt werden, da der Motor unter Last seine Drehzahl verringert und aus dem Tritt kommt. Läuft der Motor nicht mehr im Einklang mit der Stromfrequenz, bleibt er stehen. Drehstromsynchronmotoren können auch so ausgelegt sein, dass sie mit einphasigem Strom laufen. Sie benötigen dann eine Vorrichtung zur Drehung des Magnetfeldes. Die einfachste und die verbreitetste Art eines Drehstrommotors ist der Induktionsmotor. Der Anker (Rotor) eines solchen Motors besteht aus drei feststehenden Spulen und ähnelt damit dem Anker eines Drehstromsynchronmotors. Der rotierende Teil besteht aus einem Kern, in den mehrere dicke Leiter eingelagert sind. Diese liegen in einem Kreis um die Welle parallel zu dieser. Der Drehstrom, der durch die feststehenden Ankerwicklungen fließt, erzeugt ein sich drehendes Magnetfeld, das wiederum einen Strom in den Leitern des Rotors erzeugt. Die magnetische Wechselwirkung zwischen dem rotierenden Feld und den Strom führenden Leitern des Rotors versetzt den Rotor in eine Drehbewegung. Wenn sich der Rotor mit der gleichen Geschwindigkeit wie das Magnetfeld dreht, wird im Rotor kein Strom induziert. Daher sollte der Rotor nicht synchron laufen. Beim Betrieb differieren die Umdrehungsgeschwindigkeiten von Rotor und Feld um etwa zwei bis fünf Prozent. 1 1 "Elektromotoren und Generatoren."Microsoft Encarta Enzyklopädie Microsoft Corporation. Alle Rechte vorbehalten.

Wechselspannung, Wechselstrom, Generatoren

Wechselspannung, Wechselstrom, Generatoren Wechselspannung, Wechselstrom, Generatoren Ein Generator ist eine Maschine, die kinetische Energie in elektrische Energie umwandelt. Generatoren erzeugen durch Induktion Strom (z.b. Fahrraddynamo). Benötigt

Mehr

DE740-2M Motor-Generator-Einheit, Demo

DE740-2M Motor-Generator-Einheit, Demo DE740-2M Motor-Generator-Einheit, Demo Versuchsanleitung INHALTSVERZEICHNIS 1. Generator ELD MG 1.1 ELD MG 1.2 ELD MG 1.3 Die rotierende Spule Wechselstromgenerator Gleichstromgenerator 2. Motor ELD MG

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD. Christian J. ZÖPFL Matrikelnummer 9855155 mit Günter EIBENSTEINER

Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD. Christian J. ZÖPFL Matrikelnummer 9855155 mit Günter EIBENSTEINER PROT OKOLL Versuche mit dem NT L Elektronik Baukasten DER GENERA T OR Schulversuchspraktikum 2000 bei Mag. Monika TURNWALD Christian J. ZÖPFL Matrikelnummer 9855155 mit Günter EIBENSTEINER Inhaltsverzeichnis

Mehr

4.12 Elektromotor und Generator

4.12 Elektromotor und Generator 4.12 Elektromotor und Generator Elektromotoren und Generatoren gehören neben der Erfindung der Dampfmaschine zu den wohl größten Erfindungen der Menschheitsgeschichte. Die heutige elektrifizierte Welt

Mehr

Lernkontrolle Motoren

Lernkontrolle Motoren Lernkontrolle Motoren Zeit 45 Min. 40 40 Pkt. Hinweise Wird nicht benotet! Lösen Sie die Aufgaben auf separatem Papier. Ich wünsche Ihnen viel Erfolg! Aufgabenstellung 1. Wie kann Dreiphasenwechselstrom

Mehr

Motor-/Generatoraufsatz mit Kollektor Generatoraufsatz mit Schleifringen

Motor-/Generatoraufsatz mit Kollektor Generatoraufsatz mit Schleifringen Elektrik Lehrwerkstätten und Berufsschule Zeughausstrasse 56 für Mechanik und Elektronik Tel. 052 267 55 42 CH-8400 Winterthur Fax 052 267 50 64 Motor-/Generatoraufsatz mit Kollektor Generatoraufsatz mit

Mehr

Experimentiersatz Elektromotor

Experimentiersatz Elektromotor Experimentiersatz Elektromotor Demonstration der Erzeugung von elektrischem Stromfluss durch Umwandlung von mechanischer Energie (Windrad) in elektrische Energie. Einführung Historisch gesehen hat die

Mehr

Elektrische Maschinen

Elektrische Maschinen 1/5 Elektrische Maschinen 1 unktionsprinzipien 1.1 Kraftwirkung efindet sich ein stromdurchflossener, gerader Leiter der Leiterlänge l in einem homogenen Magnetfeld, so bewirkt die Lorentz-Kraft auf die

Mehr

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung.

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung. Matura Komplementärfragen Gleichstrommaschinen Allgemeines zu Spannungserzeugung im Magnetfeld: Die Ankerwicklung wird im Magnetfeld der feststehenden Aussenpole gedreht und dadurch wird eine Spannung

Mehr

Elektrik Grundlagen 1

Elektrik Grundlagen 1 Elektrik Grundlagen. Was versteht man unter einem Stromlaufplan? Er ist die ausführliche Darstellung einer Schaltung in ihren Einzelheiten. Er zeigt den Stromverlauf der Elektronen im Verbraucher an. Er

Mehr

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse

Schulversuchspraktikum WS2000/2001 Redl Günther 9655337. Elektromagnet. 7.Klasse Schulversuchspraktikum WS2000/2001 Redl Günther 9655337 Elektromagnet 7.Klasse Inhaltsverzeichnis: 1) Lernziele 2) Verwendete Quellen 3) Versuch nach Oersted 4) Magnetfeld eines stromdurchflossenen Leiter

Mehr

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten.

Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elektrizitätslehre I: Wiederholdung wichtiger Begriffe, Zeichen, Formeln und Einheiten. Elementarladung: Ladung: Q Einheit: 1 Coulomb = 1C = 1 Amperesekunde Stromstärke: I Einheit: 1 A = 1 Ampere elektrische

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Grundlagen der Elektrotechnik 4 Themenübersicht Magnetismus Dauermagnetismus Einführung Historisches Einteilung Magnetismus Eigenschaften von Magneten Erde / Sonne Prinzip Grundbegriffe und

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen m eistungsbereich oberhalb 0,75 kw ("integral horsepower") sind etwa 7% der gefertigten elektrischen Maschinen Gleichstrommaschinen. Haupteinsatzgebiete sind Hüttenund Walzwerke,

Mehr

Hinweise zu den Aufgaben:

Hinweise zu den Aufgaben: Versuchsworkshop: Arbeitsaufgaben Lehrerblatt Hinweise zu den Aufgaben: Blatt 1: Die Papierschnipsel werden vom Lineal angezogen.es funktioniert nicht so gut bei feuchtem Wetter. Andere Beispiele für elektrische

Mehr

Die Elektrische Versorgung Der Honda XL 600 R (PD03)

Die Elektrische Versorgung Der Honda XL 600 R (PD03) Die Elektrische Versorgung Der Honda XL 600 R (PD03) Die Quelle der elektrischen Energie der PD03 ist wie an jedem Motorrad ein Gererator. Dieser Generator wird bei Kraftfahrzeugen auch als Lichtmaschine

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Magnetodynamik elektromagnetische Induktion

Magnetodynamik elektromagnetische Induktion Physik A VL34 (5.0.03) Magnetodynamik elektromagnetische nduktion Das Faraday sche nduktionsgesetz nduktion in einem bewegten Leiter nduktion einem Leiterkreis/einer Spule Lenz sche egel Exkurs: Das Ohm

Mehr

Rotierende Leiterschleife

Rotierende Leiterschleife Wechselstrom Rotierende Leiterschleife B r Veränderung der Form einer Leiterschleife in einem magnetischen Feld induziert eine Spannung ( 13.1.3) A r r B zur kontinuierlichen Induktion von Spannung: periodische

Mehr

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms

Wechselstrom. Versuch 1a Wechselstromgenerator Dynamo Leerlauf. Wasser. Dynamo. Klemme. Oszilloskop (alt) Loch. 5 V/cm 1 ms Versuch 1a Wechselstromgenerator Dynamo Leerlauf Dynamo Wasser Klemme Loch Oszilloskop (alt) y-shift time 5 V/cm 1 ms Generatorprinzip: Rotiert eine Leiterschleife (Spule) mit konstanter Winkelgeschwindigkeit

Mehr

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise

33. Wechselstrom II. 33.1. Siebkette und Sperrkreis. Elektrizitätslehre Wechselstrom II. ... sind interessante Beispiele für Wechselstromkreise 33. Wechselstrom II 33.. Siebkette und Sperrkreis... sind interessante Beispiele für Wechselstromkreise 33... Siebkette... ist eine Reihenschaltung von Widerstand, Spule und Kondensator. Wir gehen wieder

Mehr

Elektrischer Strom erzeugt ein Magnetfeld. Magnetfeld einer Spule

Elektrischer Strom erzeugt ein Magnetfeld. Magnetfeld einer Spule Elektrischer Strom erzeugt ein Magnetfeld Oersted Ein Kupferdraht wird so eingespannt, dass er in NordSüdRichtung verläuft. Wir schließen den Schalter für kurze Zeit (Kurzschluss!) und beobachten die Magnetnadel

Mehr

Workshop Lichtmaschine BMW 69-96. 31.01.2015 Rhein-Main

Workshop Lichtmaschine BMW 69-96. 31.01.2015 Rhein-Main Workshop Lichtmaschine BMW 69-96 31.01.2015 Rhein-Main Hans-Günter Kahl Stand 14.03.2015 Seite 1 Ziel des Workshop Verständnis für Aufbau und Funktion der Lichtmaschine (LiMa) zur nachgelagerten Entstörung

Mehr

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker

12. Elektrodynamik. 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion. 12.5 Magnetische Kraft. 12. Elektrodynamik Physik für Informatiker 12. Elektrodynamik 12.11 Quellen von Magnetfeldern 12.2 Das Ampere sche Gesetz 12.3 Magnetische Induktion 12.4 Lenz sche Regel 12.5 Magnetische Kraft 12. Elektrodynamik Beobachtungen zeigen: - Kommt ein

Mehr

Physikalische Grundlagen zur Betrachtung der Funktionalität des resonanten Synchrongenerators QEG Revision 1c

Physikalische Grundlagen zur Betrachtung der Funktionalität des resonanten Synchrongenerators QEG Revision 1c Physikalische Grundlagen zur Betrachtung der Funktionalität des resonanten Synchrongenerators QEG Revision 1c 23.04.14 Alex-L Hinweis: Diese Beschreibung ist für Ingenieure gedacht, welche mit dem Induktionsgesetz

Mehr

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0

Hanser Fachbuchverlag, 1999, ISBN 3-446-21066-0 *UXQGODJHQGHU3K\VLN Vorlesung im Fachbereich VI der Universität Trier Fach: Geowissenschaften Sommersemester 2001 'R]HQW 'U.DUO0ROWHU 'LSORP3K\VLNHU )DFKKRFKVFKXOH7ULHU 7HO )D[ (0DLOPROWHU#IKWULHUGH,QIRV]XU9RUOHVXQJXQWHUKWWSZZZIKWULHUGHaPROWHUJGS

Mehr

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0

Der Sinuswert in unserer Formel bewegt sich zwischen -1 und 1. Die maximal induzierte Spannung wird daher ausschließlich durch den Term n B A 0 Protokoll der Physikdoppelstunde am 25.02.2002 Protokollant: Alexander Rudyk Zu Beginn der Stunde haben wir uns mit den Gesetzmäßigkeiten der Induktion bei rotierender Induktionsspule beschäftigt und insbesondere

Mehr

Elektrische Messverfahren Versuchsvorbereitung

Elektrische Messverfahren Versuchsvorbereitung Versuche P-70,7,8 Elektrische Messverfahren Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 6.2.200 Spannung, Strom und Widerstand Die Basiseinheit

Mehr

Dauermagnetgeneratoren (DMG)

Dauermagnetgeneratoren (DMG) Dauermagnetgeneratoren (DMG) Was ist ein DMG? B e i e i n e m Dauermagnetgenerator handelt es sich um einen Synchrongenerator, bei dem die normalerweise im Rotor stattfindende Erregerwicklung durch e i

Mehr

Protokoll. Induktion

Protokoll. Induktion Protokoll Induktion Michael Aichinger 9855264 Inhaltsverzeichnis: 1.Einleitung S.2 2. Lernziele S.2 3. Didaktische Hinleitung S.3 4. Versuche 4.1 Relativbewegung Magnetfeld Spule S.4 4.2 Induktionsspannung

Mehr

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht

2.1.2 Durchführung drehbare Leiterschleife im homogenen Magnetfeld wird gedreht U N S t U N S t I Wiederholung 1.1 Versuch Leiterschaukel auslenken = Ausschlag am Demomultimeter Wiederholung durch Schüler - Was passiert hier? II Hauptteil bisher primär mit Gleichstrom beschäftigt

Mehr

Einführung in die Physik

Einführung in die Physik Einführung in die Physik für Pharmazeuten und Biologen (PPh) Mechanik, Elektrizitätslehre, Optik Klausur: Montag, 11.02. 2008 um 13 16 Uhr (90 min) Willstätter-HS Buchner-HS Nachklausur: Freitag, 18.04.

Mehr

Stromdurchossene Leiter im Magnetfeld, Halleekt

Stromdurchossene Leiter im Magnetfeld, Halleekt Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Jens Küchenmeister (1253810) Versuch: P1-73 Stromdurchossene Leiter im Magnetfeld, Halleekt - Vorbereitung - Inhaltsverzeichnis 1

Mehr

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015

Zusatzinfo LS11. Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 Funktionsprinzipien elektrischer Messgeräte Version vom 26. Februar 2015 1.1 analoge Messgeräte Fließt durch einen Leiter, welcher sich in einem Magnetfeld B befindet ein Strom I, so wirkt auf diesen eine

Mehr

Didaktische FWU-DVD. Elektromotoren. Mit 3D-Interaktion

Didaktische FWU-DVD. Elektromotoren. Mit 3D-Interaktion 55 11139 Didaktische FWU-DVD Elektromotoren Mit 3D-Interaktion Zur Bedienung Mit den Pfeiltasten der Fernbedienung (DVD-Player) oder der Maus (Computer) können Sie Menüpunkte und Buttons ansteuern und

Mehr

D R E H S T R O M. Mit Drehstrom kann man Drehfelder auch ohne mechanische Bewegung erzeugen. -> Drehstrommotoren!

D R E H S T R O M. Mit Drehstrom kann man Drehfelder auch ohne mechanische Bewegung erzeugen. -> Drehstrommotoren! D R E H S T R O M Die Kraftwerksgeneratoren der öffentlichen Stromversorgung sind so gebaut, dass sie nicht nur einen einzigen Wechselstrom erzeugen, sondern drei Wechselströme zugleich: Dieser "dreiphasige"

Mehr

BESONDERE LEISTUNGSFESTSTELLUNG 2011 PHYSIK KLASSE 10

BESONDERE LEISTUNGSFESTSTELLUNG 2011 PHYSIK KLASSE 10 Staatliches Schulamt Bad Langensalza BESONDERE LEISTUNGSFESTSTELLUNG 2011 PHYSIK KLASSE 10 Arbeitszeit: 120 Minuten Hilfsmittel: Wörterbuch zur deutschen Rechtschreibung Taschenrechner Tafelwerk Der Teilnehmer

Mehr

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom

4.4 Induktion. Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom Bisher: Strom durch einen Draht Magnetfeld Jetzt: zeitlich veränderliches Magnetfeld Strom 4.4 Induktion Spannungen und Ströme, die durch Veränderungen von Magnetfeldern entstehen, bezeichnet man als Induktionsspannungen,

Mehr

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o

Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise). rot E 0 rot B o Zeitlich veränderliche Felder Bisher zeitlich konstante elektrische und magnetische Felder (zumindest näherungsweise) Dafür gilt rot E 0 rot B o j div E div B 0 j E o E grad B rot A Wie verändern sich

Mehr

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen Elektrotechnik für aschinenbauer Grundlagen der Elektrotechnik für aschinenbauer Konsultation 12: Elektrische aschinen 1. Einleitung Bei den elektrischen aschinen unterscheidet man Transformatoren, Gleichstrommaschinen,

Mehr

Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Schriftliche Abschlussprüfung Physik Realschulbildungsgang Sächsisches Staatsministerium für Kultus Schuljahr 1992/93 Geltungsbereich: für Klassen 10 an - Mittelschulen - Förderschulen - Abendmittelschulen Schriftliche Abschlussprüfung Physik Realschulbildungsgang

Mehr

1. Theorie: Kondensator:

1. Theorie: Kondensator: 1. Theorie: Aufgabe des heutigen Versuchstages war es, die charakteristische Größe eines Kondensators (Kapazität C) und einer Spule (Induktivität L) zu bestimmen, indem man per Oszilloskop Spannung und

Mehr

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen?

Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Warum benutzt man verdrillte Leitungspaare in LANs und nicht Paare mit parallel geführten Leitungen? Das kann man nur verstehen, wenn man weiß, was ein magnetisches Feld ist und was das Induktionsgesetz

Mehr

1. Berechnung von Antrieben

1. Berechnung von Antrieben Berechnung von Antrieben 1-1 1. Berechnung von Antrieben Allgemeines Mit den Gleichstrommotoren wird elektrische Energie in eine mechanische Drehbewegung umgewandelt. Dabei wird dem Netz die Leistung =

Mehr

IIE4. Modul Elektrizitätslehre II. Transformator

IIE4. Modul Elektrizitätslehre II. Transformator IIE4 Modul Elektrizitätslehre II Transformator Ziel dieses Versuches ist es, einerseits die Transformatorgesetze des unbelasteten Transformators experimentell zu überprüfen, anderseits soll das Verhalten

Mehr

Anwendungen zum Elektromagnetismus

Anwendungen zum Elektromagnetismus Anwendungen zum Elektromagnetismus Fast alle Anwendungen des Elektromagnetismus nutzen zwei grundlegende Wirkungen aus. 1. Fließt durch eine Spule ein elektrischer Strom, so erzeugt diese ein Magnetfeld

Mehr

Elbtalwerk GmbH. Universität Karlsruhe Elektrotechnisches Institut. Geschalteter Reluktanzmotor. Drehmomentstarker Elektromotor mit kleinem Bauvolumen

Elbtalwerk GmbH. Universität Karlsruhe Elektrotechnisches Institut. Geschalteter Reluktanzmotor. Drehmomentstarker Elektromotor mit kleinem Bauvolumen Elbtalwerk GmbH Geschalteter Reluktanzmotor Drehmomentstarker Elektromotor mit kleinem Bauvolumen Strom B1 Wicklung A1 D4 C1 C4 Pol D1 Drehung B4 A2 Rotorzahn Welle A4 B2 Feldlinie D3 C2 C3 D2 Stator A3

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013

R. Brinkmann http://brinkmann-du.de Seite 1 26.11.2013 R. rinkmann http://brinkmann-du.de eite 1 26.11.2013 Verhalten eines Leiters im Magnetfeld Kraftwirkungen im Magnetfeld. Gleichnamige Magnetpole stoßen sich ab, ungleichnamige ziehen sich an. Im Magnetfeld

Mehr

Vom Barlow schen Rad zum Elektromagnet-Motor von Egger

Vom Barlow schen Rad zum Elektromagnet-Motor von Egger Vom Barlow schen Rad zum Elektromagnet-Motor von Egger Ein Streifzug durch die Frühgeschichte der Elektromotoren Franz Pichler Einleitung Elektromotoren sind heute allgegenwärtig. Sie sind in Rasierapparaten,

Mehr

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung

Kern-Hülle-Modell. Modellvorstellung. zum elektrischen Strom. Die Ladung. Die elektrische Stromstärke. Die elektrische Spannung Kern-Hülle-Modell Ein Atom ist in der Regel elektrisch neutral: das heißt, es besitzt gleich viele Elektronen in der Hülle wie positive Ladungen im Kern Modellvorstellung zum elektrischen Strom - Strom

Mehr

Magnetische Induktion

Magnetische Induktion Magnetische Induktion 5.3.2.10 In einer langen Spule wird ein Magnetfeld mit variabler Frequenz und veränderlicher Stärke erzeugt. Dünne Spulen werden in der langen Feldspule positioniert. Die dabei in

Mehr

Aktoren und Sensoren im KFZ

Aktoren und Sensoren im KFZ Bild 2.2_1 Aktoren und Sensoren im KZ Bild 2.2_2 Aktor Energie Mikrorechner Energiewandler Energiesteller Stellsignal Stellenergie Mechanisches System Hilfsenergie Wirkungskette mit Aktor Bild 2.2_3 Leistungsform

Mehr

1. Kann Glas Elektrizität leiten?

1. Kann Glas Elektrizität leiten? Die Antworten sind auf den ersten Blick kinderleicht. Wenn Sie oder Ihre Kommilitonen verschiedene Antworten haben, dann fragen Sie mich. Schicken Sie mir bitte Ihre Fragen. alexander.akselrod@hs-bochum.de

Mehr

MOTORANSTEUERUNG. Schaltzeichen eines Relais:

MOTORANSTEUERUNG. Schaltzeichen eines Relais: A1 H-Brücke: MOTORANSTEUERUNG Je nachdem, wie herum die beiden Pole eines Gleichstrommotors an eine Gleichspannungsquelle angeschlossen werden, ändert er seine Drehrichtung. Die Schaltung links wird als

Mehr

Mündliche Prüfung Physik Leitfragen

Mündliche Prüfung Physik Leitfragen Mündliche Prüfung Physik Leitfragen Themengebiete: - Optik - Elektrik - Mechanik 1 Themengebiet: Optik 1 Wie lautet das Reflexionsgesetz? 2. Wie lautet das Brechungsgesetz? 3. Benenne die folgenden Linsentypen:

Mehr

Gleichstrommaschine. 4. Semester Veranstaltungstechnik & -management Bachelor. Jeanina Höft Philipp Kohn Marcus Kolk Marcel Prinz Martin Steinmetz

Gleichstrommaschine. 4. Semester Veranstaltungstechnik & -management Bachelor. Jeanina Höft Philipp Kohn Marcus Kolk Marcel Prinz Martin Steinmetz Gleichstrommaschine Inhaltsverzeichnis 1 Prinzip, Aufbau und Funktion der Gleichstrommaschine 2 Generator- und Motorbetrieb 3 Fremderregte Maschine und Nebenschlussmaschine 4 Anlassen der Gleichstrommaschine

Mehr

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN)

Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN) Messung 2 MESSUNG DER WELLENLEISTUNG UND DES WIRKUNGSGRADES (PENDELMASCHINEN). Einleitung Kraftmaschinen geben ihre Arbeit meistens durch rotierende Wellen ab. Die Arbeit, die pro Zeiteinheit über die

Mehr

Frühjahr 2000, Thema 2, Der elektrische Widerstand

Frühjahr 2000, Thema 2, Der elektrische Widerstand Frühjahr 2000, Thema 2, Der elektrische Widerstand Referentin: Dorothee Abele Dozent: Dr. Thomas Wilhelm Datum: 01.02.2007 1) Stellen Sie ein schülergemäßes Modell für einen elektrisch leitenden bzw. nichtleitenden

Mehr

Zusammenfassung elektrische Maschinen Gleichstrommaschine

Zusammenfassung elektrische Maschinen Gleichstrommaschine Gleichstrommaschine i F F F F U = R I + Ui U F = RF IF Gleichstrommaschine Induzierte Spannung: Ursache: Änderung des magnetischen Flusses in der Leiterschleife Ui = c φf Erzeugung des magnetischen Flusses:

Mehr

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes:

Elektromagnetische Induktion. 1. Erklärung für das Entstehen einer Induktionsspannung bzw. eines Induktionsstromes: Elektromagnetische Induktion Eperiment: Ergebnis: Ein Fahrraddynamo wandelt Bewegungsenergie in elektrische Energie um. Er erzeugt trom (zuerst pannung). Wir zerlegen einen Dynamo. Ein Dynamo besteht aus

Mehr

EMK-Praktikumversuch. Motorenvergleich

EMK-Praktikumversuch. Motorenvergleich EMK-Praktikumversuch Motorenvergleich Ziel des Versuchs: In diesem Versuch sollen Sie das Betriebsverhalten von Antriebsmotoren mittlerer Leistung kennenlernen und erlernen, was beim Einsatz zu beachten

Mehr

Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten Prüfung GET Seite 1 von 8 Hochschule München FK 03 Prüfung Sommersemester 2015 Grundlagen der Elektrotechnik Dauer: 90 Minuten F. Palme Zugelassene Hilfsmittel: Taschenrechner, 1 DIN-A4-Blatt Matr.-Nr.:

Mehr

MOTOR BOOK GRUNDFOS MOTOR BOOK

MOTOR BOOK GRUNDFOS MOTOR BOOK MOTOR BOOK GRUNDFOS MOTOR BOOK Einführung Willkommen zum! Das vorliegende Handbuch enthält alles Wissenswerte über Elektromotoren - vom Funktionsprinzip bis zu den Einsatzgebieten. Bevor es jedoch ins

Mehr

Einführung in die Elektrotechnik

Einführung in die Elektrotechnik Prof. Dr.-Ing. habil. Klaus Lunze Einführung in die Elektrotechnik Lehrbuch für Elektrotechnik als Hauptfach 12., überarbeitete Auflage Dr. Alfred Hüthig Verlag Heidelberg Inhaltsverzeichnis 0. Vorbetrachtungen

Mehr

Gleichstrom ist ein elektrischer Strom, bei dem die Stromrichtung dauernd dieselbe bleibt (geliefert von galvanischen Elementen oder Akkumulatoren).

Gleichstrom ist ein elektrischer Strom, bei dem die Stromrichtung dauernd dieselbe bleibt (geliefert von galvanischen Elementen oder Akkumulatoren). Der elektrische Strom Elektrischer Strom ist... die Bewegung von Ladungsträgern,... z.b. das Fließen der Elektronen in den Kupferdrähten, die Bewegung der Ionen durch wässrige Lösungen von Säuren, Basen,

Mehr

Beschreibung Magnetfeld

Beschreibung Magnetfeld Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #21 am 1.06.2007 Vladimir Dyakonov Beschreibung Magnetfeld Magnetfeld: Zustand des Raumes, wobei

Mehr

Schrittmotor -kurz erklärt-

Schrittmotor -kurz erklärt- Schrittmotor -kurz erklärt- Industrie Neuhof 8c 3422 Kirchberg Schwitzerland Tel. +41 (0)34 448 12 12 Fax +41 (0)34 448 12 13 www.deltron.ch info@deltron.ch Inhaltsverzeichnis 1 Was ist ein Schrittmotor...

Mehr

Theorie und Praxis der Wechselund Drehstromtechnik

Theorie und Praxis der Wechselund Drehstromtechnik Theorie und Praxis der Wechselund Drehstromtechnik 2 Die Grundlage der Wechsel- und Drehstromtechnik basiert auf einem vollständigen Stromkreis mit Spannungsquelle, Leitungen und Verbraucher. Die Spannungsquelle

Mehr

Grundlagen der Elektrik Kapitel 1

Grundlagen der Elektrik Kapitel 1 Grundlagen der Elektrik 1. Atomaufbau 2 2. Elektrische Leitfähigkeit 4 3. Elektrische Spannung 5 4. Elektrischer Strom 7 5. Elektrischer Widerstand 11 6. Ohmsches Gesetz 14 7. Grundschaltungen 17 8. Elektrische

Mehr

Versorgung mit elektrischer Energie, Elektrizität im Haushalt

Versorgung mit elektrischer Energie, Elektrizität im Haushalt 1 Übersichts zum Arbeitsbereich B1 Vorteile und Nachteile der elektrischen Energie B2 Transport von elektrischer Energie B3 Lastverteiler- Stromverbund E1 Speichern von elektrischer Energie? Kondensatoren,

Mehr

Abteilung Naturwissenschaften

Abteilung Naturwissenschaften StlgST 'S «SAHTW0RTUII6 ' 1 PLUS DER KLEINSTE ELEKTROMOTOR Die Schraube beginnt zu rotieren. Mit dem Draht erzeugt man in der Batterie einen Kurzschluss, so dass hohe Ströme durch die Schraube und den

Mehr

Arbeitsblatt Elektrotechnik

Arbeitsblatt Elektrotechnik 11. Elektrotechnik Grundlagen Haustechnik Sanitär Arbeitsblatt Elektrotechnik Lernziele: SI-Einheiten nennen, anwenden und einfache Rechnungen aus führen. Den Unterschied zwischen Gleich- und Wechselstrom

Mehr

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E )

Comenius Schulprojekt The sun and the Danube. Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Blatt 2 von 12 Versuch 1: Spannung U und Stom I in Abhängigkeit der Beleuchtungsstärke E U 0, I k = f ( E ) Solar-Zellen bestehen prinzipiell aus zwei Schichten mit unterschiedlichem elektrischen Verhalten.

Mehr

Alle Spannungsumwandler, die wir liefern, wandeln nur die Spannung um und nicht die Frequenz.

Alle Spannungsumwandler, die wir liefern, wandeln nur die Spannung um und nicht die Frequenz. SPANNUNGSUMWANDLER Fragen, die uns häufig gestellt werden Wandeln Spannungsumwandler auch die Frequenz um? -NEIN - Alle Spannungsumwandler, die wir liefern, wandeln nur die Spannung um und nicht die Frequenz.

Mehr

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF

S u p l u e un u d n d Tr T ans n for o mator Klasse A Klasse A (Ergänzung) Norbert - DK6NF Spule und Transformator Klasse (Ergänzung) Norbert - K6NF usgewählte Prüfungsfragen T301 n eine Spule wird über einen Widerstand eine Gleichspannung angelegt. Welches der nachfolgenden iagramme zeigt den

Mehr

Abschlussprüfung 2013 an den Realschulen in Bayern

Abschlussprüfung 2013 an den Realschulen in Bayern Gesamtprüfungsdauer 120 Minuten Nachtermin lektrizitätslehre I C1 1.1.0 In einem Versuch wird für einen isendraht die Stromstärke I in Abhängigkeit von der Spannung U untersucht. s ergeben sich folgende

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Lernwerkstatt für die Klassen 5 bis 6: Magnetismus Das komplette Material finden Sie hier: Download bei School-Scout.de SCHOOL-SCOUT

Mehr

Diagnose Ladesystem eines selbsterregten Generators

Diagnose Ladesystem eines selbsterregten Generators Diagnose Ladesystem eines selbsterregten Generators Zum Einstieg in die Diagnose soll kurz der Aufbau und die Funktion der selbsterregten Generatoren und der dazugehörigen Regler und Gleichrichter wiederholt

Mehr

Elektrischer Strom. Strommessung

Elektrischer Strom. Strommessung Elektrischer Strom. Elektrischer Strom als Ladungstransport. Wirkungen des elektrischen Stromes 3. Mikroskopische Betrachtung des Stroms, elektrischer Widerstand, Ohmsches Gesetz 4. Elektrische Netzwerke

Mehr

@ Anmelder: VACUUMSCHMELZE GMBH Bereich Verträge und Patente Grüner Weg 37 Postfach 109 D-6450 Hanau 1(DE)

@ Anmelder: VACUUMSCHMELZE GMBH Bereich Verträge und Patente Grüner Weg 37 Postfach 109 D-6450 Hanau 1(DE) Europäisches Patentamt European Patent Office Veröffentlichungsnummer: 0 009 603 Office europeen des brevets A1 EUROPÄISCHE PATENTANMELDUNG @ Anmeldenummer: 79103096.8 @ Int. Cl.3: B 22 D 11/06 (22) Anmeldetag:

Mehr

Magnetpulverprüfung in Felddurchflutung mit Kreuz- und orthogonalen Zusatzspulen Prüfung von Werkstücken großer Abmessungen

Magnetpulverprüfung in Felddurchflutung mit Kreuz- und orthogonalen Zusatzspulen Prüfung von Werkstücken großer Abmessungen DACH-Jahrestagung 2015 Poster 59 Magnetpulverprüfung in Felddurchflutung mit Kreuz- und orthogonalen Zusatzspulen Prüfung von Werkstücken großer Abmessungen Rainer LINK 1, Nathanael RIESS 2 1 Unternehmensberatung

Mehr

Kapitel 2: Verschieben Gepulsten Systemen

Kapitel 2: Verschieben Gepulsten Systemen Eine Praktische Anleitung zum Energie Kostenlos Geräte Autor: Patrick J. Kelly Kapitel 2: Verschieben Gepulsten Systemen Es gibt drei Kategorien von gepulsten System, und wir werden die jeweils wiederum

Mehr

Werkstoffe elektrischer Stromkreise

Werkstoffe elektrischer Stromkreise 1.2 Werkstoffe elektrischer Maschinen Seite 1 Jede Maschine besteht grundsätzlich aus elektrischen Stromkreisen magnetischen Kreisen Werkstoffe elektrischer Stromkreise In Wicklungen einer Maschine wird

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #17 14/11/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Laden eines Kondensators Aufladen erfolgt durch eine Spannungsquelle, z.b. Batterie, die dabei

Mehr

11. Elektrischer Strom und Stromkreise

11. Elektrischer Strom und Stromkreise 11. Elektrischer Strom und Stromkreise 11.1 Elektrischer Strom und Stromdichte 11.2 Elektrischer Widerstand d 11.3 Elektrische Leistung in Stromkreisen 11.4 Elektrische Schaltkreise 11.5 Amperemeter und

Mehr

Europäisches Patentamt. Veröffentlichungsnummer: 0 369 051 Office europeen des brevets. jmjw Eur0Dean European Patent Office

Europäisches Patentamt. Veröffentlichungsnummer: 0 369 051 Office europeen des brevets. jmjw Eur0Dean European Patent Office Europäisches Patentamt jmjw Eur0Dean European Patent Office Veröffentlichungsnummer: 0 369 051 Office europeen des brevets A1 EUROPÄISCHE PATENTANMELDUNG Anmeldenummer: 88119048.2 Int. CI.5-. G01 L 3/10

Mehr

Kleine Elektrizitätslehre 4001

Kleine Elektrizitätslehre 4001 Kleine Elektrizitätslehre 4001 Fischereiinspektorat des Kantons Bern (Ausbildungsunterlagen Elektrofischerei EAWAG 2010) 1 Kleine Elektrizitätslehre Wassersystem 4002!! Je grösser die Höhendifferenz desto

Mehr

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Mit dem können auf einfache Weise die Themen: -1 und 3-Phasen-Wechselstrom -Gleichrichtung von Wechselstrom -Transformator -Induktion in der Spule -Eigenschaften eines Gleichstrommotors selbständig und

Mehr

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung

1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung Physikalisches Praktikum für Anfänger - Teil 1 Gruppe 1 - Optik 1.2 Drehung der Polarisationsebene, Faradayeffekt, Doppelbrechung 1 Drehung der Polarisationsebene Durch einige Kristalle, z.b. Quarz wird

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

SRLA. Aktoren. Version 1.4. HTL Mössingerstraße, Abt. Elektronik DI. Harald Grünanger Dezember 2013

SRLA. Aktoren. Version 1.4. HTL Mössingerstraße, Abt. Elektronik DI. Harald Grünanger Dezember 2013 SRLA Aktoren Version 1.4 HTL Mössingerstraße, Abt. Elektronik DI. Harald Grünanger Dezember 2013 Nur für den Unterrichtsgebrauch gedacht, darf nicht an Dritte weitergegeben werden! Inhaltsverzeichnis 1

Mehr

I = I 0 exp. t + U R

I = I 0 exp. t + U R Betrachten wir einen Stromkreis bestehend aus einer Spannungsquelle, einer Spule und einem ohmschen Widerstand, so können wir auf diesen Stromkreis die Maschenregel anwenden: U L di dt = IR 141 Dies ist

Mehr

Selbstinduktion. Versuchsdurchführung : Der Schalter S wird wahlweise geschlossen bzw. geöffnet

Selbstinduktion. Versuchsdurchführung : Der Schalter S wird wahlweise geschlossen bzw. geöffnet Selbstinduktion Das Induktionsgesetz besagt, dass immer dann in einem Leiter eine Spannung induziert wird, wenn eine zeitliche Änderung des magnetischen Flusses auftritt! Versuch: In einer Parallel- und

Mehr

A. Ein Kondensator differenziert Spannung

A. Ein Kondensator differenziert Spannung A. Ein Kondensator differenziert Spannung Wir legen eine Wechselspannung an einen Kondensator wie sieht die sich ergebende Stromstärke aus? U ~ ~ Abb 1: Prinzipschaltung Kondensator: Physiklehrbuch S.

Mehr

Modul 1. Fahrzeug-Elektrik. Automobildiagnostiker mit eidg. Fachausweis. Fachrichtung leichte Motorfahrzeuge. Fachrichtung Nutzfahrzeuge

Modul 1. Fahrzeug-Elektrik. Automobildiagnostiker mit eidg. Fachausweis. Fachrichtung leichte Motorfahrzeuge. Fachrichtung Nutzfahrzeuge Modul 1 Fahrzeug-Elektrik Fachrichtung leichte Motorfahrzeuge Automobildiagnostiker mit eidg. Fachausweis Fachrichtung Nutzfahrzeuge Module 7 bis 9 Module 10 bis 12 Module 1 bis 6 AGVS, Mittelstrasse 32,

Mehr

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1

Wir betrachten wieder die Leiterschleife im homogenen Magnetfeld von <29.2.>: Im rechten Schenkel der Leiterschleife herrscht ein E r '-Feld 1 3. Wechselstrom I 3.. Erzeugung von Wechselströmen Wir betrachten wieder die eiterschleife im homogenen Magnetfeld von : Wie wir dort bereits festgestellt hatten führt ein Strom in der eiterschleife

Mehr

3.5. Aufgaben zur Wechselstromtechnik

3.5. Aufgaben zur Wechselstromtechnik 3.5. Aufgaben zur Wechselstromtechnik Aufgabe : eigerdiagramme Formuliere die Gleichungen für die alteile von (t) sowie (t) und zeichne ein gemeinsames eigerdiagramm für Spannung sowie Stromstärke, wenn

Mehr

Gleichstrom-Lichtmaschine

Gleichstrom-Lichtmaschine Seite 1 von 12 Schaltpläne, Tip s und Information zur KFZ - Elektrik Willkommen, du bist Besucher seit dem 10.Mai 2002 Lichtmaschinen - Anlasser - Klimakompressoren www.alanko.de SeitJahren Ihr Lichtmaschinen,Anlasser

Mehr

Sensoren und Aktoren Digitaltechnik

Sensoren und Aktoren Digitaltechnik BSZ für Elektrotechnik Dresden Sensoren und Aktoren Digitaltechnik Dr.-Ing. Uwe Heiner Leichsenring www.leichsenring-homepage.de Gliederung 1 Sensoren 1.1 Aktive und passive Sensoren 1.2 Analoge Sensoren

Mehr