In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "In Fachwerken gibt es demnach nur konstante Normalkräfte. Die Fachwerksknoten sind zentrale Kraftsysteme."

Transkript

1 Großüung cwerke cwerke d Ssteme von gerden Stäen, die geenkig (und reiungsfrei) in sog. Knoten(punkten) miteinnder verunden d und nur durc Einzekräfte in den Knotenpunkten estet werden. In cwerken git es demnc nur konstnte Normkräfte. Die cwerksknoten d zentre Krftssteme. cwerke müssen uf äußere und innere sttisce Bestimmteit geprüft werden. Ein cwerk mit sog. einfcen ufu, esteend us nur dreieckigen edern, ist immer inneric sttisc estimmt. Es wird vereinrt, dss e Scnittkräfte s Zugkräfte definiert werden. Dmit ist in der Ergenisüersict sofort erkennr, wece Stäe Zug- zw. Druckstäe d. cwerke können s räumice oder eene Ssteme usgeidet sein. Hier soen nur eene Ssteme etrctet werden. versciedene Buweisen (Beispiee) untersciedice Buformen für cwerksknoten ) mit Knotenecen, ) mit Bozen cwerkdcinder, Bestungen durc ds Dc uf die Knoten verteit cwerkrücke, Bestungen durc die rn uf die Knoten verteit

2 us Wikipedi.org cwerke in der Mecnik In der Mecnik d cwerke Trgwerke, die us geenkig miteinnder verundenen Stäen esteen. Die Untersucung der Stiität von cwerken ist ein Teigeiet der estigkeitsere. Idee cwerke Ein idees cwerk ist gegeen, wenn in den Geenken, die uc s Knoten ezeicnet werden, keine Momente üertrgen werden. Sie d so s reiungsfrei nzuseen. Kräfte werden im ideen cwerk nur ängs der Strictung üertrgen; Lsten greifen nur in den Knoten n. Diese nnmen d drin egründet, dss in der Reität Stäe meistens deutic änger s reit d und somit die Einfüsse von Knotenecen u.ä. uf keine Geiete in der Umgeung der Knoten escränkt eien. eer entsteen ei der Berecnung uc ddurc, dss die Stäe ein Eigengewict en und dieses s Lst een nict nur in den Knoten ngreift, wo mn sie für die Berecnung nnimmt. Die Bedingung k s + f mit k: nz der Knoten s: nz der Stäe f: nz der zu estimmenden ufgerkräfte (esseungen) für ein eenes cwerk (zweidimension) ist eine notwendige, er keine inreicende Bedingung für die sttisce Bestimmteit eines cwerks. Sttisc estimmt ist ein cwerk genu dnn, wenn sic e in im uftretenden Stkräfte erecnen ssen. Diese Bedingung ist erfüt, wenn es sic um ein einfces cwerk ndet: Bei diesem werden usgeend von einem St jeweis zwei weitere Stäe und ein Knoten inzugefügt. Im räumicen, dreidimensionen utet die Bedingung 3k s + f. ür die Berecnung der Stkräfte im ideen cwerk git es versciedene Recenverfren: Knotenpunktverfren (Rundscnittverfren) Mit dem Knotenpunktverfren ssen sic die Stkräfte durc ufsteen eines Geicungssstems ermitten. ür jeden Knoten werden die zwei Geicgewictsedingungen - die Summe der Kräfte in - und in -Rictung muss Nu sein - ufgescrieen. Ddurc ergit sic ein Geicungssstem, ds ei sttiscer Bestimmteit des cwerks geöst werden knn. Im dreidimensionen werden jeweis drei Geicungen ufgestet. Bei einfcen cwerken genügt es, die ufgerkräfte mit dem Erstrrungsprinzip zu erecnen und sic dnn entng der Knoten 'durczungen'. Rittersces Scnittverfren Ds Rittersce Scnittverfren dient zur direkten Berecnung von Stkräften im cwerk. Somit können immer drei Stkräfte im zweidimensionen oder secs Stkräfte im dreidimensionen cwerk erecnet werden, one die nderen zu kennen oder gr vorer erecnen zu müssen. Nict idee cwerke Ree cwerke d ußer der Reiung in den Geenkpunkten uc dem uftreten von Biegungen unterworfen. (Die Knotenpunkte d i.g. keine Geenke) Lösungsverfren für idee cwerke Zweckmäßig ist fogende Vorgeensweise: reiscneiden des cwerkes s Gnzes und erecnen der Lgerrktionen. Je nc gewätem Lösungsverfren freiscneiden der Stäe und uswertung der Geicgewictsedingungen. Knotenscnittverfren Beim Knotenscnittverfren werden die cwerkknoten nceinnder freigescnitten. ür die dei entsteenden zentren Krftssteme können dnn die Geicgewictsedingungen für die Stkräfte ufgestet werden. Es entstet ein Geicungssstem zur Bestimmung er Stkräfte.

3 RITTERsces Scnittverfren Bei diesem Verfren wird ds cwerk in zwei Teissteme ( Sceien ) zerscnitten woei drei Stäe gescnitten werden. Von diesem drei Stäen müssen zwei n einem Knotenpunkt efestigt sein. Beide Teissteme werden wie Sceienverindungen endet, d.. es steen drei Geicgewictsedingungen je Sceie zur Bestimmung der Stkräfte in den drei gescnittenen Stäen zur Verfügung. Ds Verfren ermögict die geziete Bestimmung einzener Stkräfte in einem cwerk. Nustäe Dies d Stäe in einem cwerk, die ei einem estimmten Bestungsf keine Kräfte ufnemen, jedoc für die Stiität des Sstems erforderic d. Dies ässt sic mit den gennnten Verfren erecnen, jedoc können einige Nustäe nnd estimmter Kriterien one Recnung erknnt werden. zwei Stäe n einen nict esteten Knoten Beide Stäe d Nustäe. S S drei Stäe n einem nict esteten Knoten, dvon zwei uf einer Gerden Der nict uf dieser Gerden iegende St ist ein Nust. S S3 S zwei Stäe n einem esteten Knoten, woei die Krft in Rictung eines Stes wirkt Der St der nict in Krftrictung iegt ist ein Nust. S S S S Nustäe soten vor der Berecnung eines cwerkes nnd dieser Kriterien gesuct werden, d sic ddurc der Recenufwnd ersetzen ässt. Ein weiteres mögices Verfren ist ds Doppescnittverfren. Grfisce Verfren (remon-pn und Vrinten) werden nict etrctet. 3

4 4 Beispiee Nustäe (ier Kriterium zwei) Knotenscnittverfren (es werden e Stkräfte erecnet) Winke rctn α Lgerrektionen ( ) : D : + + +

5 Knotenscnitte Beginn n einem Knoten mit nur uneknnten (St)kräften. α D D + + cos cot D α α B + B cos + + cos + ( ) cos B ( ) cos ( + ) B D B + ( ) ( + ) D D Jetzt d e Stkräfte eknnt. Ds Geicgewict m etzten Knoten muss identisc erfüt sein. (Diese Geicungen können zur Kontroe verwendet werden.) D D + + D α Ds entsprict der Geicgewictsedingung us der Bestimmung der Lgerrektionen. D + cos ( ) cot + Ds entsprict dem Momentengeicgewict um den Punkt us der Bestimmung der Lgerrektionen. 5

6 RITTERsces Scnittverfren (es werden 3 usgewäte Stkräfte erecnet) Ds cwerk wird n der Stee - unter Berücksictigung der oen gennnten Kriterien gescnitten. Es entsteen die Teissteme ) und c). D die Lgerkräfte iser nict eknnt d, können die gesucten Stkräfte ier nur m Sstem ) erecnet werden. Winke α rctn Berecnung der Stkräfte G : : + B G + G G B G Jetzt knn mn m Teisstem c) weiterrecnen und die Lgerrektionen estimmen. Empfeenswert ist jedoc, dies m Gesmtsstem zu tun, d dnn keine Zwiscenergenisse weiterverwendet werden müssen. Berecnung der Lgerrektionen D : D E D G B E + D E G + G ( ) + G G E G + G D α G B G + cos G cos cot 3 3 cot tn mit 6

7 Beispiee für cwerkuten Brückengeänder cwerkknoten mit Knotenec (genietet und gescrut) Strßenrücke Eisennrücke üer den irt of ort, (89), Edinurg 7

8 Hrour Bridge, (93), Sidne Ds Josepskreuz (896) ist ein uf dem 58 m oen Großen uererg zw. der Josepsöe ei Stoerg im südösticen Hrz in Stfcwerk erricteter ussictsturm in orm eines Doppekreuzes. Ds Josepskreuz ist 38 m oc und wiegt 3 t. Die Konstruktion wird von etw. Nieten zusmmengeten. Eiffeturm, (889), Pris 8

9 reieitungsmst cwerkknoten one und mit Knotenec Hurücke Mgdeurg Preock, Knotenec 9

Aufgaben. Technischen Mechanik. - Statik -

Aufgaben. Technischen Mechanik. - Statik - Otto-von-Guericke-Universität Mgdeurg Institut für Mechnik ufgen ur Technischen Mechnik - Sttik - usge 008 Otto-von-Guericke-Universität Mgdeurg kutät für Mschinenu Institut für Mechnik ufgen ur Technischen

Mehr

Anreize für eine effiziente Wirtschaftsprüfung

Anreize für eine effiziente Wirtschaftsprüfung Universität des rndes erstu für Ntionökonomie inses. Wirtscftspoitik Mngeri Economics ommersemester 2003 eminr: Corporte Governnce eitung: Prof. Dr. Dieter cmidtcen nreize für eine effiziente Wirtscftsprüfung

Mehr

Mathematik in eigenen Worten

Mathematik in eigenen Worten Sieglinde Wsmier Mtemtik in eigenen Worten Lernumgeungen für die Sekundrstufe I Klett und Blmer Verlg Mtemtik in eigenen Worten Scülerinnen und Scüler screien ire Lern- und Denkwege uf : Sieglinde Wsmier

Mehr

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik

2008-06-11 Klassenarbeit 5 Klasse 10c Mathematik 2008-06- Klssenrbeit 5 Klsse 0c Mtemtik Lösung Version 2008-06-4 Cindy t 3000 geerbt. ) Den Betrg will sie so nlegen, dss sie in 20 Jren doppelt so viel Geld t. Berecne, zu welcem Zinsstz sie ds Geld nlegen

Mehr

SBS Schweißbolzen-Systeme

SBS Schweißbolzen-Systeme SBS Scweißbozen-Systeme Mit wictigen Informtionen zur Anwendung und Tecnik SBS Scweißbozen-Systme OBO. Dmit rbeiten Profis. Sortiment Quität Die Vieft der Scweißbozen ist ds, ws die Prxis bruct. Von en

Mehr

Arbeit - Energie - Reibung

Arbeit - Energie - Reibung Arbeit - nergie - eibung Die ncfolgenden Aufgben und Definitionen sind ein erster instieg in dieses Tem. Hier wird unterscieden zwiscen den Begriffen Arbeit und nergie. Verwendete ormelzeicen sind in der

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Versuch W4 - Ausdehnung von Luft und Quecksilber. Gruppennummer: lfd. Nummer: Datum:

Versuch W4 - Ausdehnung von Luft und Quecksilber. Gruppennummer: lfd. Nummer: Datum: Ernst-oritz-Arnt Universität reifswa Institut für Pysik ersuc W - Ausenung von Luft un Quecksier Name: itareiter: ruppennummer: f. Nummer: Datum:. Aufgaensteung.. ersucszie Bestimmen Sie ie oumenausenungskoeffizienten

Mehr

4.2 Balkensysteme. Aufgaben

4.2 Balkensysteme. Aufgaben Technische Mechnik 2 4.2-1 Prof. r. Wndinger ufgbe 1: 4.2 lkenssteme ufgben er bgebildete lken ist in den Punkten und gelenkig gelgert. Im Punkt greift die Krft n. Im ereich beträgt die iegesteifigkeit

Mehr

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle

Bestimmung der Adsorptionsisotherme von Essigsäure an Aktivkohle S2-Adsorptionsisothermen_UWW rstelldtum 28.3.214 7:41: Üungen in physiklischer Chemie für Studierende der Umweltwissenschften Versuch Nr.: S2 Version 214 Kurzezeichnung: Adsorptionsisotherme estimmung

Mehr

Großübung Balkenbiegung Biegelinie

Großübung Balkenbiegung Biegelinie Großüung Bkeniegung Biegeinie Es geen die in der Voresung geroffenen Annhmen: - Der Bken is unese gerde. - Ds eri sei üer den Querschni homogen und iner esisch. - Die Besung erfog durch Biegemomene und

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

Seminar zum anorganisch-chemischen Praktikum. Quantitative Analyse. Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum. Quantitative Analyse. Patrick Schwarz Seminr zum norgnisch-chemischen Prktikum Quntittive Anlyse Ptrick Schwrz itertur M. Scheer, J. Wchter Skript zum Prktikum Anorgnische Chemie I, Institut für Anorgnische Chemie der Universität Regensurg

Mehr

Mathe lernen mit Paul

Mathe lernen mit Paul Mte lernen mit Pul Die kleine Formelsmmlung Mit Gutscein für 2 kostenlose Unterrictsstunden 2 Mte lernen mit Pul Inlt Algebr Mße und Gewicte 4 Grundrecenrten 5 Brucrecnung 6 Potenzen und Wurzeln 7 Prozentrecnung

Mehr

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac

Erweitern. a b. bd + bc. bd = ad+bc. bei ganzzahligem Nenner: Hauptnenner (= kgv der Nenner), z.b. 4 6 + 3 4 = 8 12 + 9. a d = ac F FORMELSAMMLUNG Bruchrechnung Erweitern = Kürzen c c Addition Nenner gleichnmig mchen! + c d = d d + c d = d+c d, speziell + c = +c ei gnzzhligem Nenner: Huptnenner (= kgv der Nenner), zb 4 6 + 3 4 =

Mehr

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten

Die Brückenlappentechnik zum sicheren Verschluss von Nasenseptumdefekten Die Brückenlppentechnik zum sicheren Verschluss von Nsenseptumdefekten T. Stnge, H.-J. Schultz-Coulon Einleitung Die Rekonstruktion eines defekten Nsenseptums zählt zu den schwierigsten rhinochirurgischen

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht

Großübung zu Kräften, Momenten, Äquivalenz und Gleichgewicht Großübung u Kräften, omenten, Äuivlen und Gleichgewicht Der Körper Ein mterielles Teilgebiet des Universums beeichnet mn ls Körper. Im llgemeinen sind Körper deformierbr. Sonderfll strrer Körper (odellvorstellung)

Mehr

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an!

Musterlösungen (ohne Gewähr) Aufgabe 1 ( 7 Punkte) Geben Sie die Koordinaten des Flächenschwerpunktes des dargestellten Querschnitts an! Seite 1/15 Aufgbe 1 ( 7 Punkte) Geben Sie die Koordinten des lächenschwerpunktes des drgestellten Querschnitts n! 2 Gegeben:. 4 ΣA i = y 2 x Σx i A i = x s = Σy i A i = y s = ΣA i = 8 2 Σx i A i = 13 3

Mehr

Prüfen von Kunststoffen

Prüfen von Kunststoffen Prüfen von Kunststoffen Prüfen von Kunststoffen -Mehnishe Prüfungen Kureit - Lngeit -Chemish Physikishe Prüfungen Strukturnyse -Thermonyse Rheoogie Dihte Wssergeht Spnnungsriss -Mikroskopie Lihtmikrosk.

Mehr

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm

3 Module in C. 4 Gültigkeit von Namen. 5 Globale Variablen (2) Gültig im gesamten Programm 3 Module in C 5 Glole Vrilen!!!.c Quelldteien uf keinen Fll mit Hilfe der #include Anweisung in ndere Quelldteien einkopieren Bevor eine Funktion us einem nderen Modul ufgerufen werden knn, muss sie deklriert

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung

Eufic Guide Enfant ALL 14/12/04 15:44 Page 1 10 Tipps für Kids Spiel mit uns! Zur gesundenernährung Kids Ernährung für Tipps 10 Spiel mit uns! gesunden Zur Weißt du noch, wie du Rd fhren lerntest? Ds Wichtigste dei wr zu lernen ds Gleichgewicht zu hlten. Sold es gefunden wr, konntest du die Pedle gleichmäßig

Mehr

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel

Der Einfluss von Kostenabweichungen auf das Nash-Gleichgewicht in einem nicht-kooperativen Disponenten-Controller-Spiel. Günter Fandel und Jan Trockel Der Einfluss von Kostenbweicungen uf ds Ns-Gleicgewict in einem nict-koopertiven Disponenten-Controller-Spiel Günter Fndel und Jn Trockel Diskussionsbeitrg Nr. 428 September 28 Diskussionsbeiträge der

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2014) Prof Dr Jens Teuner Leitung der Üungen: Mrcel Preuß, Sestin Breß, Mrtin Schwitll, Krolin

Mehr

Getriebe und Übersetzungen Übungsaufgaben

Getriebe und Übersetzungen Übungsaufgaben Gewereshule Lörrh Getriee und Üersetzungen Üungsufgen Quelle: Ai-Prüfungen des Lndes Bden-Württeerg 1 HP 1996/97-1 Shiffsufzug Bei der Bergfhrt uss von jeder Motor-Getrieeeinheit eine Krftdifferenz von

Mehr

Lösungsskizze zu Übungsblatt Nr. 13

Lösungsskizze zu Übungsblatt Nr. 13 Technische Universität Dortmund Lehrstuhl Informtik VI Prof Dr Jens Teuner Pflichtmodul Informtionssysteme (SS 2013) Prof Dr Jens Teuner Leitung der Üungen: Geoffry Bonnin, Sven Kuisch, Moritz Mrtens,

Mehr

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften

Vorkurs Mathematik Fachhochschule Frankfurt, Fachbereich 2. Fachhochschule Frankfurt am Main Fachbereich Informatik und Ingenieurwissenschaften Vorkurs Mthemtik Fchhochschule Frnkfurt, Fchereich Fchhochschule Frnkfurt m Min Fchereich Informtik und Ingenieurwissenschften Vorkurs Mthemtik Sie finden lle Mterilien sowie ergänzende Informtionen unter

Mehr

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1.

Die Regelungen zu den Einsendeaufgaben (Einsendeschluss, Klausurzulassung) finden Sie in den Studien- und Prüfungsinformationen Heft Nr. 1. Modul : Grundlgen der Wirtschftsmthemtik und Sttistik Kurs 46, Einheit, Einsendeufge Die Regelungen zu den Einsendeufgen (Einsendeschluss, Klusurzulssung) finden Sie in den Studien- und Prüfungsinformtionen

Mehr

Public-Key-Verfahren: Diffie-Hellmann und ElGamal

Public-Key-Verfahren: Diffie-Hellmann und ElGamal Westfälische Wilhelms-Universität Münster Ausreitung Pulic-Key-Verfhren: Diffie-Hellmnn und ElGml im Rhmen des Seminrs Multimedi und Grphen WS 2007/2008 Veselin Conev Themensteller: Prof. Dr. Herert Kuchen

Mehr

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt:

Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* aller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 8. Grundlgen der Informtionstheorie 8.1 Informtionsgehlt, Entropie, Redundnz Def.: Sei Σ eine Menge von Zeichen. Die Menge Σ* ller Zeichenketten (Wörter) über Σ ist die kleinste Menge, für die gilt: 1.

Mehr

Uponor ISI Box. schnell und sicher installieren! NEU

Uponor ISI Box. schnell und sicher installieren! NEU Uponor ISI Box scnell und sicer instllieren! NEU Die Uponor ISI Box die einfce und scnelle Instlltionslösung im Trockenu. Vorkonfektioniert und nsclussfertig efinden sic lle Komponenten sicer und geprüft

Mehr

12/18/07. Scherung. Spiegelung. Alternative homogene Skalierungs-Matrix:

12/18/07. Scherung. Spiegelung. Alternative homogene Skalierungs-Matrix: Sherung Aterntive homogene Skierungs-Mtri: Vershiet.B. die -Koordinte hängig von der Entfernung ur Eene =0 (d.h., -Eene) Zum Beispie: H XZ (s) shert den -Wert gemäß dem -Wert Aer esser die "norme" Skierungsmtri

Mehr

13 Rekonfigurierende binäre Suchbäume

13 Rekonfigurierende binäre Suchbäume 13 Rekonfigurierende inäre Suchäume U.-P. Schroeder, Uni Pderorn inäräume, die zufällig erzeugt wurden, weisen für die wesentlichen Opertionen Suchen, Einfügen und Löschen einen logrithmischen ufwnd uf.

Mehr

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG)

Skript für die Oberstufe und das Abitur 2015 Baden-Württemberg berufl. Gymnasium (AG, BTG, EG, SG, WG) Sript für die Oerstufe und ds Aitur Bden-Württemerg erufl. Gymnsium (AG, BTG, EG, SG, WG) Mtrizenrechnung, wirtschftliche Anwendungen (Leontief, Mterilverflechtung) und Linere Optimierung Dipl.-Mth. Alexnder

Mehr

SPEZIALSTRAHLER. Die Spezialstrahler.

SPEZIALSTRAHLER. Die Spezialstrahler. SPEZIALSTRAHLER Die Spezistrer. OSRAM-Lmpentecnoogie im Dienst der Tecnik. Lict wird eute in den untersciedicsten Brncen s tecnisc, ökonomisc und ökoogisc überegene Aterntive zu erkömmicen Prozessen eingesetzt,

Mehr

Formeln zu Mathematik für die Fachhochschulreife

Formeln zu Mathematik für die Fachhochschulreife Fomeln zu Mtemtik fü die Fcocsculeife Beeitet von B. Gimm und B. Sciemnn 3. Auflge VERLAG EUROPA-LEHRMITTEL Nouney, Vollme GmH & Co. KG Düsselege Stße 3 4781 Hn-Guiten Euop-N.: 8519 Autoen: Bend Gimm Bend

Mehr

Technische Mechanik I

Technische Mechanik I Repetitorium Technische Mechnik I Version 3., 9.. Dr.-Ing. L. Pnning Institut für Dynmik und Schwingungen ottfried Wilhelm Leibniz Universität Hnnover Dieses Repetitorium soll helfen, klssische ufgbentypen

Mehr

Identifizierbarkeit von Sprachen

Identifizierbarkeit von Sprachen FRIEDRICH SCHILLER UNIVERSITÄT JENA Fkultät für Mthemtik und Informtik INSTITUT für INFORMATIK VORLESUNG IM WINTERSEMESTER STOCHASTISCHE GRAMMATIKMODELLE Ernst Günter Schukt-Tlmzzini 06. Quelle: /home/schukt/ltex/folien/sprchmodelle-00/ssm-06.tex

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

Das Coulombsche Gesetz

Das Coulombsche Gesetz . ei r = 0 befindet sich eine Ldung Q = 4,0nC und bei r = 40cm eine Ldung Q = 5,0nC ortsfest, so dss sie sich nicht bewegen können. Ds Coulombsche Gesetz Q = 4,0nC Q = 5,0nC r Lösung: Wo muss eine Ldung

Mehr

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann

Schülerkurs. Mathematik > Lineare Algebra > Lineare Gleichungen Lineare Gleichungssysteme > Teil I: Theorie. Michael Buhlmann Michel Buhlmnn Schülekus Mthemtik > Linee Alge > Linee Gleichungen Linee Gleichungssysteme > Teil I: Theoie Linee Gleichungen und linee Gleichungssysteme duchziehen den Mthemtikunteicht in llen Schulfomen

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003

Personal und Finanzen der öffentlich bestimmten Fonds, Einrichtungen, Betriebe und Unternehmen (FEU) in privater Rechtsform im Jahr 2003 Personl und Finnzen der öffentlich estimmten Fonds, Einrichtungen, Betriee und Unternehmen (FEU) in privter Rechtsform im Jhr 003 Dipl.-Volkswirt Peter Emmerich A Mitte der 980er-Jhre ist eine Zunhme von

Mehr

5.4 CMOS Schaltungen und VLSIDesign

5.4 CMOS Schaltungen und VLSIDesign Kp5.fm Seite 447 Dienstg, 7. Septemer 2 :55 3 5.4 CMOS Schltungen und VLSI Design 447 r u u r id + + A. 5.39: Progrmmierrer Gitterustein 5.4 CMOS Schltungen und VLSIDesign Die Boolesche Alger eginnt mit

Mehr

Interferenzen gleicher Dicke

Interferenzen gleicher Dicke Fakutät für Physik und Geowissenschaften Physikaisches Grundpraktikum O9 Interferenzen geicher Dicke Aufgaen 1. Bestimmen Sie den Krümmungsradius einer konvexen Linsenfäche durch Ausmessen Newtonscher

Mehr

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen

Nutzung der Abwärme aus Erneuerbare-Energie-Anlagen 5 2014 Sonderdruck us BWK 5-2014 Wichtige Kennzhlen und effiziente Plnung für die dezentrle Wärmewende Nutzung der Abwärme us Erneuerbre-Energie-Anlgen Wichtige Kennzhlen und effiziente Plnung für die

Mehr

Besonderer Kastensandwich für die gewichtsoptimierte, innovative Aussteifung großer WKA-Rotorblätter

Besonderer Kastensandwich für die gewichtsoptimierte, innovative Aussteifung großer WKA-Rotorblätter DEWI Magazin Nr. 22, Febr. 2003 esonderer Kastensandwic für die gewictsoptimierte, innovative ussteifung großer WK-Rotorblätter Zusammenfassung Leistungsfäige Windkraftanlagen erfordern bei gegebener lattspitzengescwindigkeit

Mehr

Keil Telecom Homepage - Hersteller von Isdn Tk Anlagen und Türsprechsystemen für Heim und Bü...

Keil Telecom Homepage - Hersteller von Isdn Tk Anlagen und Türsprechsystemen für Heim und Bü... Keil Telecom Homepge - Hersteller von Isdn Tk Anlgen und Türsprechsystemen für Heim und Bü... Seite 1 von 1 Einutürlutsprecher esonders kleine und kompkte Buform Einu üerll dort wo Pltz knpp ist Briefkästen,

Mehr

Präfixcodes und der Huffman Algorithmus

Präfixcodes und der Huffman Algorithmus Präfixcodes und der Huffmn Algorithmus Präfixcodes und Codebäume Im Folgenden werden wir Codes untersuchen, die in der Regel keine Blockcodes sind. In diesem Fll können Codewörter verschiedene Länge hben

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

5.3 Dynamisches Sitzen und Stehen

5.3 Dynamisches Sitzen und Stehen Dynmisches Sitzen und Stehen 5.3 Dynmisches Sitzen und Stehen Test Bewegen Sie sich eim Sitzen und Stehen kontinuierlich um den Mittelpunkt der senkrechten Oerkörperhltung (S. 39) mit neutrler Wirelsäulenschwingung

Mehr

Logische Grundschaltungen

Logische Grundschaltungen Elektrotechnisches Grundlgen-Lor II Logische Grundschltungen Versuch Nr. 9 Erforderliche Geräte Anzhl Bezeichnung, Dten GL-Nr. 1 Voltmeter 335 1 Steckrett SB 1 1 Steckrett SB 2 mit 5V Netzteil 1 Steckrett

Mehr

Beispiel-Abiturprüfung

Beispiel-Abiturprüfung Mthemtik BeispielAbiturprüfung Prüfungsteile A und B Bewertungsschlüssel und Lösungshinweise (nicht für den Prüfling bestimmt) Die Bewertung der erbrchten Prüfungsleistungen ht sich für jede Aufgbe nch

Mehr

Mathematik PM Rechenarten

Mathematik PM Rechenarten Rechenrten.1 Addition Ds Pluszeichen besgt, dss mn zur Zhl die Zhl b hinzuzählt oder ddiert. Aus diesem Grunde heisst diese Rechenrt uch Addition. + b = c Summnd plus Summnd gleich Summe Kommuttivgesetz

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13

Inhaltsverzeichnis. Inhaltsverzeichnis... 1 3.Logik... 2. 3.1 Zahlensysteme... 2. 3.2 Grundbegriffe zweiwertiger Logik... 13 Inhltsverzeichnis Inhltsverzeichnis... 3.Logik... 2 3. Zhlensysteme... 2 3.2 Grundegriffe zweiwertiger Logik... 3 3.3 Rechengesetze für logische Ausdrücke... 9 3.4 Logische Funktionen... 24 3.5 Logische

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

1 152.17. 1. Gegenstand und Zweck

1 152.17. 1. Gegenstand und Zweck 5.7. März 0 Verordnung üer die Klssifizierung, die Veröffentlihung und die Arhivierung von Dokumenten zu Regierungsrtsgeshäften (Klssifizierungsverordnung, KRGV) Der Regierungsrt des Kntons Bern, gestützt

Mehr

QualitŠtskriterien fÿr die betriebliche Gesundheitsfšrderung

QualitŠtskriterien fÿr die betriebliche Gesundheitsfšrderung WH IN U O Gesunde Mitreiter in gesunden Unternehmen Erfolgreiche Prxis etrielicher Gesundheitsfšrderung in Europ QulitŠtskriterien fÿr die etrieliche Gesundheitsfšrderung Vorwort Seit 1996 existiert ds

Mehr

1 212.223. Gesetz über die Bernische BVG- und Stiftungsaufsicht (BBSAG) vom 17.03.2014 (Stand 01.01.2015)

1 212.223. Gesetz über die Bernische BVG- und Stiftungsaufsicht (BBSAG) vom 17.03.2014 (Stand 01.01.2015) . Gesetz üer die Bernische BVG- und Stiftungsufsicht (BBSAG) vom 7.0.04 (Stnd 0.0.05) Der Grosse Rt des Kntons Bern, gestützt uf Artikel 6 Astz des Bundesgesetzes vom 5. Juni 98 üer die erufliche Alters-,

Mehr

TE- und TM-Moden im Wellenleiter. Bachelorarbeit

TE- und TM-Moden im Wellenleiter. Bachelorarbeit TE- und TM-Moden im Wellenleiter Sebstin Rubitzek 30. September 2014 in Grz Bchelorrbeit betreut von Ao.Univ.-Prof. Mg. Dr.rer.nt. Ulrich Hohenester 1 Inhltsverzeichnis 1 Einleitung 3 1.1 Ws ist ein Wellenleiter?......................

Mehr

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen

Motivation. Kap. 4.2 Binäre Suchbäume ff Kap. 4.3: AVL-Bäume. Überblick. Pseudocode von SEARCH. in binären Suchbäumen. in binären Suchbäumen Kp. 4.2 inäre Schäme ff Kp. 4.: VL-äme Professor r. Lehrsthl für lgorithm Engineering, LS11 Fkltät für Informtik, TU ortmnd Motition Wrm soll ich hete hier leien? lncierte äme rchen Sie immer wieder! Ws

Mehr

3. Lager und Lagerreaktionen

3. Lager und Lagerreaktionen 3. Lager und Lagerreaktionen 3.1. Beispiee, Grundbegriffe 3.2. Ebene Beanspruchung 3.3. Räumiche Beanspruchung HAW Hamburg M+P Ihenburg TM1/ Lager, Lagerreaktionen 1 Beispiee (Bauwesen) HAW Hamburg M+P

Mehr

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999

Abitur - Leistungskurs Mathematik. Sachsen-Anhalt 1999 Abitur - Leistungskurs Mthemtik Schsen-Anhlt 999 Gebiet L - Anlysis Augbe.. y, D, R,. Die Funktionenschr sei gegeben durch Die Grphen der Funktionen der Schr werden mit G bezeichnet. ) Ermitteln Sieden

Mehr

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6

Aufgaben zur Vorlesung Analysis II Prof. Dr. Holger Dette SS 2012 Lösungen zu Blatt 6 Aufgben zur Vorlesung Anlysis II Prof. Dr. Holger Dette SS 0 Lösungen zu Bltt 6 Aufgbe. Die Funktion f : [, ) R sei in jedem endlichen Teilintervll von [, ) Riemnnintegrierbr. Für n N sei I n := f() d.

Mehr

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich!

Versuchsplanung. Grundlagen. Extrapolieren unzulässig! Beobachtungsbereich! Versuchsplnung 22 CRGRAPH www.crgrph.de Grundlgen Die Aufgbe ist es Versuche so zu kombinieren, dss die Zusmmenhänge einer Funktion oder eines Prozesses bestmöglich durch eine spätere Auswertung wiedergegeben

Mehr

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946

Auszug aus den Tabellen und Formeln der DIN EN ISO 6946 Institut ür Bupysik und Mterilwissensct Univ.-Pro. Dr. Mx J. Seite von 9 nc Kosler, W.: Mnuskript zur E DIN 408-3:998-0, NA Buwesen (NABu) im DIN - Deutsces Institut ür Normung vom 28.0.998 Hinweise: DIN

Mehr

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen.

edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit bietet, ihre statistischen Meldungen über das Internet auszufüllen und einzureichen. Mnuell edatenq Fremdenverkehrs- und Gstgeweresttistik Einleitung edatenq ist eine Anwendung, die den Unternehmen die Möglichkeit ietet, ihre sttistischen Meldungen üer ds Internet uszufüllen und einzureichen.

Mehr

Grundwissen Abitur Analysis

Grundwissen Abitur Analysis GYMNASIUM MIT SCHÜLERHEIM PEGNITZ mthem-technolog u sprchl Gmnsium WILHELM-VON-HUMBOLDT-STRASSE 7 9257 PEGNITZ FERNRUF 0924/48333 FAX 0924/2564 Grundwissen Abitur Anlsis Ws sind Potenzfunktion mit ntürlichen

Mehr

Institut für Volkswirtschaftslehre und Wirtschaftspolitik. Prof. Dr. Andreas Thiemer. VWL-Semesterprojekt Nr. 4 WS 2007/2008. Bayessche Lemminge

Institut für Volkswirtschaftslehre und Wirtschaftspolitik. Prof. Dr. Andreas Thiemer. VWL-Semesterprojekt Nr. 4 WS 2007/2008. Bayessche Lemminge Institut für Volkswirtschftslehre und Wirtschftspolitik Prof. Dr. ndres Thiemer VWL-Semesterprojekt Nr. 4 WS 007/008 yessche Lemminge Ein Experiment mit Informtionskskden Unter Mitreit von: Olg eder xel

Mehr

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen.

c) Berechne aus dieser die mechanische Arbeit, die bei ebener Strecke nötig ist, um dieses Fahrzeug 100 km weit zu bewegen. Aufben Arbei und Enerie 547. Ein Tnk oll i Hilfe einer Pupe i Wer efüll werden. Der Tnk für den Scluc zwei Anclüe, oben und unen. Wie eräl e ic i der durc die Pupe zu erriceen Arbei, u den Tnk olländi

Mehr

Übungsblatt Nr. 13 Themenübersicht

Übungsblatt Nr. 13 Themenübersicht Technische Universität Dortmund Lehrstuhl Informtik VI Prof. Dr. Jens Teuner Pflichtmodul Informtionssysteme (SS 2015) Prof. Dr. Jens Teuner Leitung der Üungen: Imn Kmehkhosh, Thoms Lindemnn, Mrcel Preuß

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mthemtische Sprche und nive Mengenlehre 1 Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johnn-von-Neumnn-Hus Fchschft Menge ller Studenten eines Institutes Fchschftsrt

Mehr

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung?

Z R Z R Z R Z = 50. mit. aus a) Z L R. Wie groß ist der Leistungsfaktor cos der gesamten Schaltung? Aufge F 99: Drehstromverruher Ein symmetrisher Verruher ist n ds Drehstromnetz ( 0 V, f 50 Hz) ngeshlossen. Die us dem Netz entnommene Wirkleistung eträgt,5 kw ei einem eistungsfktor os 0,7. ) Berehnen

Mehr

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3

Lehrgang: Digitaltechnik 1 ( Grundlagen ) - Im Lehrgang verwendete Gatter ( Übersicht ) Seite 3 Lehrgng: Digitltechnik ( Grundlgen ) Dtum: Nme: Seite: Inhltsverzeichnis: Im Lehrgng verwendete Gtter ( Üersicht ) Seite 3 Aufu von Zhlensystemen deziml, dul ( Infoseite ) Seite 4 ( Areitsltt ) Seite 5

Mehr

7.1 Übersicht und Schleimhautrelief

7.1 Übersicht und Schleimhautrelief 7.1 Üersicht und Schleimhutrelief Crist glli Orit Corpus vitreum Skler Mxill Crtilgo septi nslis Vomer Proc. pltinus mxille Cellule ethmoidles Bull ethmoidlis Lmin perpendiculris ossis ethmoidlis N. infroritlis

Mehr

Karlsruher Institut für Technologie

Karlsruher Institut für Technologie Krlsruher Institut für Technologie Lehrstuhl für Progrmmierprdigmen Sprchtechnologie und Compiler WS 2010/2011 Dozent: Prof. Dr.-Ing. G. Snelting Üungsleiter: Mtthis Brun Lösung zu Üungsltt 1 Ausge: 18.04.2012

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

Der chinesische Gelehrte Konfuzius wird oft als

Der chinesische Gelehrte Konfuzius wird oft als Roert-Wichrd-Pohl-Preis Experimente zum Selstuen Einfche Experimente mit lltäglichen Mterilien und ttrktive Demonstrtionsexperimente ermöglichen es Schülern, die Physik esser zu verstehen Hns-Jochim Wilke

Mehr

Numerische Simulation in der Luft- und Raumfahrttechnik

Numerische Simulation in der Luft- und Raumfahrttechnik Numerisce Simulation in der Luft- und Raumfarttecnik Dr. Felix Jägle, Prof. Dr. Claus-Dieter Munz (IAG) Universität Stuttgart Pfaffenwaldring, 70569 Stuttgart Email: felix.jaegle@iag.uni-stuttgart.de Inalt

Mehr

Haus B Außenwand, Sockel

Haus B Außenwand, Sockel Hus B 18 Außenwnd, Sokel 19 Innenwnd, Bodenpltte 20 Außenwnd, Fundment 21 Innenwnd, Fundment 22 Außenwnd, Deke, Fenster 23 Innenwnd, Deke, Tür 24 Außenwnd, Trufe 25 Außenwnd, Ortgng 26 Außenwnd, Eke 27

Mehr

Systemsicherheit. Kurze Geschichte. Mobilfunk: Systemüberblick. Kurze Geschichte. Mobilfunk: Systemüberblick. Mobilfunk: Systemüberblick

Systemsicherheit. Kurze Geschichte. Mobilfunk: Systemüberblick. Kurze Geschichte. Mobilfunk: Systemüberblick. Mobilfunk: Systemüberblick urze Geschichte Systemsicherheit Teil 6: Prof. Dr. Erstes kommerzielles system: AT&T 1946 in St. Louis 1980er Jhre: Entwicklung mehrerer zueinnder inkomptiler systeme in Europ 1982: Gründung der Groupe

Mehr

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen

Seminar Quantum Computation - Finite Quanten-Automaten und Quanten-Turingmaschinen Seminr Quntum Computtion - Finite Qunten-Automten und Qunten-Turingmschinen Sebstin Scholz sscholz@informtik.tu-cottbus.de Dezember 3. Einleitung Aus der klssischen Berechenbrkeitstheorie sind die odelle

Mehr

Schritte international im Beruf

Schritte international im Beruf 1 Ws mchen die Leute uf dem Foto? Kreuzen Sie n. Die Leute sind ei der Berufsertung. mchen zusmmen ein Seminr. hen gerde Puse. pnthermedi / Werner H. Wer sind die Leute? Ergänzen Sie. die Referentin /

Mehr

Beschäftigungssicherheit als Option in Cafeteria-Systemen **

Beschäftigungssicherheit als Option in Cafeteria-Systemen ** Thoms Bürkle: Beschäftigungssicherheit ls Option in Cfeteri-Systemen (ZfP 1/2001) 37 Thoms Bürkle * Beschäftigungssicherheit ls Option in Cfeteri-Systemen ** Bei der Konzeption von Cfeteri-Systemen stnden

Mehr

Einführung in die Schaltalgebra

Einführung in die Schaltalgebra Einführung in die chltlger GUNDBEGIFFE: - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 ECHENEGELN - - - - - - - - - - - - - - - - - - - - - - - -

Mehr

Frustration ist ein alltägliches Phänomen, und

Frustration ist ein alltägliches Phänomen, und FESTKÖRPERPHYSIK Topologische Spinflüssigkeiten Frustrtion mgnetischer Momente durch widerstreitende Kopplungen knn zu Spinflüssigkeiten mit topologischer Ordnung führen. Ki Phillip Schmidt und Simon Trest

Mehr

1.2 Der goldene Schnitt

1.2 Der goldene Schnitt Goldener Schnitt Psclsches Dreieck 8. Der goldene Schnitt Beim Begriff Goldener Schnitt denken viele Menschen n Kunst oder künstlerische Gestltung. Ds künstlerische Problem ist, wie ein Bild wohlproportioniert

Mehr

Ntoneni-be Berechnung der.kennwerte J4helwerY und,,streuung von Funktionen

Ntoneni-be Berechnung der.kennwerte J4helwerY und,,streuung von Funktionen FOLGE 18 LENZINGER BERICHTE A UG UST 196J Ntoneni-e Berechnung der.kennwerte J4helwerY und,,streuung von Funktionen Dipl.-Ing. Wilhelm Herzog, Wien Die vorliegende Areit eschäftigt sich mit dem Fll, dß

Mehr

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w

Classical Gas. . œ# 3 2. &4 3 œ &4 4. œ œ. œ œ 1. œ 2. œ œ œ œ œ. œ œ œ. w œ œ œ œ# œ œ œ œ. œ œ. & œ œ œ œ œ œ œ w. œ œ œ œ œ# œ œ œ œ œ œ œ œ œ œ w Clsscl Gs Mson Wlls rr: Cleens Huber / "Clsscl Gs" von Mson Wlls urde 9 zu Weltht I Ornl rd de Gtrre von ene Orchester t breten läsersound unterstützt uch ls Soloverson st ds Stück beknnt eorden und ehört

Mehr

Therapiebegleiter Kopfschmerztagebuch

Therapiebegleiter Kopfschmerztagebuch Vornme & Nchnme Therpieegleiter Kopfschmerztgeuch Liee Ptientin, lieer Ptient, Wie Können sie helfen? Bitte führen Sie regelmäßig euch m esten täglich. Trgen Sie in die Splten die jeweiligen Informtionen

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist

1KOhm + - y = x LED leuchtet wenn Schalter x gedrückt ist . Ohm = LED leuchtet wenn chlter gedrückt ist 2. Ohm = NICH ( = NO ) LED leuchtet wenn chlter nicht gedrückt ist = ist die Negtion von? Gibt es so einen kleinen chlter (Mikrotster)? 2. Ohm = UND LED leuchtet

Mehr

Grundlagen der Physiotherapie

Grundlagen der Physiotherapie Grundlgen der Physiotherpie Vom Griff zur Behndlung von Lynn Allen Coly Crolyn Kisner erweitert, üerreitet Thieme 2009 Verlg C.H. Beck im Internet: www.eck.de ISBN 978 3 13 108743 0 schnell und portofrei

Mehr

Definition Suffixbaum

Definition Suffixbaum Suffix-Bäume Definition Suche nch einer Menge von Mustern Längste gemeinsme Zeichenkette Pltzreduktion Suffixbäume für Muster Alle Pre Suffix-Präfix Übereinstimmung Sich wiederholende Strukturen Definition

Mehr

Gerald Gerlach; Wolfram Dötzel. Lösungen zu den Aufgaben für Einführung in die Mikrosystemtechnik: Ein Kursbuch für Studierende

Gerald Gerlach; Wolfram Dötzel. Lösungen zu den Aufgaben für Einführung in die Mikrosystemtechnik: Ein Kursbuch für Studierende Gerl Gerlc; Wolfrm Dötzel Lösungen zu en ufgben für Einfürung in ie Mikrosstemtecnik: Ein Kursbuc für Stuierene Gerl Gerlc; Wolfrm Dötzel Lösungen zu en ufgben für Einfürung in ie Mikrosstemtecnik: Ein

Mehr

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer!

Dein Trainingsplan. sportmannschaft. ... und was sonst noch wichtig ist. Deine Zähne sind wie deine. und du bist der Trainer! hben Freunde Deine Zähne sind wie deine sportmnnschft und du bist der Triner! Und jeder Triner weiß, wie wichtig jeder einzelne Spieler ist eine wichtige und schöne Aufgbe! Drum sei nett zu deinen Zähnen

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr