Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten

Größe: px
Ab Seite anzeigen:

Download "Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten"

Transkript

1 Simulation von Zinsentwicklungen und Bewertung von gängigen Finanzprodukten Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 1. Februar / 7

2 Gliederung 1 Was ist Finanzmathematik Denkweise im Umgang mit Finanzprodukten 2 Monte Carlo Simulation zur Bewertung von Finanzprodukten 3 Bewertung von derivativen Finanzprodukten 2 / 7

3 Gliederung 1 Was ist Finanzmathematik Denkweise im Umgang mit Finanzprodukten 2 Monte Carlo Simulation zur Bewertung von Finanzprodukten 3 Bewertung von derivativen Finanzprodukten 2 / 7

4 Gliederung 1 Was ist Finanzmathematik Denkweise im Umgang mit Finanzprodukten 2 Monte Carlo Simulation zur Bewertung von Finanzprodukten 3 Bewertung von derivativen Finanzprodukten 2 / 7

5 Wie denkt ein/e Finanzmathematiker/in? Denkweise im Umgang mit Finanzprodukten In erster Linie denkt er/sie an Arbitrage (ohne Geldeinsatz einen sicheren Gewinn zu machen). Falls dies nicht immer gelingt, so beschäftigt er/sie sich mit der Bewertung (fairen Bepreisung) von diversen Finanzprodukten. Mit Punkt 2 werden wir uns in dieser Projektwoche beschäftigen (Vorgangsweisen zu Punkt 1 verrate ich nicht :-) 3 / 7

6 Wie denkt ein/e Finanzmathematiker/in? Denkweise im Umgang mit Finanzprodukten In erster Linie denkt er/sie an Arbitrage (ohne Geldeinsatz einen sicheren Gewinn zu machen). Falls dies nicht immer gelingt, so beschäftigt er/sie sich mit der Bewertung (fairen Bepreisung) von diversen Finanzprodukten. Mit Punkt 2 werden wir uns in dieser Projektwoche beschäftigen (Vorgangsweisen zu Punkt 1 verrate ich nicht :-) 3 / 7

7 Wie denkt ein/e Finanzmathematiker/in? Denkweise im Umgang mit Finanzprodukten In erster Linie denkt er/sie an Arbitrage (ohne Geldeinsatz einen sicheren Gewinn zu machen). Falls dies nicht immer gelingt, so beschäftigt er/sie sich mit der Bewertung (fairen Bepreisung) von diversen Finanzprodukten. Mit Punkt 2 werden wir uns in dieser Projektwoche beschäftigen (Vorgangsweisen zu Punkt 1 verrate ich nicht :-) 3 / 7

8 Simulation von zufälligen Phänomenen Monte Carlo Simulation zur Bewertung von Finanzpro Zuerst diskutieren wir, wie man Zufall mathematisch beschreiben kann Mit einem Computerprogramm werden wir anschließend Zufallszahlen erzeugen und damit Erwartungswerte von Zufallsexperimenten schätzen. Die dabei verwendete Methode heißt Monte Carlo Simulation 4 / 7

9 Simulation von zufälligen Phänomenen Monte Carlo Simulation zur Bewertung von Finanzpro Zuerst diskutieren wir, wie man Zufall mathematisch beschreiben kann Mit einem Computerprogramm werden wir anschließend Zufallszahlen erzeugen und damit Erwartungswerte von Zufallsexperimenten schätzen. Die dabei verwendete Methode heißt Monte Carlo Simulation 4 / 7

10 Simulation von zufälligen Phänomenen Monte Carlo Simulation zur Bewertung von Finanzpro Zuerst diskutieren wir, wie man Zufall mathematisch beschreiben kann Mit einem Computerprogramm werden wir anschließend Zufallszahlen erzeugen und damit Erwartungswerte von Zufallsexperimenten schätzen. Die dabei verwendete Methode heißt Monte Carlo Simulation 4 / 7

11 Simulation stochastischer Prozesse Monte Carlo Simulation zur Bewertung von Finanzpro Durch eine bestimmte Aneinanderreihung von Zufallszahlen entsteht ein stochastischer Prozess. Ein berühmtes Beispiel für einen stochastischen Prozess ist die sogenannte Brown sche Bewegung: 5 / 7

12 Simulation stochastischer Prozesse Monte Carlo Simulation zur Bewertung von Finanzpro Durch eine bestimmte Aneinanderreihung von Zufallszahlen entsteht ein stochastischer Prozess. Ein berühmtes Beispiel für einen stochastischen Prozess ist die sogenannte Brown sche Bewegung: 5 / 7

13 Bewertung von derivativen Finanzprodukten Zwei Beispiele: Zinsentwicklung, Aktienkurse Aufbauend auf die Brown sche Bewegung simulieren wir stochastische Prozesse für Zinsentwicklungen bzw. für Aktienkurse. Mittels Monte Carlo Methode können wir dann den fairen Preis für gewisse Finanzprodukte schätzen. Durch das Beobachten möglicher (verschiedener) Verläufe von Kursentwicklungen während der Laufzeit können wir das Risiko bei manchen Geschäften besser einschätzen. 6 / 7

14 Bewertung von derivativen Finanzprodukten Zwei Beispiele: Zinsentwicklung, Aktienkurse Aufbauend auf die Brown sche Bewegung simulieren wir stochastische Prozesse für Zinsentwicklungen bzw. für Aktienkurse. Mittels Monte Carlo Methode können wir dann den fairen Preis für gewisse Finanzprodukte schätzen. Durch das Beobachten möglicher (verschiedener) Verläufe von Kursentwicklungen während der Laufzeit können wir das Risiko bei manchen Geschäften besser einschätzen. 6 / 7

15 Bewertung von derivativen Finanzprodukten Zwei Beispiele: Zinsentwicklung, Aktienkurse Aufbauend auf die Brown sche Bewegung simulieren wir stochastische Prozesse für Zinsentwicklungen bzw. für Aktienkurse. Mittels Monte Carlo Methode können wir dann den fairen Preis für gewisse Finanzprodukte schätzen. Durch das Beobachten möglicher (verschiedener) Verläufe von Kursentwicklungen während der Laufzeit können wir das Risiko bei manchen Geschäften besser einschätzen. 6 / 7

16 Bewertung von derivativen Finanzprodukten 7 / 7

Aktien, Optionen (und Credit Default Swaps)

Aktien, Optionen (und Credit Default Swaps) Aktien, Optionen (und s) Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. Februar 2009 1 / 7 Gliederung 1 Was ist Finanzmathematik Denkweise im Umgang mit Finanzprodukten

Mehr

Hedging. Andreas Eichler, Christian Irrgeher. 13. Februar 2011. Institut für Finanzmathematik Johannes Kepler Universität Linz

Hedging. Andreas Eichler, Christian Irrgeher. 13. Februar 2011. Institut für Finanzmathematik Johannes Kepler Universität Linz Was bedeutet? Andreas Eichler, Christian Irrgeher Institut für Finanzmathematik Johannes Kepler Universität Linz 13. Februar 2011 1 / 7 Was bedeutet? Gliederung 1 Was bedeutet? 2 3 Marktmodell von Black

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

Investition und Risiko. Finanzwirtschaft I 5. Semester

Investition und Risiko. Finanzwirtschaft I 5. Semester Investition und Risiko Finanzwirtschaft I 5. Semester 1 Gliederung Ziel Korrekturverfahren: Einfache Verfahren der Risikoberücksichtigung Sensitivitätsanalyse Monte Carlo Analyse Investitionsentscheidung

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Fotios Filis. Monte-Carlo-Simulation

Fotios Filis. Monte-Carlo-Simulation Fotios Filis Monte-Carlo-Simulation Monte-Carlo-Methoden??? Spielcasino gibt Namen Monte Carlo war namensgebend für diese Art von Verfahren: Erste Tabellen mit Zufallszahlen wurden durch Roulette-Spiel-Ergebnisse

Mehr

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds)

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds) Abteilung für Finanzmathematik - Bewertung verschiedenster Typen von Derivativen - Analyse Alternativer Investmentstrategien (Hedge Fonds) - Kredit-Risiko-Management und Kredit-Derivate - Monte Carlo-

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten

Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten Risikosimulation zur Optimierung der Finanzierungsplanung von Projekten Dresden, 18.06.2012 Agenda Motivation Notwendigkeit einer Risikosimulation Grundlagen der Monte-Carlo-Simulation Konzept einer 4-Stufen-Risikosimulation

Mehr

Was können Schüler anhand von Primzahltests über Mathematik lernen?

Was können Schüler anhand von Primzahltests über Mathematik lernen? Was können Schüler anhand von Primzahltests über Mathematik lernen? Innermathematisches Vernetzen von Zahlentheorie und Wahrscheinlichkeitsrechnung Katharina Klembalski Humboldt-Universität Berlin 20.

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.2: Monte Carlo Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4 / WiWi-Gebäude

Mehr

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011

Hauptseminar. Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit. Robert John 2.11.2011 Hauptseminar Monte-Carlo-Methoden, stochastische Schätzungen und deren Unsicherheit Robert John 1 Inhalt Herkunft Stochastische Schätzung Monte-Carlo-Methode Varianzreduktion Zufallszahlen Anwendungsgebiete

Mehr

DISSERTATION. zur Erlangung des akademischen Grades Dr. rer. nato im Fach Didaktik der Mathematik

DISSERTATION. zur Erlangung des akademischen Grades Dr. rer. nato im Fach Didaktik der Mathematik Aktien und Optionen: Zur Integration von Inhalten der stochastischen Finanzmathematik in einen allgemeinbildenden und anwendungsorientierten Stochastikunterricht DISSERTATION zur Erlangung des akademischen

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation

Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Die Bestimmung von Value-at-Risk-Werten mit Hilfe der Monte-Carlo-Simulation Studiengang Informatik Jens Schiborowski 8. Januar 2009 Otto-von-Guericke-Universität Magdeburg Fakultät für Informatik 1 Abstract

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Betreuer: Lars Grüne. Dornbirn, 12. März 2015

Betreuer: Lars Grüne. Dornbirn, 12. März 2015 Betreuer: Lars Grüne Universität Bayreuth Dornbirn, 12. März 2015 Motivation Hedging im diskretisierten Black-Scholes-Modell: Portfolio (solid), Bank (dashed) 110 120 130 140 150 160 170 Portfolio (solid),

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Trends in der risiko- und wertorientierten Steuerung des Versicherungsunternehmens

Trends in der risiko- und wertorientierten Steuerung des Versicherungsunternehmens Trends in der risiko- und wertorientierten Steuerung des Versicherungsunternehmens Inhalt Einleitung Finanzwirtschaftliche Führung von Versicherungsunternehmen Fair Value Prinzip IAS als Accounting Standard

Mehr

Monte Carlo Simulation (Grundlagen)

Monte Carlo Simulation (Grundlagen) Der Titel des vorliegenden Beitrages wird bei den meisten Lesern vermutlich Assoziationen mit Roulette oder Black Jack hervorrufen. Allerdings haben das heutige Thema und die Spieltische nur den Namen

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Finanzinnovationen und Systemrisiken

Finanzinnovationen und Systemrisiken Finanzinnovationen und Systemrisiken Prof. Dr. Marc Chesney Universität Zürich 06.05.2015 Inhalt 1. Einführung 2. Finanzinnovationen und ihre Rechtfertigungen 3. Verwendung von Finanzinnovationen und ihre

Mehr

Commercial Banking. Kreditportfoliosteuerung

Commercial Banking. Kreditportfoliosteuerung Commercial Banking Kreditportfoliosteuerung Dimensionen des Portfoliorisikos Risikomessung: Was ist Kreditrisiko? Marking to Market Veränderungen des Kreditportfolios: - Rating-Veränderung bzw. Spreadveränderung

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

MA Projekt: Langfristige Kapitalmarktsimulation

MA Projekt: Langfristige Kapitalmarktsimulation MA Projekt: Langfristige Kapitalmarktsimulation Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring

Mehr

Zwei Ziegen und ein Auto

Zwei Ziegen und ein Auto Prof. Dr. Ludwig Paditz 29.10.2002 Zwei Ziegen und ein Auto In der amerikanischen Spielshow "Let`s make a deal" ist als Hauptpreis ein Auto ausgesetzt. Hierzu sind auf der Bühne drei verschlossene Türen

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 8. Zufallszahlen Generatoren Anwendungen UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 8 Zufallszahlen Generatoren Anwendungen Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger Straße 69, A-4040

Mehr

Bewertung von Optionen auf CO2- Zertifikate mittels des Verfahrens von Black-Scholes

Bewertung von Optionen auf CO2- Zertifikate mittels des Verfahrens von Black-Scholes www.markedskraft.com Bewertung von Optionen auf CO2- Zertifikate mittels des Verfahrens von Black-Scholes Diplomarbeit von Florian Frank Arendal Postboks 62 NO-4801 Arendal Norway Tel +47 37 00 97 00 Fax

Mehr

Portfolioselektionstheorie grafisch und intuitiv mit GeoGebra

Portfolioselektionstheorie grafisch und intuitiv mit GeoGebra Portfolioselektionstheorie grafisch und intuitiv mit GeoGebra LUCIA DEL CHICCA, MARKUS HOHENWARTER, LINZ In diesem Beitrag beschäftigen wir uns mit einem Optimierungsproblem aus der Finanzwelt: gegeben

Mehr

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.

Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam. Einführung in die Geostatistik (7) Fred Hattermann (Vorlesung), hattermann@pik-potsdam.de Michael Roers (Übung), roers@pik-potsdam.de 1 Gliederung 7 Weitere Krigingverfahren 7.1 Simple-Kriging 7.2 Indikator-Kriging

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca BIAGINI, München, Daniel ROST, München Money out of nothing? - Prinziien und Grundlagen der Finanzmathematik Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren

Mehr

Schriftliche Ausarbeitung zum Vortrag Monte-Carlo-Simulation

Schriftliche Ausarbeitung zum Vortrag Monte-Carlo-Simulation Schriftliche Ausarbeitung zum Vortrag Monte-Carlo-Simulation Universität Hamburg Fachbereich Informatik Johannes Schlundt 20. März 2013 Inhaltsverzeichnis 1 Motivation 2 2 Geschichte 2 3 Monte Carlo Simulation

Mehr

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10

Schulcurriculum des Faches Mathematik. für die Klassenstufen 5 10 Schulcurriculum des Faches Mathematik für die Klassenstufen 5 10 Mathematik - Klasse 5 Ganze Zahlen Potenzen und Zweiersystem /das unendlich Große in der Mathematik Messen und Rechnen mit Größen Messungen

Mehr

Spin-Modelle und Monte-Carlo Simulationen

Spin-Modelle und Monte-Carlo Simulationen Spin-Modelle und Monte-Carlo Simulationen Ralf Gamillscheg Technische Universität Graz 12. 1. 2006 Ralf Gamillscheg (TUG) Monte Carlo Simulationen 12. 1. 2006 1 / 22 Einleitung Spins uä. Statistische Physik

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker

Warteschlangen. Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Warteschlangen Vier Doppelstunden in der Carl-Bantzer-Schule Ziegenhain von Johannes Becker Inhaltsverzeichnis 1. Einleitung...1 2. Aufgaben...2 3. Simulation einer Warteschlange mit dem Würfel...2 4.

Mehr

Moritz Adelmeyer Elke Warmuth. Finanzmathematik für Einsteiger

Moritz Adelmeyer Elke Warmuth. Finanzmathematik für Einsteiger Moritz Adelmeyer Elke Warmuth Finanzmathematik für Einsteiger Aus dem Programm Mathematik für Einsteiger Algebra für Einsteiger von Jörg Bewersdorff Aigorithmik für Einsteiger von Armin P. Barth Diskrete

Mehr

Modellbildung und Simulation

Modellbildung und Simulation Modellbildung und Simulation 5. Vorlesung Wintersemester 2007/2008 Klaus Kasper Value at Risk (VaR) Glossar Portfolio: In der Ökonomie bezeichnet der Begriff Portfolio ein Bündel von Investitionen, das

Mehr

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...)

commodities (Waren/handelbare Rohstoffe, z.b. Edel- u. Industriemetalle, Agrar-Produkte,...) Seydel: Skript Numerische Finanzmathematik, Prolog (Version 2011) 1 ¼º ÈÖÓÐÓ µ Ö Ú Ø A. Übersicht Wesentliche Anlagemärkte sind Aktien Anleihen Rohstoffe equities, stocks bonds commodities (Waren/handelbare

Mehr

Monte Carlo Methoden

Monte Carlo Methoden Monte Carlo Methoden im Verstärkungslernen [Spink] Bryan Spink 2003 Ketill Gunnarsson [ ketill@inf.fu-berlin.de ], Seminar zum Verstärkungslernen, Freie Universität Berlin [ www.inf.fu-berlin.de ] Einleitung

Mehr

Finanz- und Versicherungsmathematik: Einblicke & Beispiele

Finanz- und Versicherungsmathematik: Einblicke & Beispiele Finanz- und Versicherungsmathematik: Einblicke & Beispiele Prof. Dr. Tom Fischer Professur für Stochastische Finanzmathematik Institut für Mathematik Universität Würzburg tom.fischer@uni-wuerzburg.de 22.

Mehr

Die Fortbildungsreihe STOCHASTIK kompakt

Die Fortbildungsreihe STOCHASTIK kompakt Die Fortbildungsreihe STOCHASTIK kompakt 4-teilige Fortbildung zum fachinhaltlichen Überblick der Stochastik, ihrer Methodik und Didaktik in der Sekundarstufe II Gemeinschaftsprojekt der DZLM-Abteilungen

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

Vom klassischen Spielerruinproblem zu Spiele- Strategien

Vom klassischen Spielerruinproblem zu Spiele- Strategien Vom klassischen Spielerruinproblem zu Spiele- Strategien Univ. Doz. Dr. Stefan Wegenkittl Fachhochschule Salzburg, Studiengang Telekommunikationstechnik und systeme Stefan.Wegenkittl@fh-sbg.ac.at Idee:

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung

Maximilian Gartner, Walther Unterleitner, Manfred Piok. Einstieg in die Wahrscheinlichkeitsrechnung Zufallsexperimente Den Zufall erforschen Maximilian Gartner, Walther Unterleitner, Manfred Piok Thema Stoffzusammenhang Klassenstufe Einstieg in die Wahrscheinlichkeitsrechnung Daten und Zufall 1. Biennium

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Dolga Olena Otto-von-Guericke-Universität Fakultät für Informatik Seminar-Das virtuelle Labor Inhaltsverzeichnis Überblick Geschichte Anwendung -Bereiche -Spezielle Methoden Mathematische

Mehr

Peter M. Schneider. Zum Stand der Entwicklung und Anwendung probabilistischer Software für f r die Interpretation von komplexen DNA-Mischspuren

Peter M. Schneider. Zum Stand der Entwicklung und Anwendung probabilistischer Software für f r die Interpretation von komplexen DNA-Mischspuren Zum Stand der Entwicklung und Anwendung probabilistischer Software für f r die Interpretation von komplexen DNA-Mischspuren Peter M. Schneider 35. Spurenworkshop Complex Mixtures Komplexe Mischungen Mixture

Mehr

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA

Monte-Carlo- Simulation. Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Monte-Carlo- Simulation Seminar zur Vorlesung Teilchendetektoren und Experiment an ELSA Übersicht Einleitung Simulation mit Geant4 generierte Daten Zusammenfassung 2 Simulation Mathematische Modellierung

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

3 Monte-Carlo-Simulationen

3 Monte-Carlo-Simulationen 3 Monte-Carlo-Simulationen In diesem Kapitel soll mit der so genannten Monte-Carlo-Methode ein wichtiges Anwendungsgebiet des in Kapitel 2 erarbeiteten Begriffs- und Methodenapparats detaillierter beleuchtet

Mehr

Schulinternes Curriculum Klasse 7

Schulinternes Curriculum Klasse 7 Schulinternes Curriculum Klasse 7 Inhaltsbezogene Kompetenzen Prozessbezogene Kompetenzen Methodische Vorgaben/ Lambacher Schweizer Zeitdauer (in Wochen) Arithmetik/Algebra mit Zahlen und Symbolen umgehen

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 16 Crash Course Optionen: Pricing & Hedging in diskreter Zeit Literatur Kapitel 16 * Uszczapowski: Kapitel 2, 3, 6 * Pliska: Kapitel 1.4 * Lamberton & Lapeyre:

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY

Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Diplom BWL/VWL / B-BAE / B-SW / LA RS / LA GY Prüfungsfach/Modul: Allgemeine Volkswirtschaftslehre Wirtschaftstheorie Wahlmodul Klausur: Institutionenökonomik (Klausur 60 Min) (200101, 201309, 211301)

Mehr

Roulette und Zahlenlotto 18

Roulette und Zahlenlotto 18 1 7 Miniroulette mit 9 Zahlen Spielregeln Bei Gewinn wird der Wetteinsatz verdoppelt, wenn auf «gerade», «ungerade», «rot» oder «schwarz» gesetzt wurde. vervierfacht, wenn auf (1, 2), (3, 4), (5, 6) oder

Mehr

Lichtbrechung an Linsen

Lichtbrechung an Linsen Sammellinsen Lichtbrechung an Linsen Fällt ein paralleles Lichtbündel auf eine Sammellinse, so werden die Lichtstrahlen so gebrochen, dass sie durch einen Brennpunkt der Linse verlaufen. Der Abstand zwischen

Mehr

Börsen- und Anlage-Workshop. Modul 2: Anlagewissen - Grundlagen

Börsen- und Anlage-Workshop. Modul 2: Anlagewissen - Grundlagen Börsen- und Anlage-Workshop Modul 2: Anlagewissen - Grundlagen Modul 2 Anlagewissen - Grundlagen Inhalt: Anlagegrundsätze Das Magische Dreieck der Geldanlage Anlagepyramide Finanzmärkte und Zinsen Fit

Mehr

Mit welcher Strategie hast Du am Glücksrad Erfolg?

Mit welcher Strategie hast Du am Glücksrad Erfolg? Mit welcher Strategie hast Du am Glücksrad Erfolg? Kinderuni, Workshop an der TU Wien 24. Juli 2009, 10:30 11:30 Uhr Univ.-Prof. Dr. Uwe Schmock Forschungsgruppe Finanz- und Versicherungsmathematik Institut

Mehr

Mathematiker in Banken

Mathematiker in Banken Mathematiker in Banken Matthias Tillmann Universität Münster 20.01.2008 Matthias Tillmann (WWU) Mathematiker in Banken 20.01.2008 1 / 23 Gliederung 1 Gliederung 2 Übersicht: Geschäftsbereiche der Dt. Bank

Mehr

Simulation mit modernen Tools - runde und spitze Berechnung von π -

Simulation mit modernen Tools - runde und spitze Berechnung von π - Simulation mit modernen Tools - runde und spitze Berechnung von π - Prof. Dr. rer. nat. Stefan Ritter Fakultät EIT 7. April 01 Gliederung 1. Wozu Simulation?. Moderne Tools zur Simulation 1. Maple, Geogebra

Mehr

Als Mathematiker im Kreditrisikocontrolling

Als Mathematiker im Kreditrisikocontrolling Kevin Jakob / Credit Portfolio Risk Measurement & Methodology, BayernLB Als Mathematiker im Kreditrisikocontrolling 4. Mai 2015, Augsburg Gliederung 1. Persönlicher Werdegang / BayernLB 2. Themengebiete

Mehr

Monte-CarloSimulation

Monte-CarloSimulation Die Monte-CarloSimulation Ein Vortrag von Laureen Schareina Mathematisches Institut Universität zu Köln 26.06.2015 Inhaltsangabe Allgemeines 3 Geschichte 5 Funktionsweise 6 Eigenschaften der MCS 7 Monte-Carlo-Schätzer

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Simulationsverfahren. Schwerpunkt: Monte Carlo Simulation

Simulationsverfahren. Schwerpunkt: Monte Carlo Simulation Simulationsverfahren Schwerpunkt: Monte Carlo Simulation Agenda 1. Was ist eine Simulation? 2. Verschiedene Arten von Simulation 3. Einsatzgebiete von Simulationen 4. Geschichte der MC Simulation 5. Warum

Mehr

Money out of nothing? Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? Prinziien Grlagen der Finanzmathematik Francesca Biagini Daniel Rost Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren einen gewaltigen Aufschwung

Mehr

Abitur 2013 Mathematik GK Stochastik Aufgabe C1

Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Seite 1 Abiturloesung.de - Abituraufgaben Abitur 2013 Mathematik GK Stochastik Aufgabe C1 Wissenschaftler der israelischen Ben-Gurion-Universität sind der Frage nachgegangen, ob die Attraktivität eines

Mehr

Die Kunst des erfolgreichen Tradens

Die Kunst des erfolgreichen Tradens Birger Schäfermeier Die Kunst des erfolgreichen Tradens So werden Sie zum Master-Trader Inhalt Inhalt Danksagung 10 Vorwort 11 1: Was ein Trader wirklich will und wie er es erreicht 17 Finden Sie heraus,

Mehr

Hedging mit Monte Carlo Algorithmen

Hedging mit Monte Carlo Algorithmen Hedging mit Monte Carlo Algorithmen Diplomarbeit von Thomas Höllbacher Fakultät für Mathematik, Physik und Informatik Mathematisches Institut Datum: 30. Oktober 2011 Aufgabenstellung und Betreuung: Prof.

Mehr

Meine. Lernziele. für das. 4. Schuljahr

Meine. Lernziele. für das. 4. Schuljahr Meine Lernziele für das 4. Schuljahr Was ich alles kann! Name, Klasse & Datum: Mathematik Ich kann die Zahlen bis 1 000 000 vergleichen und runden. Ich rechne schnell und sicher im Kopf. Ich kann schriftlich

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

FC1 - Monte Carlo Simulationen

FC1 - Monte Carlo Simulationen FC1 - Monte Carlo Simulationen 16. Oktober 2007 Universität Paderborn - Theoretische Physik Autor: Simone Sanna, Stephan Blankenburg Datum: 16. Oktober 2007 FC1 - Monte Carlo Simulationen 3 1 Das Monte

Mehr

Peer Review als aktivierende Lernmethode in der universitären Lehre

Peer Review als aktivierende Lernmethode in der universitären Lehre Peer Review als aktivierende Lernmethode in der universitären Lehre 1. Background 2. Cross Teaching Szenario 3. PeerReview als Methode 4. Lernsettings 5. Das PeerReview Modul in Moodle 6. Diskussion der

Mehr

Schülervorstellungen zum Sehen und Möglichkeiten ihrer Erhebung Stand: 12.10.2015

Schülervorstellungen zum Sehen und Möglichkeiten ihrer Erhebung Stand: 12.10.2015 Schülervorstellungen zum Sehen und Möglichkeiten ihrer Erhebung Stand: 12.10.2015 Fakultativ kann vor Durchführung der Unterrichtseinheiten eine Erhebung zu den Schülervorstellungen zum Sehvorgang stattfinden,

Mehr

Entwicklungspotenzial für optoelektronische Verfahren im ortsspezifischen InputManagement. Prof.Dr. Bernd Dohmen, Ulrich Wagner

Entwicklungspotenzial für optoelektronische Verfahren im ortsspezifischen InputManagement. Prof.Dr. Bernd Dohmen, Ulrich Wagner Entwicklungspotenzial für optoelektronische Verfahren im ortsspezifischen InputManagement Prof.Dr. Bernd Dohmen, Ulrich Wagner Auf was die Bauern verzichten, wenn Sie Nährstoffmangel nicht beseitigen Gehaltsklasse

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Konzept einer internetgestützten einjährigen Lehrerfortbildung (IgeL) Daten, Häufigkeit und Wahrscheinlichkeit für Grundschullehrkräfte

Konzept einer internetgestützten einjährigen Lehrerfortbildung (IgeL) Daten, Häufigkeit und Wahrscheinlichkeit für Grundschullehrkräfte Universität Rostock Institut für Mathematik Prof. Dr. Hans-Dieter Sill Grit Kurtzmann Konzept einer internetgestützten einjährigen Lehrerfortbildung (IgeL) Daten, Häufigkeit und Wahrscheinlichkeit für

Mehr

Computational Finance

Computational Finance Computational Finance Kapitel 2.1: Einführung in die Simulation Prof. Dr. Thorsten Poddig Lehrstuhl für Allgemeine Betriebswirtschaftslehre, insbes. Finanzwirtschaft Universität Bremen Hochschulring 4

Mehr

Analytische Methoden und die Black-Scholes Modelle

Analytische Methoden und die Black-Scholes Modelle Analytische Methoden und die Black-Scholes Modelle Diplomverteidigung Universität Rostock Institut für Mathematik 20.01.2011 Agenda 1 Das Ornstein-Uhlenbeck Volatilitätsmodell 2 in L 2 (R 2 ) 3 4 Problem

Mehr

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100.

Informatik Aufgaben. 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. Informatik Aufgaben 1. Erstelle ein Programm zur Berechnung der Summe der Zahlen von 1 bis n, z.b. n = 100. 2. Erstelle ein Programm, das die ersten 20 (z.b.) ungeraden Zahlen 1, 3, 5,... ausgibt und deren

Mehr

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975)

Faktorisierung ganzer Zahlen mittels Pollards ρ-methode (1975) Dass das Problem, die Primzahlen von den zusammengesetzten zu unterscheiden und letztere in ihre Primfaktoren zu zerlegen zu den wichtigsten und nützlichsten der ganzen Arithmetik gehört und den Fleiss

Mehr

Bewertung der Optionen und Garantien von Lebensversicherungspolicen

Bewertung der Optionen und Garantien von Lebensversicherungspolicen Bewertung der Optionen und Garantien von Lebensversicherungspolicen Optionen und Garantien spielen auf dem deutschen Lebensversicherungsmarkt eine große Rolle. Sie steigern die Attraktivität der Policen

Mehr

Klausur zur Vorlesung Financial Engineering und Structured Finance

Klausur zur Vorlesung Financial Engineering und Structured Finance Universität Augsburg Wirtschaftswissenschaftliche Fakultät Lehrstuhl für Finanz und Bankwirtschaft Klausur zur Vorlesung Financial Engineering und Structured Finance Prof. Dr. Marco Wilkens 6. Februar

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Die Monte-Carlo-Methode für Amerikanische Optionen

Die Monte-Carlo-Methode für Amerikanische Optionen Fakultät für Mathematik, Physik und Informatik Mathematisches Institut Die Monte-Carlo-Methode für Amerikanische Optionen Bachelorarbeit von Christian Weber Aufgabenstellung und Betreuung: Prof. Dr. Lars

Mehr

Einsatz Risikobewertung, Entscheidungsfindung und Simulation

Einsatz Risikobewertung, Entscheidungsfindung und Simulation Einsatz von @Risk: Risikobewertung, Entscheidungsfindung und Simulation Case Study Insolvenzwahrscheinlichkeit eines Unternehmens Risikoregister 1 Case Study: Insolvenzwahrscheinlichkeit eines Unternehmens

Mehr

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten

Kugel-Fächer-Modell. 1fach. 3fach. Für die Einzelkugel gibt es 3 Möglichkeiten. 6fach. 3! Möglichkeiten Kugel-Fächer-Modell n Kugeln (Rosinen) sollen auf m Fächer (Brötchen) verteilt werden, zunächst 3 Kugeln auf 3 Fächer. 1fach 3fach Für die Einzelkugel gibt es 3 Möglichkeiten } 6fach 3! Möglichkeiten Es

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007

R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 R. Brinkmann http://brinkmann-du.de Seite 1 30.11.2013 Schriftliche Übung Mathematik Stochastik II (Nachschreiber) Jan. 2007 SG15/25D NAME: Lösungen 1. In einer Packung sind Glühbirnen, davon sind zwei

Mehr

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09

Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS 09 Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber Klausur zur Vorlesung Stochastische Modelle in Produktion und Logistik im SS

Mehr