Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin

Größe: px
Ab Seite anzeigen:

Download "Mathematik des Hybriden Monte-Carlo. Marcus Weber. Zuse Institute Berlin"

Transkript

1 Mathematik des Hybriden Monte-Carlo Marcus Weber Zuse Institute Berlin

2 Statistische Thermodynamik Ziel: Am Computer ein Ensemble samplen. Messung im Gleichgewicht (zeitunabhängige Verteilung π der Systemzustände x Γ): <A>= A(x) π(x) dx Γ Name Erhaltungsgrößen Bemerkung kanonisches Ensemble N, V, T mikrokanonisches Ensemble N, V, E isolierte Systeme großes kanonisches Ensemble µ, V, T chem. Reaktionen 2

3 Statistische Thermodynamik Zustand x = (Impulse p, Ortskoordinaten q) Motor für die Dynamik: Temperaturbad, Kinetische Energie K(p), p IR 3N, p = Mv Verlauf der Dynamik: Quantenchemische Effekte, Potenzielle Energie V (q), q IR 3N, q = Koordinaten der Atome 3

4 Boltzmann-Verteilung Boltzmann-Verteilung = Wahrscheinlichkeitsdichte der Molekülzustände Gesamtenergie H(p, q) = K(p) + V (q). π(x) = π(p, q) exp( 1 H(p, q)) kt 4

5 Boltzmann-Verteilung Boltzmann-Verteilung = Wahrscheinlichkeitsdichte der Molekülzustände Gesamtenergie H(p, q) = K(p) + V (q). π(x) = π(p, q) = exp( 1 kt H(p, q)) IR exp( 1 6N kt H(p, q)) dp dq 5

6 Boltzmann-Verteilung Boltzmann-Verteilung = Wahrscheinlichkeitsdichte der Molekülzustände Gesamtenergie H(p, q) = K(p) + V (q). π(x) = π(p, q) = exp( 1 kt H(p, q)) Z Zustandssumme ist nicht analytisch berechenbar! 6

7 Computerexperiment Nähere den Integralausdruck <A>= durch eine Summe Γ <A> 1 Γ Auch möglich: geschicktes Sampling A(X) π(x) dx, x i Γ A(x i )π(x i ). <A> 1 n n A(x i ), x i π(x i ). i=1 7

8 Separation Seperation der Boltzmann-Verteilung aus H(p, q) = K(p) + V (q): 1 Z exp( β H(p, q)) = 1 1 exp( β K(p)) exp( β V (q)) Z p Z q in einen analytisch berechenbaren und einen komplizierten Anteil (wegen Z q ). Sampling kann man getrennt für Geometrie und Impulse durchführen π(p, q) = π p (p) π q (q) p i π p (p i ), q i π q (q i ) 8

9 Monte Carlo Simulation Idee: Erzeugung des Ensembles als sukzessiver Prozess (Markov Kette). q 1 q 2 q 3 q N Ausdenken von, so dass die Verteilung π q stimmt, insbesondere ergodisch. Wichtige Information: System befindet sich in einem thermodynamischen Gleichgewicht, d.h. es verlassen im Mittel genausoviele Moleküle die Geometrie q, wie Moleküle in diese Geometrie übergehen. Genauer, es gilt detailed balance: π q (q) P (q q) = π q ( q) P ( q q) 9

10 Monte Carlo Simulation π q (q) P (q q) = π q ( q) P ( q q) 10

11 Monte Carlo Simulation π q(q) π q(eq) { }} { { }} { 1 1 exp( β V (q)) P (q q) = exp( β V ( q)) P ( q q) Z q Z q 11

12 Monte Carlo Simulation 1 Z q exp( β V (q)) P (q q) = 1 Z q exp( β V ( q)) P ( q q) 12

13 Monte Carlo Simulation 1 Z q exp( β V (q)) P (q q) = 1 Z q exp( β V ( q)) P ( q q) 13

14 Monte Carlo Simulation exp( β V (q)) P (q q) = exp( β V ( q)) P ( q q) 14

15 Monte Carlo Simulation P (q q) = exp( β [V ( q) V (q)]) P ( q q) 15

16 Monte Carlo Simulation q 1 q 2 q 3 q N Alle mit der folgenden Eigenschaft führen zum Ziel: P (q q) = exp( β V ). P ( q q) Dieses Resultat merken wir uns. Wir werden es noch häufiger verwenden. 16

17 Metropolis Monte Carlo Simulation in zwei Schritten: 1. Generiere nach einem Vorschlag -Verfahren eine neue Molekülgeometrie q aus q. Vorschlagwahrscheinlichkeit P v symmetrisch wählen. 2. Akzeptiere den Vorschlag q mit einer Wahrscheinlichkeit P a. Akzeptiere die alte Geometrie q mit der Wahrscheinlichkeit 1 P a. P (q q) = P v (q q) P a (q q) 17

18 Metropolis Monte Carlo Simulation P (q q) = exp( β V ) P ( q q) 18

19 Metropolis Monte Carlo Simulation P v (q q) P a (q q) = exp( β V ) P v ( q q) P a ( q q) 19

20 Metropolis Monte Carlo Simulation P v (q q) P a (q q) = exp( β V ) P v ( q q) P a ( q q) Metropolis: Konstruiere Vorschlag-Verfahren symmetrisch, d.h. Beispiel? P v (q q) = P v ( q q). 20

21 Metropolis Monte Carlo Simulation P a (q q) = exp( β V ) P a ( q q) 21

22 Metropolis Monte Carlo Simulation P a (q q) = exp( β V ) P a ( q q) z.b. P a (q q) = { exp( β V ), V (q) < V ( q) 1, sonst 22

23 Aufgaben Ist folgendes ein mögliches Vorschlag-Verfahren? Nimm Geometrie q mit geringerer potenzieller Energie V (q) > V ( q). Vorteil: Dann wird immer akzeptiert. Ist folgendes ein mögliches Vorschlag-Verfahren? Nimm (gleichverteilt) irgendeine beliebige Geometrie q unabhängig von q. Durch die Art des Akzeptanzschrittes nimmt die potenzielle Energie der Geometrien V (q i ) im Laufe des Samplings tendenziell immer weiter ab. Richtig? Wieviele Geometrien muss man samplen? 1mol = Teilchen? 23

24 Hybrid Monte Carlo Simulation in zwei Schritten: 1. Generiere mit einer gemäß π p (p) verteilten Wahrscheinlichkeit einen Startimpuls p. Erhalte die vorgeschlagene Molekülgeometrie q aus q durch eine kurze MD-Simulation mit Startzustand (p, q). 2. Akzeptiere den Vorschlag q mit einer Wahrscheinlichkeit P a. Akzeptiere die alte Geometrie q mit der Wahrscheinlichkeit 1 P a. P (q q) = P v (q q) P a (q q) 24

25 Exkurs: Moleküldynamik Simulation Moleküle befinden sich in Bewegung. Zeitliche Änderung von Geometrie und Impulsen ist durch eine Diffrenzialgleichung gegeben: q = Geschwindigkeit v v = Beschleunigung a In diese Gleichung physikalische Überlegungen einsetzen, nämlich: p = M v Ma = F = grad V (q) (Definition des Impulses) (Newtonsches Gesetz) 25

26 Exkurs: Moleküldynamik Simulation Moleküle befinden sich in Bewegung. Zeitliche Änderung von Geometrie und Impulsen ist durch eine Differenzialgleichung gegeben: q = M 1 p ṗ = grad V (q) 26

27 Exkurs: Moleküldynamik Simulation Moleküle befinden sich in Bewegung. Zeitliche Änderung von Geometrie und Impulsen ist durch eine Differenzialgleichung gegeben: Eigenschaften dieser Gleichung: q = M 1 p ṗ = grad V (q) reversibel (bei Impulsumkehr läuft die Bewegung rückwärts ), energieerhaltend H(p, q) = const, Gesamt- und Drehimpuls erhaltend... Das sind auch zufällig die Eigenschaften der Natur! 27

28 Exkurs: Moleküldynamik Simulation Die Lösung einer Differenzialgleichung nennt man Integration. Ein nummerisches Verfahren, das eine Näherungslösung bestimmt Integrator. Fehler kommen dadurch zustande, dass man die Zeit diskretisieren muss (also den Zeitfluss in kurze Zeitsprünge der Länge τ zerlegt). Beispiel: q(t + τ) q(t) τ p(t + τ) p(t) τ q = M 1 p(t) ṗ = grad V (q(t)) 28

29 Exkurs: Moleküldynamik Simulation Obige Diskretisierung führt zu dem Euler-Integrator q(t + τ) τm 1 p(t) + q(t) p(t + τ) τ grad V (q(t)) + p(t) So eine Diskretisierung macht einiges kaputt: Euler ist nicht reversibel, nicht energieerhaltend, nicht Gesamt- und Drehimpuls erhaltend. 29

30 Exkurs: Moleküldynamik Simulation Ein anderer Integrator heißt Velocity Verlet : q(t + τ) τm 1 p(t) + q(t) τ 2 2 M 1 grad V (t) p(t + τ) grad V (q(t)) + grad V (q(t + τ)) τ + p(t) 2 Velocity Verlet (VV) rettet einige Eigenschaften: VV ist reversibel, VV ist symplektisch, insbesondere im Mittel energieerhaltend, VV ist Gesamt- und Drehimpuls erhaltend. 30

31 Aufgaben Beim Aufstellen der Bewegungsgleichung geht gar nicht die Temperatur ein. Warum? Beim Velocity Verlet steht beim Impulsupdate auf der rechten Seite ein Ausdruck, der von q(t + τ) abhängt. In welcher Reihenfolge führt man die Berechnungen auf dem Computer durch? Suchen Sie in der Literatur nach einem nummerischen Integrator, der alle Eigenschaften der Differenzialgleichung erfüllt. Wurden Sie fündig? 31

32 Hybrid Monte Carlo Simulation in zwei Schritten: 1. Generiere mit einer gemäß π p (p) verteilten Wahrscheinlichkeit einen Startimpuls p. Erhalte die vorgeschlagene Molekülgeometrie q aus q durch eine kurze MD-Simulation mit Startzustand (p, q). 2. Akzeptiere den Vorschlag q mit einer Wahrscheinlichkeit P a. Akzeptiere die alte Geometrie q mit der Wahrscheinlichkeit 1 P a. P (q q) = P v (q q) P a (q q) 32

33 Hybrid Monte Carlo Simulation P (q q) = exp( β V ) P ( q q) 33

34 Hybrid Monte Carlo Simulation P v (q q) P a (q q) = exp( β V ) P v ( q q) P a ( q q) 34

35 Hybrid Monte Carlo Simulation P v (q q) P a (q q) = exp( β V ) P v ( q q) P a ( q q) Vorschlagswahrscheinlichkeit hängt von der Wahrscheinlichkeit ab, den richtigen Impuls zu wählen, da dieser eindeutig das dynamische Verhalten bestimmt: P v (q q) = P v (p) = π p (p). Dabei geht (p, q) in ( p, q) über. Für den umgekehrten Prozess, q q, müssen wir die Richtung des Impulses umkehren, denn ( p, q) geht über in ( p, q). Insgesamt: P v (q q) P v ( q q) = π p(p) π p ( p). 35

36 Hybrid Monte Carlo Simulation π p (p) P a (q q) = exp( β V ) π p ( p) P a ( q q) Metropolis Monte-Carlo: Vorschlagswahrscheinlichkeit symmetrisch. Hybrides Monte-Carlo: Vorschlagswahrscheinlichkeit reversibel. 36

37 Hybrid Monte Carlo Simulation P a (q q) πp( p) = exp( β V ) P a ( q q) π p (p) 37

38 Hybrid Monte Carlo Simulation P a (q q) = exp( β V ) P a ( q q) 1 Z p exp( β K( p)) 1 Z p exp( β K(p)) 38

39 Hybrid Monte Carlo Simulation P a (q q) = exp( β V ) P a ( q q) 1 Z p exp( β K( p)) 1 Z p exp( β K(p)) 39

40 Hybrid Monte Carlo Simulation P a (q q) = exp( β V ) P a ( q q) 1 Z p exp( β K( p)) 1 Z p exp( β K(p)) 40

41 Hybrid Monte Carlo Simulation P a (q q) exp( β K( p)) = exp( β V ) P a ( q q) exp( β K(p)) 41

42 Hybrid Monte Carlo Simulation P a (q q) = exp( β V ) exp( β K) P a ( q q) 42

43 Hybrid Monte Carlo Simulation P a (q q) = exp( β H) P a ( q q) 43

44 Hybrid Monte Carlo Simulation P a (q q) = exp( β H) P a ( q q) z.b. { exp( β H), H(p, q) < H( p, q) P a (q q) = 1, sonst 44

45 Aufgaben Warum wird im Hybrid Monte Carlo (HMC) mit symplektischem Inegrator fast jeder Vorschlag akzeptiert? Ist das Vorschlagverfahren trotz hoher Energiebarrieren zwischen den Konformationen eines Moleküles ergodisch? Bei Simulation auf niedriger Temperatur kann das HMC dem Metropolis Monte Carlo unterlegen sein. Warum? 45

Grundlagen der Monte Carlo Simulation

Grundlagen der Monte Carlo Simulation Grundlagen der Monte Carlo Simulation 10. Dezember 2003 Peter Hofmann Inhaltsverzeichnis 1 Monte Carlo Simulation.................... 2 1.1 Problemstellung.................... 2 1.2 Lösung durch Monte

Mehr

COMPUTERSIMULATIONEN. Ein Überblick

COMPUTERSIMULATIONEN. Ein Überblick COMPUTERSIMULATIONEN Ein Überblick Ziel: Vorhersage der makroskopischen Eigenschaften eines Systems. Geht das? Newton: Ja: F=m a gibt an, wie sich das System mit der Zeit entwickelt Laplace: Im Prinzip

Mehr

Hamilton-Formalismus

Hamilton-Formalismus KAPITEL IV Hamilton-Formalismus Einleitung! IV.1 Hamilton sche Bewegungsgleichungen IV.1.1 Kanonisch konjugierter Impuls Sei ein mechanisches System mit s Freiheitsgraden. Im Rahmen des in Kap. II eingeführten

Mehr

Monte Carlo Simulation

Monte Carlo Simulation Monte Carlo Simulation M. Alexander Thomas 1. Juni 26 Zusammenfassung Die Monte Carlo Methode ist ein in vielen Bereichen nicht mehr wegzudenkendes Hilfsmittel zur Berechung und Simulation wissenschaftlicher

Mehr

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt

Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 014 Inhaltsverzeichnis Inhaltsverzeichnis 1 Was sind Monte Carlo Simulationen? 3 Zufallszahlen 3

Mehr

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v )

e βεa = 1 β eα Z 1 (β,v ), über die allgemeine Beziehung e αn Z (kl) N (β,v ) Im Limes e α lautet das großkanonische Potential XII.29) Ωβ,,α)= ln ± e α βεa β β eα a a e βεa = β eα Z β, ), XII.62) mit Z β, ) der kanonischen Zustandssumme für ein Teilchen. Der ergleich mit der allgemeinen

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Erkenntnisse durch die Erschaffung einer virtuellen Welt Stefan Wunsch 31. Mai 2014 INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK (IEKP) KIT Universität des Landes Baden-Württemberg und

Mehr

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik

O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik W eierstraß-institut für Angew andte Analysis und Stochastik Robotik-Seminar O. Rott Starrkörperbewegungen, Singularitäten, die Jacobimatrix und Roboterdynamik Mohrenstr 39 10117 Berlin rott@wias-berlin.de

Mehr

Monte Carlo Simulationen

Monte Carlo Simulationen Monte Carlo Simulationen Zahlreiche Vorgänge in der Natur werden durch stochastische Prozesse bestimmt. Beispiele: Diffusion Spin-Spin-Wechselwirkung (Magnetisierung eines Ferromagneten, Ising-Modell)

Mehr

Die Theorie von NVT Gibbs Ensemble Monte Carlo Simulationen

Die Theorie von NVT Gibbs Ensemble Monte Carlo Simulationen Die Theorie von NVT Gibbs Ensemble Monte Carlo Simulationen Patrick S. Vogt Institut für Physikalische Chemie der Universität Basel Basel, 5. Oktober 1998 Inhaltsverzeichnis Verwendete Symbole...............................

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Monte-Carlo-Simulation

Monte-Carlo-Simulation Modellierung und Simulation Monte-Carlo-Simulation Universität Hamburg Johannes Schlundt 7. Januar 2013 Monte-Carlo-Simulation Johannes S. 1/31 Inhalt Motivation Geschichtliche Entwicklung Monte-Carlo-Simulation

Mehr

Kinetische Gastheorie

Kinetische Gastheorie Kinetische Gastheorie Mikroskopischer Zugang zur Wärmelehre ausgehend on Gesetzen aus der Mechanik. Ziel: Beschreibung eines Gases mit ielen wechselwirkenden Atomen. Beschreibung mit Mitteln der Mechanik:

Mehr

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW)

Physik 1 VNT Aufgabenblatt 8 5. Übung (50. KW) Physik 1 VNT Aufgabenblatt 8 5. Übung (5. KW) 5. Übung (5. KW) Aufgabe 1 (Achterbahn) Start v h 1 25 m h 2 2 m Ziel v 2? v 1 Welche Geschwindigkeit erreicht die Achterbahn in der Abbildung, wenn deren

Mehr

FC1 - Monte Carlo Simulationen

FC1 - Monte Carlo Simulationen FC1 - Monte Carlo Simulationen 16. Oktober 2007 Universität Paderborn - Theoretische Physik Autor: Simone Sanna, Stephan Blankenburg Datum: 16. Oktober 2007 FC1 - Monte Carlo Simulationen 3 1 Das Monte

Mehr

Physikalische Chemie IV Statistische Thermodynamik, SS2013

Physikalische Chemie IV Statistische Thermodynamik, SS2013 Physikalische Chemie IV Statistische Thermodynamik, SS013 Inhaltsverzeichnis mit Referenzen 1. Einführung 1.1 Vergleich makroskopische und mikroskopische Systeme: Beispiel: ideales Gas, Herleitung eines

Mehr

V5: Klassische statistische Mechanik thermodynamische Ensembles

V5: Klassische statistische Mechanik thermodynamische Ensembles V5: Klassische statistische Mechanik thermodynamische Ensembles Die statistische Mechanik behandelt Systeme mit vielen (im Grunde unendlich vielen) Freiheitsgraden. Diese sollen durch wenige Makrovariablen

Mehr

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt

8. Wärmelehre. 8.1 Temperaturskala 1 = 2. kinetische und potentielle Energie, die ein System bei Temperaturänderung aufnimmt oder abgibt 9 8. Wärmelehre 8. emperatursala Wärmeenergie: emperatur: inetische und potentielle Energie, die ein System bei emperaturänderung aunimmt oder abgibt Maß ür mittlere inetische Energie eines Systems (im

Mehr

Markov-Ketten-Monte-Carlo-Verfahren

Markov-Ketten-Monte-Carlo-Verfahren Markov-Ketten-Monte-Carlo-Verfahren Anton Klimovsky 21. Juli 2014 Strichprobenerzeugung aus einer Verteilung (das Samplen). Markov- Ketten-Monte-Carlo-Verfahren. Metropolis-Hastings-Algorithmus. Gibbs-Sampler.

Mehr

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren

Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Von den Grundlagen der Monte-Carlo-Methode zur Simulation von Teilchenreaktionen und Teilchendetektoren Michael Unrau HS WS 08/09 14 November 2008 HS 08/09 Monte-Carlo Methoden 14 November 2008 1 / 24

Mehr

Werkstatt Euler und die Lösung der quadratischen Gleichung

Werkstatt Euler und die Lösung der quadratischen Gleichung Werkstatt Leonhard Euler und die Lösung der quadratischen Gleichungen Im Jahr 1767 hat der Mathematiker Leonhard Euler (1707 1783) das Buch Vollständige Anleitung zu Algebra im russischen Original veröffentlicht,

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Sehr häufig hängen wichtige Ergebnisse von unbekannten Werten wesentlich ab, für die man allerhöchstens statistische Daten hat oder für die man ein Modell der Wahrscheinlichkeitsrechnung

Mehr

10. und 11. Vorlesung Sommersemester

10. und 11. Vorlesung Sommersemester 10. und 11. Vorlesung Sommersemester 1 Die Legendre-Transformation 1.1 Noch einmal mit mehr Details Diese Ableitung wirkt einfach, ist aber in dieser Form sicher nicht so leicht verständlich. Deswegen

Mehr

Statistische Thermodynamik I Lösungen zur Serie 1

Statistische Thermodynamik I Lösungen zur Serie 1 Statistische Thermodynamik I Lösungen zur Serie Zufallsvariablen, Wahrscheinlichkeitsverteilungen 4. März 2. Zwei Lektoren lesen ein Buch. Lektor A findet 2 Druckfehler, Lektor B nur 5. Von den gefundenen

Mehr

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u.

u + v = v + u. u + (v + w) = (u + v) + w. 0 V + v = v + 0 V = v v + u = u + v = 0 V. t (u + v) = t u + t v, (t + s) u = t u + s u. Universität Stuttgart Fachbereich Mathematik Prof. Dr. C. Hesse PD Dr. P. H. Lesky Dipl. Math. D. Zimmermann Msc. J. Köllner FAQ 3 Höhere Mathematik I 4..03 el, kyb, mecha, phys Vektorräume Vektorräume

Mehr

Chemie Zusammenfassung KA 2

Chemie Zusammenfassung KA 2 Chemie Zusammenfassung KA 2 Wärmemenge Q bei einer Reaktion Chemische Reaktionen haben eine Gemeinsamkeit: Bei der Reaktion wird entweder Energie/Wärme frei (exotherm). Oder es wird Wärme/Energie aufgenommen

Mehr

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs

Arbeit und Leistung. 2mgs/2 = mgs. m g. m g. mgs = const. m g. 2m g. .. nmgs/n = mgs Arbeit und Leistung s s m g m g mgs = mgs s/2 mgs = const. s 2m g m g 2mgs/2 = mgs.. nmgs/n = mgs Arbeit und Leistung Arbeit ist Kraft mal Weg Gotthardstraße Treppe und Lift Feder Bergsteiger/Wanderer

Mehr

8. Übung zur Vorlesung Mathematisches Modellieren Lösung

8. Übung zur Vorlesung Mathematisches Modellieren Lösung Universität Duisburg-Essen Essen, den.6. Fakultät für Mathematik S. Bauer C. Hubacsek C. Thiel 8. Übung zur Vorlesung Mathematisches Modellieren Lösung In dieser Übung sollen in Aufgabe und die qualitativ

Mehr

Monte Carlo Simulation des 2-D Ising Modells

Monte Carlo Simulation des 2-D Ising Modells Monte Carlo Simulation des -D Ising Modells Seminararbeit am Institut für theoretische Physik an der TU Braunschweig Von Thomas Schart WS 004/05 1 Inhaltsverzeichnis: 1. Einleitung...3. Das Ising Modell...6

Mehr

Monte Carlo Simulation des Ising Modells. Lukas Brunner

Monte Carlo Simulation des Ising Modells. Lukas Brunner Lukas Brunner 1 Problemstellung und Vorgangsweise Das nach Ernst Ising benannte Ising Modell beschreibt den Ferromagnetismus in Festkörpern. Es wird angenommen, dass die Spins, welche das magnetische Moment

Mehr

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung

Kräfte zwischen Teilchen (Atomen) eines Gases und deren Idealisierung kinetische Gastheorie Zurückführung der makroskopischen Zusammenhänge: p(v,t) auf mikroskopische Ursachen. Atomistische Natur der Gase lange umstritten, Akzeptanz Ende 19. Jahrh., Boltzmann. Modell des

Mehr

1.3 Ein paar Standardaufgaben

1.3 Ein paar Standardaufgaben 1.3 Ein paar Standardaufgaben 15 1.3 Ein paar Standardaufgaben Einerseits betrachten wir eine formale und weitgehend abgeschlossene mathematische Theorie. Sie bildet einen Rahmen, in dem man angewandte

Mehr

2.1 Importance sampling: Metropolis-Algorithmus

2.1 Importance sampling: Metropolis-Algorithmus Kapitel 2 Simulationstechniken 2.1 Importance sampling: Metropolis-Algorithmus Eine zentrale Fragestellung in der statistischen Physik ist die Bestimmung von Erwartungswerten einer Observablen O in einem

Mehr

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig)

Ideale und Reale Gase. Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Ideale und Reale Gase Was ist ein ideales Gas? einatomige Moleküle mit keinerlei gegenseitiger WW keinem Eigenvolumen (punktförmig) Wann sind reale Gase ideal? Reale Gase verhalten sich wie ideale Gase

Mehr

W-Rechnung und Statistik für Ingenieure Übung 11

W-Rechnung und Statistik für Ingenieure Übung 11 W-Rechnung und Statistik für Ingenieure Übung 11 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) Mathematikgebäude Raum 715 Christoph Kustosz (kustosz@statistik.tu-dortmund.de) W-Rechnung und Statistik

Mehr

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy

Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Übung zur Vorlesung Physikalische Chemie im Studiengang 3. FS KB Ch und 3. FS BB Phy Dr. Raimund Horn a Dipl. Chem. Barbara Bliss b Dipl. Phys. Lars Lasogga c a Fritz Haber Institut der Max Planck Gesellschaft

Mehr

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen)

grundsätzlich Mittel über große Zahl von Teilchen thermisches Gleichgewicht (Verteilungsfunktionen) 10. Wärmelehre Temperatur aus mikroskopischer Theorie: = 3/2 kt = ½ m = 0 T = 0 quantitative Messung von T nutzbares Maß? grundsätzlich Mittel über große Zahl von Teilchen thermisches

Mehr

7 Rechnen mit Polynomen

7 Rechnen mit Polynomen 7 Rechnen mit Polynomen Zu Polynomfunktionen Satz. Zwei Polynomfunktionen und f : R R, x a n x n + a n 1 x n 1 + a 1 x + a 0 g : R R, x b n x n + b n 1 x n 1 + b 1 x + b 0 sind genau dann gleich, wenn

Mehr

Monte Carlo Methoden in Kreditrisiko-Management

Monte Carlo Methoden in Kreditrisiko-Management Monte Carlo Methoden in Kreditrisiko-Management P Kreditportfolio bestehend aus m Krediten; Verlustfunktion L = n i=1 L i; Die Verluste L i sind unabhängig bedingt durch einen Vektor Z von ökonomischen

Mehr

Spin-Modelle und Monte-Carlo Simulationen

Spin-Modelle und Monte-Carlo Simulationen Spin-Modelle und Monte-Carlo Simulationen Ralf Gamillscheg Technische Universität Graz 12. 1. 2006 Ralf Gamillscheg (TUG) Monte Carlo Simulationen 12. 1. 2006 1 / 22 Einleitung Spins uä. Statistische Physik

Mehr

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik

Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Fraunhofer ITWM Kaiserslautern, 4..009 Moderne Monte Carlo Methoden für Anwendungen in Finanz- und Versicherungsmathematik Ralf Korn (TU Kaiserslautern & Fraunhofer ITWM) 0. Einige praktische Probleme

Mehr

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2008 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe Für jedes t f t () + t R ist die Funktion f t gegeben durch = mit R. Das Schaubild von f t heißt K t.. (6 Punkte)

Mehr

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen

Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Die Monte-Carlo-Methode mit Pseudo- und Quasi-Zufallszahlen Marco A. Harrendorf Hauptseminar Methoden der experimentellen Teilchenphysik WS 2011/2012 Karlsruhe Institut für Technologie (KIT) 25.11.2011

Mehr

Vorlesung am 7. Juni 2010

Vorlesung am 7. Juni 2010 Materialwissenschaften, SS 2008 Ernst Bauer, Ch. Eisenmenger-Sittner und Josef Fidler 1.) Kristallstrukturen 2.) Strukturbestimmung 3.) Mehrstoffsysteme 4.) Makroskopische Eigenschaften von Festkörpern

Mehr

13.5 Der zentrale Grenzwertsatz

13.5 Der zentrale Grenzwertsatz 13.5 Der zentrale Grenzwertsatz Satz 56 (Der Zentrale Grenzwertsatz Es seien X 1,...,X n (n N unabhängige, identisch verteilte zufällige Variablen mit µ := EX i ; σ 2 := VarX i. Wir definieren für alle

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale

300 Arbeit, Energie und Potential 310 Arbeit und Leistung 320 Felder und Potentiale 300 Arbeit, Energie und Potential 30 Arbeit und Leistung 30 Felder und Potentiale um was geht es? Arten on (mechanischer) Energie Potentialbegriff Beschreibung on Systemen mittels Energie 3 potentielle

Mehr

Kap. 8: Speziell gewählte Kurven

Kap. 8: Speziell gewählte Kurven Stefan Lucks 8: Spezielle Kurven 82 Verschl. mit Elliptischen Kurven Kap. 8: Speziell gewählte Kurven Zur Erinnerung: Für beliebige El. Kurven kann man den Algorithmus von Schoof benutzen, um die Anzahl

Mehr

Statistics, Data Analysis, and Simulation SS 2015

Statistics, Data Analysis, and Simulation SS 2015 Mainz, May 12, 2015 Statistics, Data Analysis, and Simulation SS 2015 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Dr. Michael O. Distler

Mehr

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik

6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1 6. Tag: Chemisches Gleichgewicht und Reaktionskinetik 1. Das chemische Gleichgewicht Eine chemische Reaktion läuft in beiden Richtungen ab. Wenn

Mehr

Moleküldynamik und Docking

Moleküldynamik und Docking Moleküldynamik und Docking Wilhelm Huisinga (FU) und Frank Cordes (ZIB) Vorlesung Algorithmische Bioinformatik, WS 2002/03 27. Januar 2003 Das ist (klassische) Moleküldynamik amira@zib Fragen? Typische

Mehr

BONUS MALUS SYSTEME UND MARKOV KETTEN

BONUS MALUS SYSTEME UND MARKOV KETTEN Fakultät Mathematik und Naturwissenschaften, Fachrichtung Mathematik, Institut für Mathematische Stochastik BONUS MALUS SYSTEME UND MARKOV KETTEN Klaus D. Schmidt Ringvorlesung TU Dresden Fakultät MN,

Mehr

Physik für Mediziner und Zahmediziner

Physik für Mediziner und Zahmediziner Physik für Mediziner und Zahmediziner Vorlesung 03 Prof. F. Wörgötter (nach M. Seibt) -- Physik für Mediziner und Zahnmediziner 1 Arbeit: vorläufige Definition Definition der Arbeit (vorläufig): Wird auf

Mehr

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum

6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6 ALLGEMEINE THEORIE DES ELEKTROMAGNETISCHEN FELDES IM VAKUUM 25 Vorlesung 060503 6 Allgemeine Theorie des elektromagnetischen Feldes im Vakuum 6.1 Grundaufgabe der Elektrodynamik Gegeben: Ladungsdichte

Mehr

Inhaltsverzeichnis 12.01.2015. 1. Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik

Inhaltsverzeichnis 12.01.2015. 1. Grundbegriffe. 2. Einführung in die statistische Mechanik. 3. Normalmoden. 4. Molekulardynamik Inhaltsverzeichnis 1. Grundbegriffe 2. Einführung in die statistische Mechanik 3. ormalmoden 4. Molekulardynamik 5. Monte -Carlo Simulationen 6. Finite-Elemente Methode 1 Casino in Monte Carlo, Monaco

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr

Theorie der Wärme Musterlösung 11.

Theorie der Wärme Musterlösung 11. Theorie der Wärme Musterlösung. FS 05 Prof. Thomas Gehrmann Übung. Edelgas im Schwerefeld Berechne den Erwartungswert der Energie eines monoatomaren idealen Gases z. B. eines Edelgases in einem zylindrischen

Mehr

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1

Elektrochemische Kinetik. FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 Elektrochemische Kinetik FU Berlin Constanze Donner / Ludwig Pohlmann 2010 1 FU Berlin Constanze Donner / Ludwig Pohlmann 2010 2 Elektrochemische Kinetik Was war: Die NernstGleichung beschreibt das thermodynamische

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit

Formelsammlung. Physikalische Größen. physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Formelsammlung Physikalische Größen physikalische Größe = Wert Einheit Meßgröße = (Wert ± Fehler) Einheit Grundgrößen Zeit t s (Sekunde) Länge l m (Meter) Masse m kg (Kilogramm) elektrischer Strom I A

Mehr

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler

Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Coupon Collector's-Problem (Sammelbilderproblem) Name: Walter Wolf Matrikelnr.: 533440 Dozent: Dr. W. Kössler Problemstellung Als Sammelbilderproblem bezeichnet man die Frage, wie viele Produkte bzw. Bilder

Mehr

Projekt 2. Ising Modell: Monte Carlo Sampling auf dem Gitter, Phasenübergänge (Kurt Langfeld) 2.1 Das Ising Modell. 2.1.

Projekt 2. Ising Modell: Monte Carlo Sampling auf dem Gitter, Phasenübergänge (Kurt Langfeld) 2.1 Das Ising Modell. 2.1. Projekt 2 Ising Modell: Monte Carlo Sampling auf dem Gitter, Phasenübergänge (Kurt Langfeld) 2.1 Das Ising Modell 2.1.1 Allgemeines Das Ising Modell realisiert eine sehr vereinfachte Vorstellung von einem

Mehr

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider

Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider Klassische Feldtheorie 2 Mitschrift von Martin Bendschneider 1 Inhaltsverzeichnis 1 Hamilton Mechanik 3 1.1 Newton Mechanik.......................... 3 1.2 Lagrange............................... 3 1.3

Mehr

Bestimmung von Federkonstanten

Bestimmung von Federkonstanten D. Samm 2014 1 Bestimmung von Federkonstanten 1 Der Versuch im Überblick Ohne Zweifel! Stürzt man sich - festgezurrt wie bei einem Bungee-Sprung - in die Tiefe (Abb. 1), sind Kenntnisse über die Längenänderung

Mehr

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen

Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Optimierungsprobleme mit Nebenbedingungen - Einführung in die Theorie, Numerische Methoden und Anwendungen Dr. Abebe Geletu Ilmenau University of Technology Department of Simulation and Optimal Processes

Mehr

Elektrischen Phänomene an Zellmembranen

Elektrischen Phänomene an Zellmembranen Konzeptvorlesung 17/18 1. Jahr Block 1 Woche 4 Physikalische Grundlagen der Bioelektrizität Physik PD Dr. Hans Peter Beck Laboratorium für Hochenergiephysik der niversität Bern HPB11 1 Elektrischen Phänomene

Mehr

Grundlagen der Physik 2 Schwingungen und Wärmelehre

Grundlagen der Physik 2 Schwingungen und Wärmelehre Grundlagen der Physik 2 Schwingungen und Wärmelehre Othmar Marti othmar.marti@uni-ulm.de Institut für Experimentelle Physik 25. 06. 2007 Othmar Marti (Universität Ulm) Schwingungen und Wärmelehre 25. 06.

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung 5. Vorlesung Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung Seite 120 The Ranking Problem Eingabe: D: Dokumentkollektion Q: Anfrageraum

Mehr

Molekularfeldtheorie (MFT)

Molekularfeldtheorie (MFT) 29.06.2006 Motivation Anwendungen der MFT MFT-Herleitung mittels Variationsansatz und Anwendung Grenzen der Anwendung der MFT Motivation Meisten Probleme nur unter Berücksichtigung von Wechselwirkungen

Mehr

Monte-Carlo Simulation

Monte-Carlo Simulation Monte-Carlo Simulation Dolga Olena Otto-von-Guericke-Universität Fakultät für Informatik Seminar-Das virtuelle Labor Inhaltsverzeichnis Überblick Geschichte Anwendung -Bereiche -Spezielle Methoden Mathematische

Mehr

4.2 Gleichstromkreise

4.2 Gleichstromkreise 4.2 Gleichstromkreise Werden Ladungen transportiert, so fließt ein elektrischer Strom I dq C It () [] I A s dt Einfachster Fall: Gleichstrom; Strom fließt in gleicher ichtung mit konstanter Stärke. I()

Mehr

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden.

Multiple-Choice Test. Alle Fragen können mit Hilfe der Versuchsanleitung richtig gelöst werden. PCG-Grundpraktikum Versuch 8- Reale Gas Multiple-Choice Test Zu jedem Versuch im PCG wird ein Vorgespräch durchgeführt. Für den Versuch Reale Gas wird dieses Vorgespräch durch einen Multiple-Choice Test

Mehr

PROSEMINAR ONLINE ALGORITHMEN

PROSEMINAR ONLINE ALGORITHMEN PROSEMINAR ONLINE ALGORITHMEN im Wintersemester 2000/2001 Prof. Dr. Rolf Klein, Dr. Elmar Langetepe, Dipl. Inform. Thomas Kamphans (Betreuer) Vortrag vom 15.11.2000 von Jan Schmitt Thema : Finden eines

Mehr

Physikalische Formelsammlung

Physikalische Formelsammlung Physikalische Formelsammlung Gleichförmige Bahnbewegung und Kreisbewegung Bewegungsgleichung für die gleichförmige lineare Bewegung: Winkelgeschwindigkeit bei der gleichmäßigen Kreisbewegung: Zusammenhang

Mehr

Statistische Thermodynamik

Statistische Thermodynamik - 45 - Statistische Thermodynamik 1 Phänomenologische Therm., Quantenmechanik, Statistische Thermodynamik In diesem einführenden Kapitel soll etwas zu den Möglichkeiten, Vorzügen und Nachteilen dieser

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 8. Vorlesung Stefan Hickel Visualisierung Prinzipien zur sinnvollen Ergebnisdarstellung! Achsen immer beschriften Einheiten angeben! Bei Höhenliniendarstellungen und Konturdarstellungen

Mehr

Ü b u n g s b l a t t 11

Ü b u n g s b l a t t 11 Mathe für Physiker I Wintersemester 0/04 Walter Oevel 8. 1. 004 Ü b u n g s b l a t t 11 Abgabe von Aufgaben am 15.1.004 in der Übung. Aufgabe 91*: (Differentialgleichungen, Separation. 10 Bonuspunkte

Mehr

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie

Seminar zur Theorie der Teilchen und Felder. Van der Waals Theorie Seminar zur Theorie der Teilchen und Felder Van der Waals Theorie Tobias Berheide 18.11.2009 1 Inhaltsverzeichnis 1 Einleitung 3 2 Das Van der Waals Gas 3 2.1 Das ideale Gas..............................

Mehr

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal

Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal Die freie Energie wird also bei konstantem Volumen und konstanter Temperatur minimal 7.2 Die Enthalpie Die Enthalpie H ist definiert als H = U + pv, womit wir für die Änderung erhalten dh = pdv + TdS +

Mehr

( ) als den Punkt mit der gleichen x-koordinate wie A und der

( ) als den Punkt mit der gleichen x-koordinate wie A und der ETH-Aufnahmeprüfung Herbst 05 Mathematik I (Analysis) Aufgabe [6 Punkte] Bestimmen Sie den Schnittwinkel α zwischen den Graphen der Funktionen f(x) x 4x + x + 5 und g(x) x x + 5 im Schnittpunkt mit der

Mehr

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie

Einführung in die Physik I. Wärme 2 Kinetische Gastheorie Einführung in die Physik I Wärme Kinetische Gastheorie O. von der Lühe und U. Landgraf Kinetische Gastheorie - Gasdruck Der Druck in einem mit einem Gas gefüllten Behälter entsteht durch Impulsübertragung

Mehr

Logo-Aufgaben mit Verbindung zur Mathematik

Logo-Aufgaben mit Verbindung zur Mathematik Logo-Aufgaben mit Verbindung zur Mathematik Student: Dozent: Prof. Juraj Hromkovic Datum: 13.06.007 Logo-Kenntnisse Für die Lösung der Aufgaben werden folge Logo-Befehle benötigt: Arithmetik: +, -, *,

Mehr

II.2 Lösung der freien Klein Gordon-Gleichung

II.2 Lösung der freien Klein Gordon-Gleichung II. Lösung der freien Klein Gordon-Gleichung II..1 Allgemeine Lösung Da die Klein Gordon-Gleichung eine lineare partielle Differentialgleichung ist, kann man als Lösungsansatz eine ebene Welle φ(x) N e

Mehr

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted

Chem. Grundlagen. ure-base Begriff. Das Protonen-Donator-Akzeptor-Konzept. Wasserstoff, Proton und Säure-Basen. Basen-Definition nach Brønsted Der SäureS ure-base Begriff Chem. Grundlagen Das Protonen-Donator-Akzeptor-Konzept Wasserstoff, Proton und Säure-Basen Basen-Definition nach Brønsted Wasserstoff (H 2 ) Proton H + Anion (-) H + = Säure

Mehr

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben?

5.1. Kinetische Gastheorie. Ziel: Der Gasdruck: Kolben ohne Reibung, Gasatome im Volumen V Wie groß ist F auf den Kolben? 5.1. Kinetische Gastheorie z.b: He-Gas : 3 10 Atome/cm diese wechselwirken über die elektrische Kraft: Materie besteht aus sehr vielen Atomen: gehorchen den Gesetzen der Mechanik Ziel: Verständnis der

Mehr

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena.

Einführung in die. Biomechanik. Zusammenfassung WS 2004/2005. Prof. R. Blickhan 1 überarbeitet von A. Seyfarth 2. www.uni-jena. Einführung in die Biomechanik Zusammenfassung WS 00/00 Prof. R. Blickhan überarbeitet von A. Seyfarth www.uni-jena.de/~beb www.lauflabor.de Inhalt. Kinematik (Translation und Rotation). Dynamik (Translation

Mehr

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung)

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung) Lösungen zur Übung 0/1: 'Evolutionsgleichung' Aufgabe 0/1: Der Code zur Berechnung der analytischen Lösung der Evolutionsgleichung findet sich im file evolution.f90, derjenige zur Berechnung der numerischen

Mehr

Prüfung der allgemeinen Fachhochschulreife an den

Prüfung der allgemeinen Fachhochschulreife an den Senatsverwaltung für Bildung, Wissenschaft und Forschung Name, Vorname: Prüfung der allgemeinen Fachhochschulreife an den Fachoberschulen im Schuljahr 007 / 008 Prüfungsfach: Mathematik (Vorschlag ) Prüfungstag:

Mehr

Der Zwiespalt zwischen Theorie und Anschauung in der heutigen Wärmelehre und seine geschichtlichen Ursachen

Der Zwiespalt zwischen Theorie und Anschauung in der heutigen Wärmelehre und seine geschichtlichen Ursachen Der Zwiespalt zwischen Theorie und Anschauung in der heutigen Wärmelehre und seine geschichtlichen Ursachen Georg Job Job-Stiftung c/o. Institut für Physikalische Chemie, Universität Hamburg 24. Didaktik-Workshop

Mehr

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger

Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung. Julia Ziegler, Jan Krieger Robotik-Praktikum: Ballwurf mit dem Roboterarm Lynx6 Modellbeschreibung Julia Ziegler, Jan Krieger Modell zur Optimierung Doppelpendel-Modell Zur Optimierung einer Wurfbewegung wurde ein physikalisches

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall

Man kann zeigen (durch Einsetzen: s. Aufgabenblatt, Aufgabe 3a): Die Lösungsgesamtheit von (**) ist also in diesem Fall 4. Lösung einer Differentialgleichung. Ordnung mit konstanten Koeffizienten a) Homogene Differentialgleichungen y'' + a y' + b y = 0 (**) Ansatz: y = e µx, also y' = µ e µx und y'' = µ e µx eingesetzt

Mehr

9. Vorlesung Wintersemester

9. Vorlesung Wintersemester 9. Vorlesung Wintersemester 1 Die Phase der angeregten Schwingung Wertebereich: bei der oben abgeleiteten Formel tan φ = β ω ω ω0. (1) ist noch zu sehen, in welchem Bereich der Winkel liegt. Aus der ursprünglichen

Mehr

Physik für Elektroingenieure - Formeln und Konstanten

Physik für Elektroingenieure - Formeln und Konstanten Physik für Elektroingenieure - Formeln und Konstanten Martin Zellner 18. Juli 2011 Einleitende Worte Diese Formelsammlung enthält alle Formeln und Konstanten die im Verlaufe des Semesters in den Übungsblättern

Mehr

Die Binomialverteilung

Die Binomialverteilung Fachseminar zur Stochastik Die Binomialverteilung 23.11.2015 Referenten: Carolin Labrzycki und Caroline Kemper Gliederung Einstieg Definition der Binomialverteilung Herleitung der Formel an einem Beispiel

Mehr

Gitter-Monte-Carlo-Simulation des quantenmechanischen Pfadintegrals

Gitter-Monte-Carlo-Simulation des quantenmechanischen Pfadintegrals Gitter-Monte-Carlo-Simulation des quantenmechanischen Pfadintegrals Joshua Berlin, Marc Wagner berlin@th.physik.uni-frankfurt.de, mwagner@th.physik.uni-frankfurt.de Goethe-Universität Frankfurt am Main

Mehr